
Lecture 17: BFS, DFS,
Dijkstra

CSE 373: Data Structures and
Algorithms

CSE 373 2` SP – CHAMPION 1

Warm Up
How would you transform the following scenario into a graph?

You are creating a graph representing a brand-new social media network. Each profile has
both the option to “friend” another user or to “follow” another user. When ”friend” is
selected the other profile is asked for permission, and if given the two profiles will link to
one another. If “follow” is selected then no permission is asked, but the recipient will not
connect to the follower. Answer the following questions about the graph design:
What are the vertices?
What are the edges?
Undirected or directed?
Weighted or unweighted?

Profiles

Follows and friendships

Directed

Unweighted

Administrivia
- Q3.1 does not converge to a single value
- Design decisions are left intentionally ambiguous… annoying I know

- as long as you justify your answer we can give you credit

Introduction to Graphs

CSE 373 SP 18 - KASEY CHAMPION 4

Graph: Formal Definition
A graph is defined by a pair of sets G = (V, E) where…
-V is a set of vertices

- A vertex or “node” is a data entity

-E is a set of edges
- An edge is a connection between two vertices

CSE 373 SP 18 - KASEY CHAMPION 5

A

B

CD

E

F

G

H

V = { A, B, C, D, E, F, G, H }

E = { (A, B), (A, C), (A, D), (A, H),
(C, B), (B, D), (D, E), (D, F),
(F, G), (G, H)}

Graph Glossary
Graph: a category of data structures consisting of a set of vertices and a
set of edges (pairs of vertices)
- Labels: additional data on vertices, edges, or both

- Weighted: a graph where edges have numeric labels
- Directed: the order of edge pairs matters (edges are arrows) [otherwise undirected]

- Origin is first in pair, Destination is second in pair
- In-neighbors of vertex are vertices that point to it, out-neighbors are vertices it points to
- In-degree: number of edges pointing to vertex, out-degree: number of edges from vertex

- Cyclic: contains at least one cycle [otherwise acyclic]
- Simple graph: No self-loops or parallel edges

Path: sequence of vertices reachable by edges
- Simple path: no repeated vertices
- Cycle: a path that starts and ends at the same vertex

Self-loop: edge from vertex to itself
Parallel edges: two edges between same vertices in directed graph,
going opposite directions

(,)

a

b

c

V: Set of vertices

E: Set of edges

a b

(,)a c

(,)c d

…

…

a

b

c

e

d

Adjacency Matrix

0 1 2 3 4 5 6
0 0 1 1 0 0 0 0
1 1 0 0 1 0 0 0
2 1 0 0 1 0 0 0
3 0 1 1 0 0 1 0
4 0 0 0 0 0 1 0
5 0 0 0 1 1 0 0
6 0 0 0 0 0 0 0

6
2 3

4

5
0 1

In an adjacency matrix a[u][v] is 1 if
there is an edge (u,v), and 0 otherwise.
Worst-case Time Complexity
(|V| = n, |E| = m):

Add Edge:
Remove Edge:
Check edge exists from (u,v):
Get outneighbors of u:
Get inneighbors of u:

Space Complexity:

𝚯(𝟏)
𝚯(𝟏)

𝚯(𝟏)
𝚯(𝒏)

𝚯(𝒏)

𝚯(𝒏𝟐)

CSE 373 SU 19 – ROBBIE WEBBER

Create a Dictionary of size V from type V to Collection of E
If (x,y) ∈ E then add y to the set associated with the key x

Adjacency List

CSE 373 SP 20 - KASEY CHAMPION 8

A

B

C

D
An array where the 𝑢!" element contains a list of neighbors of 𝑢.
Directed graphs: list of out-neighbors (a[u] has v for all (u,v) in E)
Time Complexity (|V| = n, |E| = m):

Add Edge:
Remove Edge (u,v):
Check edge exists from (u,v):
Get neighbors of u (out):
Get neighbors of u (in):

Space Complexity:

𝚯(𝟏)
𝚯(𝐝𝐞𝐠(𝒖))

𝚯(𝐝𝐞𝐠 𝒖)
𝚯(𝒏 + 𝒎)

𝚯(𝐝𝐞𝐠(𝒖))

𝚯(𝒏 + 𝒎)

Linked Lists

0

1

2

3

A

B

C

D A

B C

B D

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

Create a Dictionary of size V from type V to Collection of E
If (x,y) ∈ E then add y to the set associated with the key x

Adjacency List

CSE 373 SP 20 - KASEY CHAMPION 9

A

B

C

D
An array where the 𝑢!" element contains a list of neighbors of 𝑢.
Directed graphs: list of out-neighbors (a[u] has v for all (u,v) in E)
Time Complexity (|V| = n, |E| = m):

Add Edge:
Remove Edge (u,v):
Check edge exists from (u,v):
Get neighbors of u (out):
Get neighbors of u (in):

Space Complexity:

Hash Tables

𝚯(𝟏)
𝚯(𝟏)

𝚯(𝟏)
𝚯(𝐝𝐞𝐠(𝒖))
𝚯(𝒏)

𝚯(𝒏 + 𝒎)

0

1

2

3

A

B

C

D

C

D

A

B

B

Adapting for Undirected Graphs

A B C D E

A 0 1 1 0 0

B 1 0 1 1 0

C 1 1 0 1 0

D 0 1 1 0 0

E 0 0 0 0 0

destination

or
ig

in

Abstraction of the Hash Map! Buckets not shown.

A

C

B

Keys (origins) Values (hashmaps w/ destinations as keys)

B

C

1

1

B

D

1

1

B 1

A

B

C

E

D
Adjacency Matrix

Store each edge as both directions
(makes the matrix symmetrical)

Adjacency List
Store each edge as both directions
(doubles the number of entries)

A 1

C 1

A

C

1

1

D 1D

Tradeoffs
Adjacency Matrices take more space, not always faster, why would you use them?
- Checking for an edge is Θ(1), but finding the neighbors takes Θ(n) time.
- For dense graphs (where 𝑚 is close to 𝑛!), the running times will be close
- And the constant factors can be much better for matrices than for lists.
- Sometimes the matrix itself is useful (“spectral graph theory”)

What’s the tradeoff between using linked lists and hash tables for the list of neighbors?
- A hash table still might hit a worst-case
- And the linked list might not

- Graph algorithms often just need to iterate over all the neighbors, so you might get a better guarantee with
the linked list.

373: Assumed Graph Implementations
For this class, unless otherwise stated, assume we’re using an adjacency list with hash
maps.
- Also unless otherwise stated, assume all graph hash map operations are O(1). This is a pretty reasonable

assumption, because for most problems we examine you know the set of vertices ahead of time and
can prevent resizing.

Add Edge
Remove Edge
Check if edge (u, v) exists
Get out-neighbors of u
Get in-neighbors of v
(Space Complexity)

𝚯(𝟏)
𝚯(𝟏)

𝚯(𝐝𝐞𝐠(𝒖))
𝚯(𝒏)

𝚯(𝒏 +𝒎)

𝚯(𝟏)

(|V| = n, |E| = m)

s-t Connectivity Problem

Try to come up with an algorithm for
connected(s, t)

- We can use recursion: if a neighbor of s is connected
to t, that means s is also connected to t!

s-t Connectivity Problem

Given source vertex s and a target vertex t,
does there exist a path between s and t?

1

2

3

4

5

6

7

8

0s
t

s-t Connectivity Problem: Proposed Solution

connected(Vertex s, Vertex t) {
if (s == t) {
return true;

} else {
for (Vertex n : s.neighbors) {
if (connected(n, t)) {
return true;

}
}
return false;

}
}

1

2

3

4

5

6

7

8

0s
t

What’s wrong with this proposal?

Does 0 == 7? No; if(connected(1, 7) return true;
Does 1 == 7? No; if(connected(0, 7) return true;
Does 0 == 7?

connected(Vertex s, Vertex t) {
if (s == t) {
return true;

} else {
for (Vertex n : s.neighbors) {
if (connected(n, t)) {
return true;

}
}
return false;

}
}

1

2

3

4

5

6

7

8

0s
t

s-t Connectivity Problem: Better Solution
Solution: Mark each node as visited!

Set<Vertex> visited; // assume global
connected(Vertex s, Vertex t) {
if (s == t) {

return true;
} else {
visited.add(s);
for (Vertex n : s.neighbors) {
if (!visited.contains(n)) {
if (connected(n, t)) {
return true;

}
}

}
return false;

}
}

1

2

3

4

5

6

7

8

0s
t

This general approach
for crawling through a
graph is going to be the
basis for a LOT of
algorithms!

Set<Vertex> visited; // assume global
connected(Vertex s, Vertex t) {
if (s == t) {
return true;

} else {
visited.add(s);
for (Vertex n : s.neighbors) {
if (!visited.contains(n)) {
if (connected(n, t)) {
return true;

}
}

}
return false;

}
}

Recursive Depth-First Search (DFS)
• What order does this algorithm use to visit nodes?

- Assume order of s.neighbors is arbitrary!
• It will explore one option “all the way down” before

coming back to try other options
- Many possible orderings: {0, 1, 2, 5, 6, 9, 7, 8, 4, 3} or

{0, 1, 4, 3, 2, 5, 8, 6, 7, 9} both possible

• We call this approach a depth-first search (DFS)

1

2

3

4

5
6

7

8

s

VISITED

9

Set<Vertex> visited; // assume global
connected(Vertex s, Vertex t) {
if (s == t) {
return true;

} else {
visited.add(s);
for (Vertex n : s.neighbors) {
if (!visited.contains(n)) {
if (connected(n, t)) {
return true;

}
}

}
return false;

}
}

1

2 3

4

5 8

0s

• CSE 143 Review traversing a
binary tree depth-first has 3
options:

- Pre-order: visit node before
its children

- In-order: visit node between
its children

- Post-order: visit node after its
children

• The difference between
these orderings is when we
“process” the root – all are
DFS!

VISITED

Aside Tree Traversals
We could also apply this code to a tree (recall: a type of graph) to do a depth-first search on
it

Breadth-First Search (BFS)
Suppose we want to visit closer nodes first, instead of following one choice all the way
to the end
- Just like level-order traversal of a tree, now generalized to any graph

1

2

3

4

5
6

7

8

s

VISITED

9

• We call this approach a breadth-first search
(BFS)
• Explore “layer by layer”

• This is our goal, but how do we translate into
code?
• Key observation: recursive calls interrupted

s.neighbors loop to immediately process children
• For BFS, instead we want to complete that loop

before processing children
• Recursion isn’t the answer! Need a data structure to

”queue up” children…
for (Vertex n : s.neighbors) {

0

1

2

3

4

BFS Implementation
bfs(Graph graph, Vertex start) {
Queue<Vertex> perimeter = new Queue<>();
Set<Vertex> visited = new Set<>();

perimeter.add(start);
visited.add(start);

while (!perimeter.isEmpty()) {
Vertex from = perimeter.remove();
for (Edge edge : graph.edgesFrom(from)) {
Vertex to = edge.to();
if (!visited.contains(to)) {
perimeter.add(to);
visited.add(to);

}
}

}
}

Our extra data structure! Will
keep track of “outer edge” of

nodes still to explore

Let’s make this a bit more
realistic and add a Graph

Kick off the algorithm by
adding start to perimeter

1

2

3

4

5
6

7

8

9start

Grab one element at a time
from the perimeter

Look at all that
element’s children

Add new ones to
perimeter!

BFS Implementation: In Action
PERIMETER bfs(Graph graph, Vertex start) {

Queue<Vertex> perimeter = new Queue<>();
Set<Vertex> visited = new Set<>();

perimeter.add(start);
visited.add(start);

while (!perimeter.isEmpty()) {
Vertex from = perimeter.remove();
for (Edge edge : graph.edgesFrom(from)) {
Vertex to = edge.to();
if (!visited.contains(to)) {
perimeter.add(to);
visited.add(to);

}
}

}
}

1

2

3

4

5
6

7

8

start

VISITED

9

1 2 4 5 3 6 8 9 7

0

1

2

3

4

BFS Intuition: Why Does it Work?
PERIMETER bfs(Graph graph, Vertex start) {

Queue<Vertex> perimeter = new Queue<>();
Set<Vertex> visited = new Set<>();

perimeter.add(start);
visited.add(start);

while (!perimeter.isEmpty()) {
Vertex from = perimeter.remove();
for (Edge edge : graph.edgesFrom(from)) {
Vertex to = edge.to();
if (!visited.contains(to)) {
perimeter.add(to);
visited.add(to);

}
}

}
}

1

2

3

4

5
6

7

8

start

VISITED

9

1 2 4 5 3 6 8 9 7

• Properties of a queue exactly what gives us this
incredibly cool behavior

• As long as we explore an entire layer before
moving on (and we will, with a queue) the next
layer will be fully built up and waiting for us by
the time we finish!

• Keep going until perimeter is empty

BFS’s Evil Twin: DFS!
bfs(Graph graph, Vertex start) {
Queue<Vertex> perimeter = new Queue<>();
Set<Vertex> visited = new Set<>();

perimeter.add(start);
visited.add(start);

while (!perimeter.isEmpty()) {
Vertex from = perimeter.remove();
for (Edge edge : graph.edgesFrom(from)) {
Vertex to = edge.to();
if (!visited.contains(to)) {
perimeter.add(to);
visited.add(to);

}
}

}
}

Just change the Queue to a Stack and it becomes DFS!
Now we’ll immediately explore the most recent child

dfs(Graph graph, Vertex start) {
Stack<Vertex> perimeter = new Stack<>();
Set<Vertex> visited = new Set<>();

perimeter.add(start);
visited.add(start);

while (!perimeter.isEmpty()) {
Vertex from = perimeter.remove();
for (Edge edge : graph.edgesFrom(from)) {
Vertex to = edge.to();
if (!visited.contains(to)) {
perimeter.add(to);
visited.add(to);

}
}

}
} *there is a bug in this code… can you find it?

Recap: Graph Traversals
We’ve seen two approaches for ordering a graph traversal
BFS and DFS are just techniques for iterating! (think: for loop over an array)
- Need to add code that actually processes something to solve a problem
- A lot of interview problems on graphs can be solved with modifications on top of BFS or DFS! Very worth being

comfortable with the pseudocode J

BFS
(Iterative)

• Explore layer-by-layer: examine every node at
a certain distance from start, then examine
nodes that are one level farther

• Uses a queue!

DFS
(Iterative)

• Follow a “choice” all the way to the end, then
come back to revisit other choices

• Uses a stack!

DFS
(Recursive)

Be careful using this – on huge graphs, might overflow the call stack

Let’s Practice
Now!

Using BFS for the s-t Connectivity Problem

s-t Connectivity Problem

Given source vertex s and a target vertex
t, does there exist a path between s and

t?

stCon(Graph graph, Vertex start, Vertex t) {
Queue<Vertex> perimeter = new Queue<>();
Set<Vertex> visited = new Set<>();

perimeter.add(start);
visited.add(start);

while (!perimeter.isEmpty()) {
Vertex from = perimeter.remove();
if (from == t) { return true; }
for (Edge edge : graph.edgesFrom(from)) {
Vertex to = edge.to();
if (!visited.contains(to)) {
perimeter.add(to);
visited.add(to);

}
}

}
return false;

}

BFS is a great building block – all
we have to do is check each node
to see if we’ve reached t!
- Note: we’re not using any specific
properties of BFS here, we just needed a
traversal. DFS would also work.

The Shortest Path Problem
(Unweighted) Shortest Path Problem

Given source vertex s and a target vertex
t, how long is the shortest path from s to

t? What edges make up that path?

This is a little harder, but still totally
doable! We just need a way to
keep track of how far each node is
from the start.
- Sounds like a job for?

Using BFS for the Shortest Path Problem

(Unweighted) Shortest Path Problem

Given source vertex s and a target vertex
t, how long is the shortest path from s to

t? What edges make up that path?

This is a little harder, but still totally
doable! We just need a way to
keep track of how far each node is
from the start.
- Sounds like a job for?

- BFS!

...

Map<Vertex, Edge> edgeTo = ...
Map<Vertex, Double> distTo = ...

edgeTo.put(start, null);
distTo.put(start, 0.0);

while (!perimeter.isEmpty()) {
Vertex from = perimeter.remove();
for (Edge edge : graph.edgesFrom(from)) {
Vertex to = edge.to();
if (!visited.contains(to)) {
edgeTo.put(to, edge);
distTo.put(to, distTo.get(from) + 1);
perimeter.add(to);
visited.add(to);

}
}

}
return edgeTo;

}

Remember how we got to this
point, and what layer this

vertex is part of

The start required no edge
to arrive at, and is on level 0

BFS for Shortest Paths: Example

A

B

E

C

D

start
VISITED

PERIMETER
...

Map<Vertex, Edge> edgeTo = ...
Map<Vertex, Double> distTo = ...

edgeTo.put(start, null);
distTo.put(start, 0.0);

while (!perimeter.isEmpty()) {
Vertex from = perimeter.remove();
for (Edge edge : graph.edgesFrom(from)) {
Vertex to = edge.to();
if (!visited.contains(to)) {
edgeTo.put(to, edge);
distTo.put(to, distTo.get(from) + 1);
perimeter.add(to);
visited.add(to);

}
}

}
return edgeTo;

}

EDGETO

DISTTO

The edgeTo map stores backpointers: each vertex remembers
what vertex was used to arrive at it!
Note: this code stores visited, edgeTo, and distTo as external
maps (only drawn on graph for convenience). Another
implementation option: store them as fields of the nodes
themselves

0

1

1

2

2

A B C D E

What about the Target Vertex?
This modification on BFS didn’t mention the target vertex at
all!
Instead, it calculated the shortest path and distance from
start to every other vertex
- This is called the shortest path tree

- A general concept: in this implementation, made up of distances and backpointers

Shortest path tree has all the answers!
- Length of shortest path from A to D?

- Lookup in distTo map: 2
- What’s the shortest path from A to D?

- Build up backwards from edgeTo map: start at D, follow backpointer to B, follow
backpointer to A – our shortest path is A à B à D

All our shortest path algorithms will have this property
- If you only care about t, you can sometimes stop early!

A

B

E

C

D

start

EDGETO

DISTTO
0

1

1

2

2

Shortest Path Tree:

Recap: Graph Problems

EASY MEDIUM

s-t Connectivity Problem

Given source vertex s and a
target vertex t, does there exist

a path between s and t?

(Unweighted) Shortest Path
Problem

Given source vertex s and a
target vertex t, how long is the
shortest path from s to t? What

edges make up that path?

BFS or DFS + check if we’ve hit t BFS + generate shortest
path tree as we go

What about the Shortest
Path Problem on a weighted
graph?

Just like everything is Graphs, every problem is a Graph Problem
BFS and DFS are very useful tools to solve these! We’ll see plenty more.

Next Stop Weighted Shortest Paths
HARDER (FOR NOW)

• Suppose we want to find shortest path
from A to C, using weight of each edge
as “distance”

• Is BFS going to give us the right result
here?

A

B

C

D

14.0

12.0

9000.2

1.5

start
target

Dijkstra’s Algorithm
Named after its inventor, Edsger Dijkstra (1930-2002)
- Truly one of the “founders” of computer science
- 1972 Turing Award
- This algorithm is just one of his many contributions!
- Example quote: “Computer science is no more about computers than astronomy is about telescopes”

The idea: reminiscent of BFS, but adapted to handle weights
- Grow the set of nodes whose shortest distance has been computed
- Nodes not in the set will have a “best distance so far”

Dijkstra’s Algorithm: Idea

Initialization:
- Start vertex has distance 0; all other vertices have distance ¥

At each step:
- Pick closest unknown vertex v
- Add it to the “cloud” of known vertices
- Update “best-so-far” distances for vertices with edges from v

A B

D
C

F H

E

G

2 2 3

110 2
3

111
7

1

9
2

4 5

0

4

2

1

4??

12??

∞

∞

KNOWN

UNKNOWN
PERIMETER

start

dijkstraShortestPath(G graph, V start)
Set known; Map edgeTo, distTo;
initialize distTo with all nodes mapped to ∞, except start to 0

while (there are unknown vertices):
let u be the closest unknown vertex
known.add(u);
for each edge (u,v) from u with weight w:
oldDist = distTo.get(v) // previous best path to v
newDist = distTo.get(u) + w // what if we went through u?
if (newDist < oldDist):
distTo.put(v, newDist)
edgeTo.put(v, u)

Dijkstra’s Pseudocode (High-Level)

Similar to “visited” in BFS,
“known” is nodes that are
finalized (we know their

path)

Dijkstra’s algorithm is all
about updating “best-so-

far” in distTo if we find
shorter path! Init all paths

to infinite.

Order matters: always visit
closest first!

Consider all vertices
reachable from me: would
getting there through me

be a shorter path than they
currently know about?

• Suppose we already visited B, distTo[D] = 7
• Now considering edge (C, D):

• oldDist = 7
• newDist = 3 + 1
• That’s better! Update distTo[D], edgeTo[D]

C D

B
A

KNOWN

PERIMETER

0
2

3 7??

2

3 5

1

start

u v

Dijkstra’s Algorithm: Key Properties

Once a vertex is marked known, its
shortest path is known
- Can reconstruct path by following back-

pointers (in edgeTo map)

While a vertex is not known,
another shorter path might be
found
- We call this update relaxing the distance

because it only ever shortens the
current best path

Going through closest vertices first
lets us confidently say no shorter
path will be found once known
- Because not possible to find a shorter

path that uses a farther vertex we’ll
consider later

dijkstraShortestPath(G graph, V start)
Set known; Map edgeTo, distTo;
initialize distTo with all nodes mapped to ∞, except start to 0

while (there are unknown vertices):
let u be the closest unknown vertex
known.add(u)
for each edge (u,v) to unknown v with weight w:
oldDist = distTo.get(v) // previous best path to v
newDist = distTo.get(u) + w // what if we went through u?
if (newDist < oldDist):
distTo.put(v, newDist)
edgeTo.put(v, u)

Dijkstra’s Algorithm: Example #1

36Order Added to
Known Set:

Vertex Known? distTo edgeTo
A ¥

B ¥

C ¥

D ¥

E ¥

F ¥

G ¥

H ¥

A B

D
C

F H

E

G

2 2 3

110 2
3

111
7

1

9
2

4 5

¥ ¥ ¥

¥

¥

¥

¥

0
start

Dijkstra’s Algorithm: Example #1

37Order Added to
Known Set:
A

Vertex Known? distTo edgeTo
A Y 0 /

B £ 2 A

C £ 1 A

D £ 4 A

E ¥

F ¥

G ¥

H ¥

A B

D
C

F H

E

G

2 2 3

110 2
3

111
7

1

9
2

4 5

2?? ¥ ¥

1??

4??

¥

¥

0
start

Dijkstra’s Algorithm: Example #1

38Order Added to
Known Set:
A, C

Vertex Known? distTo edgeTo
A Y 0 /

B £ 2 A

C Y 1 A

D £ 4 A

E £ 12 C

F ¥

G ¥

H ¥

A B

D
C

F H

E

G

2 2 3

110 2
3

111
7

1

9
2

4 5

2?? ¥ ¥

1

4??

¥

12??

0
start

Dijkstra’s Algorithm: Example #1

39Order Added to
Known Set:
A, C, B

Vertex Known? distTo edgeTo
A Y 0 /

B Y 2 A

C Y 1 A

D £ 4 A

E £ 12 C

F £ 4 B

G ¥

H ¥

A B

D
C

F H

E

G

2 2 3

110 2
3

111
7

1

9
2

4 5

2 4?? ¥

1

4??

¥

12??

0
start

Dijkstra’s Algorithm: Example #1

40Order Added to
Known Set:
A, C, B, D

Vertex Known? distTo edgeTo
A Y 0 /

B Y 2 A

C Y 1 A

D Y 4 A

E £ 12 C

F £ 4 B

G ¥

H ¥

A B

D
C

F H

E

G

2 2 3

110 2
3

111
7

1

9
2

4 5

2 4?? ¥

1

4

¥

12??

0
start

Dijkstra’s Algorithm: Example #1

41Order Added to
Known Set:
A, C, B, D, F

Vertex Known? distTo edgeTo
A Y 0 /

B Y 2 A

C Y 1 A

D Y 4 A

E £ 12 C

F Y 4 B

G ¥

H £ 7 F

A B

D
C

F H

E

G

2 2 3

110 2
3

111
7

1

9
2

4 5

2 4 7??

1

4

¥

12??

0
start

Dijkstra’s Algorithm: Example #1

42Order Added to
Known Set:
A, C, B, D, F, H

Vertex Known? distTo edgeTo
A Y 0 /

B Y 2 A

C Y 1 A

D Y 4 A

E £ 12 C

F Y 4 B

G £ 8 H

H Y 7 F

A B

D
C

F H

E

G

2 2 3

110 2
3

111
7

1

9
2

4 5

2 4 7

1

4

8??

12??

0
start

Dijkstra’s Algorithm: Example #1

43Order Added to
Known Set:
A, C, B, D, F, H, G

Vertex Known? distTo edgeTo
A Y 0 /

B Y 2 A

C Y 1 A

D Y 4 A

E £ 11 G

F Y 4 B

G Y 8 H

H Y 7 F

A B

D
C

F H

E

G

2 2 3

110 2
3

111
7

1

9
2

4 5

2 4 7

1

4

8

11??

0
start

Dijkstra’s Algorithm: Example #1

44Order Added to
Known Set:
A, C, B, D, F, H, G, E

Vertex Known? distTo edgeTo
A Y 0 /

B Y 2 A

C Y 1 A

D Y 4 A

E Y 11 G

F Y 4 B

G Y 8 H

H Y 7 F

A B

D
C

F H

E

G

2 2 3

110 2
3

111
7

1

9
2

4 5

2 4 7

1

4

8

11

0
start

Dijkstra’s Algorithm: Interpreting the Results
Now that we’re done, how do we get the
path from A to E?
Follow edgeTo backpointers!
distTo and edgeTo make up the shortest
path tree

45Order Added to
Known Set:
A, C, B, D, F, H, G, E

Vertex Known? distTo edgeTo
A Y 0 /

B Y 2 A

C Y 1 A

D Y 4 A

E Y 11 G

F Y 4 B

G Y 8 H

H Y 7 F

A B

D
C

F H

E

G

2 2 3

110 2
3

111
7

1

9
2

4 5

2 4 7

1

4

8

11

0
start

Review: Key Features
Once a vertex is marked known, its shortest path is known
- Can reconstruct path by following backpointers

While a vertex is not known, another shorter path might be found!

The “Order Added to Known Set” is unimportant
- A detail about how the algorithm works (client doesn’t care)
- Not used by the algorithm (implementation doesn’t care)
- It is sorted by path-distance; ties are resolved “somehow”

If we only need path to a specific vertex, can stop early once that vertex is known
- Because its shortest path cannot change!
- Return a partial shortest path tree

Appendix

Graph problems
There are lots of interesting questions we can ask about a graph:
▪ What is the shortest route from S to T?
▪ What is the longest without cycles?
▪ Are there cycles?
▪ Is there a tour (cycle) you can take that only uses each node (station) exactly once?
▪ Is there a tour (cycle) that uses each edge exactly once?

HANNAH TANG 20WI

Graph problems
Some well known graph problems and their common names:
▪ s-t Path. Is there a path between vertices s and t?
▪ Connectivity. Is the graph connected?
▪ Biconnectivity. Is there a vertex whose removal disconnects the graph?
▪ Shortest s-t Path. What is the shortest path between vertices s and t?
▪ Cycle Detection. Does the graph contain any cycles?
▪ Euler Tour. Is there a cycle that uses every edge exactly once?
▪ Hamilton Tour. Is there a cycle that uses every vertex exactly once?
▪ Planarity. Can you draw the graph on paper with no crossing edges?
▪ Isomorphism. Are two graphs the same graph (in disguise)?
Graph problems are among the most mathematically rich areas of CS theory!

HANNAH TANG 20WI

s-t path Problem
s-t path problem
- Given source vertex s and a target vertex t, does there
exist a path between s and t?

Why does this problem matter? Some possible context:
q real life maps and trip planning – can we get from one location (vertex)

to another location (vertex) given the current available roads (edges)
q family trees and checking ancestry – are two people (vertices) related

by some common ancestor (edges for direct parent/child relationships)
q game states (Artificial Intelligence) can you win the game from the

current vertex (think: current board position)? Are there moves (edges)
you can take to get to the vertex that represents an already won game?

50

1

2

3

4

5

6

7

8

0
s

t

s-t path Problem
s-t path problem
- Given source vertex s and a target vertex t, does there
exist a path between s and t?

51

1

2

3

4

5

6

7

8

0
s

t

v What’s the answer for this graph on the left, and
how did we get that answer as humans?

v We can see there’s edges that are visually in between
s and t, and we can try out an example path and make
sure that by traversing that path you can get from s to
t.

v We know that doesn’t scale that well though, so now
let’s try to define a more algorithmic (comprehensive)
way to find these paths. The main idea is: starting from
the specified s, try traversing through every single
possible path possible that’s not redundant to see if it
could lead to t.traversals are really important to solving this

problem / problems in general, so slight
detour to talk about them, we’ll come back to
this though

Graph traversals: DFS
Depth First Search - a traversal on graphs (or on trees since those are also graphs) where
you traverse “deep nodes” before all the shallow ones
High-level DFS: you go as far as you can down one path till you hit a dead end (no
neighbors are still undiscovered or you have no neighbors). Once you hit a dead end, you
backtrack / undo until you find some options/edges that you haven’t actually tried yet.

Kind of like wandering a
maze – if you get stuck at a
dead end (since you
physically have to go and
try it out to know it’s a
dead end), trace your steps
backwards towards your
last decision and when you
get back there, choose a
different option than you
did before.

one valid DFS traversal: 10, 5, 3, 2, 4, 8, 7,6, 9, 15, 12, 14, 18

Graph traversals: BFS
Breadth First Search - a traversal on graphs (or on trees since those are also graphs) where you
traverse level by level. So in this one we’ll get to all the shallow nodes before any “deep nodes”.
Intuitive ways to think about BFS:
- opposite way of traversing compared to DFS
- a sound wave spreading from a starting point, going outwards in all directions possible.
- mold on a piece of food spreading outwards so that it eventually covers the whole surface

one valid BFS traversal: 10, 5, 15, 3, 8, 12, 18, 2, 4, 7, 9, 14, 6

Graph traversals: BFS and DFS on more graphs

Take 2 minutes and try to come up
with two possible traversal orderings
starting with the 0 node:

-a BFS ordering (ordering within each
layer doesn’t matter / any ordering
is valid)

-a DFS ordering (ordering which path
you choose next at any point
doesn’t matter / any is valid as long
as you haven’t explored it before)

@ordering choices will be more
stable when we have code in front
of us, but not the focus / point of
the traversals so don’t worry about
it

In DFS, you go as far as you can down one path till you hit a dead
end (no neighbors are still undiscovered or you have no
neighbors). Once you hit a dead end, you backtrack / undo until
you find some options/edges that you haven’t actually tried yet.

In BFS, you traverse level by level

Graph traversals: BFS and DFS on more graphs

Take a minute and try to come up
with two possible traversal orderings
starting with the 0 node:

-a BFS ordering (ordering within each
layer doesn’t really matter / any
ordering is valid)
- 0, [1, 2, 3, 4, 5, 6, 7], [8, 9, 10, 12, 13, 14, 15,

16, 17], [11, 18], [19]

-a DFS ordering (ordering which path
you choose next at any point
doesn’t matter / any is valid as long
as you haven’t explored it before)
- 0, 2, 9, 3, 10, 11, 19, 4, 12, 18,

5, 13, 14, 6, 15, 7, 16, 1,17, 8

In DFS, you go as far as you can down one path till you hit a dead
end (no neighbors are still undiscovered or you have no
neighbors). Once you hit a dead end, you backtrack / undo until
you find some options/edges that you haven’t actually tried yet.

In BFS, you traverse level by level

Graph traversals: BFS and DFS on more graphs
https://visualgo.net/en/dfsbfs

-click on draw graph to create your own
graphs and run BFS/DFS on them!

-check out visualgo.net for more really
cool interactive visualizations

-or do your own googling – there are a
lot of cool visualizations out there J!

https://visualgo.net/en/dfsbfs

BFS pseudocode (some details not Java
specific)bfs(Graph graph, Vertex start) {

// stores the remaining vertices to visit in the BFS

Queue<Vertex> perimeter = new Queue<>();

// stores the set of discovered vertices so we don't revisit them multiple times

Set<Vertex> discovered = new Set<>();

// kicking off our starting point by adding it to the perimeter

perimeter.add(start);

discovered.add(start);

while (!perimeter.isEmpty()) {

Vertex from = perimeter.remove();

for (E edge : graph.outgoingEdgesFrom(from)) {
Vertex to = edge.to();

if (!discovered.contains(to)) {

perimeter.add(to);

discovered.add(to)

}

}
}

1

2

3

4

5

6

7

8

0
s

t

BFS pseudocode (some details not Java
specific)//. . . this is the main loop/code for BFS

while (!perimeter.isEmpty()) {

Vertex from = perimeter.remove();

for (E edge : graph.outgoingEdgesFrom(from)) {

Vertex to = edge.to();

if (!discovered.contains(to)) {

perimeter.add(to);
discovered.add(to)

}

}

}

1

2

3

4

5

6

7

8

0
s

t

Perimeter queue:

Discovered set:

Expected levels starting the BFS from 0:

• 0
• 1
• 2 4
• 3 5
• 6 8
• 7

DFS pseudocode (some details not Java
specific)dfs(Graph graph, Vertex start) {

// stores the remaining vertices to visit in the DFS

Stack<Vertex> perimeter = new Stack<>(); //the only change you need to make to do DFS!

// stores the set of discovered vertices so we don't revisit them multiple times

Set<Vertex> discovered = new Set<>();

// kicking off our starting point by adding it to the perimeter

perimeter.add(start);

discovered.add(start);

while (!perimeter.isEmpty()) {

Vertex from = perimeter.remove();

for (E edge : graph.outgoingEdgesFrom(from)) {
Vertex to = edge.to();

if (!discovered.contains(to)) {

perimeter.add(to);

discovered.add(to)

}

}
}

1

2

3

4

5

6

7

8

0
s

t

Modifying BFS and DFS
BFS and DFS are like the for loops over arrays for graphs. They’re super fundamental to so many
ideas, but when they’re by themselves they don’t do anything. Consider the following code:
for (int i = 0; i < n; i++) {

int x = arr[i];

}

We actually need to do something with the data for it to be useful!
A lot of times to solve basic graph problems (which show up in technical interviews at this level), and
often the answer is that you just need to describe / implement BFS/DFS with a small modification for
your specific problem.
Now back to the s-t path problem…

while (!perimeter.isEmpty()) {
Vertex from = perimeter.remove();
for (E edge : graph.outgoingEdgesFrom(from)) {

Vertex to = edge.to();
if (!discovered.contains(to)) {

perimeter.add(to, newDist);
discovered.add(to)

}
}

}

Modifying BFS for the s-t path problem
//. . . this is the main loop/code for BFS

while (!perimeter.isEmpty()) {

Vertex from = perimeter.remove();

for (E edge : graph.outgoingEdgesFrom(from)) {
Vertex to = edge.to();

if (!discovered.contains(to)) {

perimeter.add(to);

discovered.add(to)

}

}
}

// with modifications to return true if

// there is a path where s can reach t

while (!perimeter.isEmpty()) {

Vertex from = perimeter.remove();
if (from == t) {

return true;
}
for (E edge : graph.outgoingEdgesFrom(from)) {

Vertex to = edge.to();

if (!discovered.contains(to)) {
perimeter.add(to);

discovered.add(to)

}

}

}

return false;

Small note: for this s-t problem, we didn’t really need the power of BFS in particular, just
some way of looping through the graph starting at a particular point and seeing everything
it was connected to. So we could have just as easily used DFS.

There are plenty of unique applications of both, however, and we’ll cover some of them in
this course – for a more comprehensive list, feel free to google or check out resources like:
- https://www.geeksforgeeks.org/applications-of-breadth-first-traversal/
- https://www.geeksforgeeks.org/applications-of-depth-first-search/

https://www.geeksforgeeks.org/applications-of-breadth-first-traversal/
https://www.geeksforgeeks.org/applications-of-depth-first-search/

Questions /
clarifications on

anything?
we covered:
- s-t path problem
- BFS/DFS visually + high-level
- BFS/DFS pseudocode
- modifying BFS/DFS to solve s-t path problem

Roadmap for today
§ review Wednesday intro to graphs key points
§graph problems
§s-t path problem
§ detour: BFS/DFS
§ visually
§pseudocode
§modifications to solve problems (circling back to s-t path)

§shortest path problem (for unweighted graphs)

Shortest Path problem (unweighted graph)
§ For the graph on the right, find the shortest path (the
path that has the fewest number of edges) between the
0 node and the 5 node. Describe the path by
describing each edge (i.e. (0, 1) edge).
§ What’s the answer? How did we get that as humans?
How do we want to do it comprehensively defined in
an algorithm?

1

2

4

5 6

7

8

0
s

t

Shortest Path problem (unweighted graph)
how do we find a shortest paths?

What’s the shortest path from 0 to 0?
- Well….we’re already there.

What’s the shortest path from 0 to 1 or 8?
- Just go on the edge from 0

From 0 to 4 or 2 or 5?
- Can’t get there directly from 0, if we want a length 2 path, have to go through 1 or 8.

From 0 to 6?
- Can’t get there directly from 0, if we want a length 3 path, have to go through 5.

66CSE 373 19 SU - ROBBIE WEBER

1

2

4

5 6

7

8

0
s

t

Shortest Path problem (unweighted graph)
key idea
To find the set of vertices at distance k, just find the set of vertices at distance k-1, and see if any of
them have an outgoing edge to an undiscovered vertex. Basically, if we traverse level by level and
we’re checking all the nodes that show up at each level comprehensively (and only recording the
earliest time they show up), when we find our target at level k, we can keep using the edge that led
to it from the previous level to justify the shortest path.
Do we already know an algorithm that can help us traverse the graph level by level?
Yes! BFS! Let’s modify it to fit our needs.

67CSE 373 19 SU - ROBBIE WEBER

perimeter.add(start);
discovered.add(start);

start.distance = 0;
while (!perimeter.isEmpty()) {

Vertex from = perimeter.remove();
for (E edge : graph.outgoingEdgesFrom(from)) {

Vertex to = edge.to();

if (!discovered.contains(to)) {
to.distance = from.distance + 1;
to.predecessorEdge = edge;
perimeter.add(to);

discovered.add(to)
}

}
}

Changes from traversal BFS:
- Every node now will have an associated

distance (for convenience)
- Every node V now will have an associated

predecessor edge that is the edge that
connects V on the shortest path from S to V.
The edges that each of the nodes store are
the final result.

Unweighted Graphs
Use BFS to find shortest paths in this graph.

CSE 373 19 SU - ROBBIE WEBER

perimeter.add(start);
discovered.add(start);

start.distance = 0;
while (!perimeter.isEmpty()) {

Vertex from = perimeter.remove();

for (E edge : graph.outgoingEdgesFrom(from)) {
Vertex to = edge.to();
if (!discovered.contains(to)) {

to.distance = from.distance + 1;
to.predecessorEdge = edge;
perimeter.add(to);

discovered.add(to)
}

}
}

1

2

4

5 6

7

8

0
s

t

Unweighted Graphs

69CSE 373 19 SU - ROBBIE WEBER

Use BFS to find shortest paths in this graph.
1

2

4

5 6

7

8

0
s

t

perimeter.add(start);
discovered.add(start);

start.distance = 0;
while (!perimeter.isEmpty()) {

Vertex from = perimeter.remove();

for (E edge : graph.outgoingEdgesFrom(from)) {
Vertex to = edge.to();
if (!discovered.contains(to)) {

to.distance = from.distance + 1;
to.predecessorEdge = edge;
perimeter.add(to);

discovered.add(to)
}

}
}

If trying to recall the best path from 0 to 5:
5’s predecessor edge is (8, 5)
8’s predecessor edge is (0, 8)
0 was the start vertex

Note: this BFS modification produces these edges, but there’s
extra work to figure out a specific path from a start / target

What about the target vertex?

70

Given: a directed graph G and vertices s,t
Find: the shortest path from s to t.

Shortest Path Problem

BFS didn’t mention a target vertex…
It actually finds the distance from s to every other vertex. The resulting edges are
called the shortest path tree.

All our shortest path algorithms have this property.
If you only care about one target, you can sometimes stop early (in
bfsShortestPaths, when the target pops off the queue)

CSE 373 19 SU - ROBBIE WEBER

Map<V, E> bfsFindShortestPathsEdges(G graph, V start) {
// stores the edge `E` that connects `V` in the shortest path from s to V
Map<V, E> edgeToV = empty map

// stores the shortest path length from `start` to `V`
Map<V, Double> distToV = empty map

Queue<V> perimeter = new Queue<>();
Set<V> discovered = new Set<>();

// setting up the shortest distance from start to start is just 0 with
// no edge leading to it
edgeTo.put(start, null);
distTo.put(start, 0.0);

perimeter.add(start);

while (!perimeter.isEmpty()) {
V from = perimeter.remove();
for (E e : graph.outgoingEdgesFrom(from)) {

V to = e.to();
if (!discovered.contains(to)) {

edgeTo.put(to, e);
distTo.put(to, distTo(from) + 1);
perimeter.add(to, newDist);
discovered.add(to)

}
}

}
return edgeToV;

}

1

2

4

5 6

7

8

0
s

t

This is an alternative way to
implement bfsShortestPaths that has
an easier time accessing the actual
paths / distances by using Maps

