
Lecture 16: Intro to
Graphs

CSE 373: Data Structures and
Algorithms

CSE 373 21 SP – CHAMPION 1

Administrivia
- Midterm is out – due this Friday by 11:59pm NO LATE ASSIGNMENTS
- Clarifications:

- choose from the given lists of ADTs and data structures
- Internal array of hash = location of buckets
- 8.2 is a generic hash table implementation
- apologies on bad parameters on code modeling, assume all calls get passed max as well

Midterm survey due TONIGHT
- if 90% of class on both - +1 ec point for all
- only at 60% response rate L

Introduction to Graphs

CSE 373 SP 18 - KASEY CHAMPION 3

Inter-data Relationships
Arrays

Categorically associated
Sometimes ordered
Typically independent
Elements only store pure
data, no connection info

CSE 373 SP 18 - KASEY CHAMPION 4

A

B C

Trees

Directional Relationships
Ordered for easy access
Limited connections
Elements store data and
connection info

0 1 2

A B C

Graphs

Multiple relationship
connections
Relationships dictate
structure
Connection freedom!
Both elements and
connections can store
data

A

B

C

Inter-data Relationships

Elements only store pure
data, no connection info

Only relationship between
data is order

0 1 2

A B C

Arrays

• Elements store data and
connection info

• Directional relationships
between nodes; limited
connections

Trees Graphs

• Elements AND
connections can store
data

• Relationships dictate
structure; huge freedom
with connections

B

A C

B

A

C

Graphs
Everything is graphs.
Most things we’ve studied this quarter can be represented by graphs.
- BSTs are graphs
- Linked lists? Graphs.
- Heaps? Also can be represented as graphs.
- Those trees we drew in the tree method? Graphs.

But it’s not just data structures that we’ve discussed…
- Google Maps database? Graph.
- Facebook? They have a “graph search” team. Because it’s a graph
- Gitlab’s history of a repository? Graph.
- Those pictures of prerequisites in your program? Graphs.
- Family tree? That’s a graph

Applications
Physical Maps
- Airline maps

- Vertices are airports, edges are flight paths
- Traffic

- Vertices are addresses, edges are streets

Relationships
- Social media graphs

- Vertices are accounts, edges are follower relationships
- Code bases

- Vertices are classes, edges are usage

Influence
- Biology

- Vertices are cancer cell destinations, edges are migration paths

Related topics
- Web Page Ranking

- Vertices are web pages, edges are hyperlinks
- Wikipedia

- Vertices are articles, edges are links

SO MANY MORREEEE
www.allthingsgraphed.com

CSE 373 SP 18 - KASEY CHAMPION 7

http://www.allthingsgraphed.com/

Graph: Formal Definition
A graph is defined by a pair of sets G = (V, E) where…
-V is a set of vertices

- A vertex or “node” is a data entity

-E is a set of edges
- An edge is a connection between two vertices

CSE 373 SP 18 - KASEY CHAMPION 8

A

B

CD

E

F

G

H

V = { A, B, C, D, E, F, G, H }

E = { (A, B), (A, C), (A, D), (A, H),
(C, B), (B, D), (D, E), (D, F),
(F, G), (G, H)}

Graph Vocabulary
Graph Direction
- Undirected graph – edges have no direction and are two-way

- Directed graphs – edges have direction and are thus one-way

Degree of a Vertex
- Degree – the number of edges connected to that vertex
Karen : 1, Jim : 1, Pam : 1

- In-degree – the number of directed edges that point to a vertex
Gunther : 0, Rachel : 2, Ross : 1

- Out-degree – the number of directed edges that start at a vertex
Gunther : 1, Rachel : 1, Ross : 1

CSE 373 SP 20 - KASEY CHAMPION 9

Karen Jim

Pam

V = { Karen, Jim, Pam }
E = { (Jim, Pam), (Jim, Karen) } inferred (Karen, Jim) and (Pam, Jim)

V = { Gunther, Rachel, Ross }
E = { (Gunther, Rachel), (Rachel, Ross), (Ross, Rachel) }

Gunther
Rachel

Ross

Undirected Graph:

Directed Graph:

More More Graph Terminology
Two vertices are connected if there is a path between
them
- If all the vertices are connected, we say the graph is connected
- The number of edges leaving a vertex is its degree

A path is a sequence of vertices connected by edges
- A simple path is a path without repeated vertices
- A cycle is a path whose first and last vertices are the same

- A graph with a cycle is cyclic

a

b

c

f

e

g

d

j

p

m

n

i

o

p

m

n

i

o

Directed vs Undirected; Acyclic vs Cyclic

a

b

d

c

a

b

d

c

e

a

b

d

c

a

b

d

c

Acyclic:

Cyclic:

Directed: Undirected:

Vertex & Edge
Labels

Labeled and Weighted Graphs
Edge Labels

a

b

c

d

Vertex Labels

b

d

c

e

a

Numeric Edge Labels
(Edge Weights)

1

2

3

1

2

3

4

5

1

a

b

c

d

Some examples
For each of the following think about what you should choose for vertices and edges.
The internet
- Vertices: webpages. Edges from a to b if a has a hyperlink to b.
- Directed, since hyperlinks go in one direction

Family tree
- Vertices: people. Edges: relationships
- Undirected, bidirectional relationships

Input data for the “6 Degrees of Kevin Bacon” game
- Vertices: actors. Edges: movies
- Undirected, a both actor would need to be in the movie for the edge to be added

Course Prerequisites
- Vertices: courses. Edge: from a to b if a is a prereq for b.
- Directed, since one course comes before the other

Ways to walk between UW buildings
- Vertices: buildings. Edges: A street name or walkway that connects 2 buildings
- Undirected, since each route can be walked both ways

CSE 373 SU 19 – ROBBIE WEBBER

Multi-Variable Analysis
• So far, we thought of everything as being in terms of some single

argument “n” (sometimes its own parameter, other times a size)
- But there’s no reason we can’t do reasoning in terms of multiple inputs!

• Why multi-variable?
- Remember, algorithmic analysis is just a tool to help us understand code.

Sometimes, it helps our understanding more to build a Oh/Omega/Theta
bound for multiple factors, rather than handling those factors in case
analysis.

• With graphs, we usually do our reasoning in terms of:
- n (or |V|): total number of vertices (sometimes just call it V)
- m (or |E|): total number of edges (sometimes just call it E)
- deg(u): degree of node u (how many outgoing edges it has)

Adjacency Matrix

0 1 2 3 4 5 6
0 0 1 1 0 0 0 0
1 1 0 0 1 0 0 0
2 1 0 0 1 0 0 0
3 0 1 1 0 0 1 0
4 0 0 0 0 0 1 0
5 0 0 0 1 1 0 0
6 0 0 0 0 0 0 0

6
2 3

4

5
0 1

In an adjacency matrix a[u][v] is 1 if
there is an edge (u,v), and 0 otherwise.
Worst-case Time Complexity
(|V| = n, |E| = m):

Add Edge:
Remove Edge:
Check edge exists from (u,v):
Get outneighbors of u:
Get inneighbors of u:

Space Complexity:

𝚯(𝟏)
𝚯(𝟏)

𝚯(𝟏)
𝚯(𝒏)

𝚯(𝒏)

𝚯(𝒏𝟐)

CSE 373 SU 19 – ROBBIE WEBBER

Create a Dictionary of size V from type V to Collection of E
If (x,y) ∈ E then add y to the set associated with the key x

Adjacency List

CSE 373 SP 20 - KASEY CHAMPION 16

A

B

C

D
An array where the 𝑢!" element contains a list of neighbors of 𝑢.
Directed graphs: list of out-neighbors (a[u] has v for all (u,v) in E)
Time Complexity (|V| = n, |E| = m):

Add Edge:
Remove Edge (u,v):
Check edge exists from (u,v):
Get neighbors of u (out):
Get neighbors of u (in):

Space Complexity:

𝚯(𝟏)
𝚯(𝐝𝐞𝐠(𝒖))

𝚯(𝐝𝐞𝐠 𝒖)
𝚯(𝒏 + 𝒎)

𝚯(𝐝𝐞𝐠(𝒖))

𝚯(𝒏 + 𝒎)

Linked Lists

0

1

2

3

A

B

C

D A

B C

B D

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

Create a Dictionary of size V from type V to Collection of E
If (x,y) ∈ E then add y to the set associated with the key x

Adjacency List

CSE 373 SP 20 - KASEY CHAMPION 17

A

B

C

D
An array where the 𝑢!" element contains a list of neighbors of 𝑢.
Directed graphs: list of out-neighbors (a[u] has v for all (u,v) in E)
Time Complexity (|V| = n, |E| = m):

Add Edge:
Remove Edge (u,v):
Check edge exists from (u,v):
Get neighbors of u (out):
Get neighbors of u (in):

Space Complexity:

Hash Tables

𝚯(𝟏)
𝚯(𝟏)

𝚯(𝟏)
𝚯(𝐝𝐞𝐠(𝒖))
𝚯(𝒏)

𝚯(𝒏 + 𝒎)

0

1

2

3

A

B

C

D

C

D

A

B

B

Tradeoffs
Adjacency Matrices take more space, why would you use them?
- For dense graphs (where 𝑚 is close to 𝑛!), the running times will be close
- And the constant factors can be much better for matrices than for lists.
- Sometimes the matrix itself is useful (“spectral graph theory”)

What’s the tradeoff between using linked lists and hash tables for the list of neighbors?
- A hash table still might hit a worst-case
- And the linked list might not

- Graph algorithms often just need to iterate over all the neighbors, so you might get a better guarantee with
the linked list.

373: Graph Implementations
For this class, unless we say otherwise, we’ll assume the hash tables operations on graphs
are all 𝑂 1 .
- Because you can probably control the keys.

Unless we say otherwise, assume we’re using the hash table approach.

Questions / clarifications on
anything?

relevant ideas for today
- vertices, edges, definitions
- graphs model relationships between real data (you

can choose your vertices and edges to
- different graph implementations exist

Roadmap for today
§ review Wednesday intro to graphs key points
§graph problems
§s-t path problem

§ detour: BFS/DFS
§ visually
§pseudocode
§modifications to solve problems (circling back to s-t path)

§shortest path problem (for unweighted graphs)

Graph problems
There are lots of interesting questions we can ask about a graph:
▪ What is the shortest route from S to T?
▪ What is the longest without cycles?
▪ Are there cycles?
▪ Is there a tour (cycle) you can take that only uses each node (station) exactly once?
▪ Is there a tour (cycle) that uses each edge exactly once?

HANNAH TANG 20WI

Graph problems
Some well known graph problems and their common names:
▪ s-t Path. Is there a path between vertices s and t?
▪ Connectivity. Is the graph connected?
▪ Biconnectivity. Is there a vertex whose removal disconnects the graph?
▪ Shortest s-t Path. What is the shortest path between vertices s and t?
▪ Cycle Detection. Does the graph contain any cycles?
▪ Euler Tour. Is there a cycle that uses every edge exactly once?
▪ Hamilton Tour. Is there a cycle that uses every vertex exactly once?
▪ Planarity. Can you draw the graph on paper with no crossing edges?
▪ Isomorphism. Are two graphs the same graph (in disguise)?
Graph problems are among the most mathematically rich areas of CS theory!

HANNAH TANG 20WI

s-t path Problem
s-t path problem
- Given source vertex s and a target vertex t, does there
exist a path between s and t?

Why does this problem matter? Some possible context:
q real life maps and trip planning – can we get from one location (vertex)

to another location (vertex) given the current available roads (edges)
q family trees and checking ancestry – are two people (vertices) related

by some common ancestor (edges for direct parent/child relationships)
q game states (Artificial Intelligence) can you win the game from the

current vertex (think: current board position)? Are there moves (edges)
you can take to get to the vertex that represents an already won game?

24

1

2

3

4

5

6

7

8

0
s

t

s-t path Problem
s-t path problem
- Given source vertex s and a target vertex t, does there
exist a path between s and t?

25

1

2

3

4

5

6

7

8

0
s

t

v What’s the answer for this graph on the left, and
how did we get that answer as humans?

v We can see there’s edges that are visually in between
s and t, and we can try out an example path and make
sure that by traversing that path you can get from s to
t.

v We know that doesn’t scale that well though, so now
let’s try to define a more algorithmic (comprehensive)
way to find these paths. The main idea is: starting from
the specified s, try traversing through every single
possible path possible that’s not redundant to see if it
could lead to t.traversals are really important to solving this

problem / problems in general, so slight
detour to talk about them, we’ll come back to
this though

Graph traversals: DFS (should feel similar to
143 in the tree context)
Depth First Search - a traversal on graphs (or on trees since those are also graphs) where
you traverse “deep nodes” before all the shallow ones
High-level DFS: you go as far as you can down one path till you hit a dead end (no
neighbors are still undiscovered or you have no neighbors). Once you hit a dead end, you
backtrack / undo until you find some options/edges that you haven’t actually tried yet.

Kind of like wandering a
maze – if you get stuck at a
dead end (since you
physically have to go and
try it out to know it’s a
dead end), trace your steps
backwards towards your
last decision and when you
get back there, choose a
different option than you
did before.

one valid DFS traversal: 10, 5, 3, 2, 4, 8, 7,6, 9, 15, 12, 14, 18

Graph traversals: BFS
Breadth First Search - a traversal on graphs (or on trees since those are also graphs) where you
traverse level by level. So in this one we’ll get to all the shallow nodes before any “deep nodes”.
Intuitive ways to think about BFS:
- opposite way of traversing compared to DFS
- a sound wave spreading from a starting point, going outwards in all directions possible.
- mold on a piece of food spreading outwards so that it eventually covers the whole surface

one valid BFS traversal: 10, 5, 15, 3, 8, 12, 18, 2, 4, 7, 9, 14, 6

Graph traversals: BFS and DFS on more graphs

Take 2 minutes and try to come up
with two possible traversal orderings
starting with the 0 node:

-a BFS ordering (ordering within each
layer doesn’t matter / any ordering
is valid)

-a DFS ordering (ordering which path
you choose next at any point
doesn’t matter / any is valid as long
as you haven’t explored it before)

@ordering choices will be more
stable when we have code in front
of us, but not the focus / point of
the traversals so don’t worry about
it

In DFS, you go as far as you can down one path till you hit a dead
end (no neighbors are still undiscovered or you have no
neighbors). Once you hit a dead end, you backtrack / undo until
you find some options/edges that you haven’t actually tried yet.

In BFS, you traverse level by level

Graph traversals: BFS and DFS on more graphs

Take a minute and try to come up
with two possible traversal orderings
starting with the 0 node:

-a BFS ordering (ordering within each
layer doesn’t really matter / any
ordering is valid)
- 0, [1, 2, 3, 4, 5, 6, 7], [8, 9, 10, 12, 13, 14, 15,

16, 17], [11, 18], [19]

-a DFS ordering (ordering which path
you choose next at any point
doesn’t matter / any is valid as long
as you haven’t explored it before)
- 0, 2, 9, 3, 10, 11, 19, 4, 12, 18,

5, 13, 14, 6, 15, 7, 16, 1,17, 8

In DFS, you go as far as you can down one path till you hit a dead
end (no neighbors are still undiscovered or you have no
neighbors). Once you hit a dead end, you backtrack / undo until
you find some options/edges that you haven’t actually tried yet.

In BFS, you traverse level by level

Graph traversals: BFS and DFS on more graphs
https://visualgo.net/en/dfsbfs

-click on draw graph to create your own
graphs and run BFS/DFS on them!

-check out visualgo.net for more really
cool interactive visualizations

-or do your own googling – there are a
lot of cool visualizations out there J!

https://visualgo.net/en/dfsbfs

BFS pseudocode
bfs(Graph graph, Vertex start) {

// stores the remaining vertices to visit in the BFS

Queue<Vertex> perimeter = new Queue<>();

// stores the set of discovered vertices so we don't revisit them multiple times

Set<Vertex> discovered = new Set<>();

// kicking off our starting point by adding it to the perimeter

perimeter.add(start);

discovered.add(start);

while (!perimeter.isEmpty()) {

Vertex from = perimeter.remove();

for (E edge : graph.outgoingEdgesFrom(from)) {
Vertex to = edge.to();

if (!discovered.contains(to)) {

perimeter.add(to);

discovered.add(to)

}

}
}

1

2

3

4

5

6

7

8

0
s

t

BFS pseudocode
//. . . this is the main loop/code for BFS
while (!perimeter.isEmpty()) {

Vertex from = perimeter.remove();

for (E edge : graph.outgoingEdgesFrom(from)) {

Vertex to = edge.to();

if (!discovered.contains(to)) {

perimeter.add(to);
discovered.add(to)

}

}

}

1

2

3

4

5

6

7

8

0
s

t

Perimeter queue:

Discovered set:

Expected levels starting the BFS from 0:

• 0
• 1
• 2 4
• 3 5
• 6 8
• 7

DFS pseudocode
dfs(Graph graph, Vertex start) {

// stores the remaining vertices to visit in the DFS

Stack<Vertex> perimeter = new Stack<>(); //the only change you need to make to do DFS!

// stores the set of discovered vertices so we don't revisit them multiple times

Set<Vertex> discovered = new Set<>();

// kicking off our starting point by adding it to the perimeter

perimeter.add(start);

discovered.add(start);

while (!perimeter.isEmpty()) {

Vertex from = perimeter.remove();

for (E edge : graph.outgoingEdgesFrom(from)) {
Vertex to = edge.to();

if (!discovered.contains(to)) {

perimeter.add(to);

discovered.add(to)

}

}
}

1

2

3

4

5

6

7

8

0
s

t

Modifying BFS and DFS
BFS and DFS are like the for loops over arrays for graphs. They’re super fundamental to so many
ideas, but when they’re by themselves they don’t do anything. Consider the following code:
for (int i = 0; i < n; i++) {

int x = arr[i];

}

We actually need to do something with the data for it to be useful!
A lot of times to solve basic graph problems (which show up in technical interviews at this level), and
often the answer is that you just need to describe / implement BFS/DFS with a small modification for
your specific problem.
Now back to the s-t path problem…

while (!perimeter.isEmpty()) {
Vertex from = perimeter.remove();
for (E edge : graph.outgoingEdgesFrom(from)) {

Vertex to = edge.to();
if (!discovered.contains(to)) {

perimeter.add(to, newDist);
discovered.add(to)

}
}

}

Modifying BFS for the s-t path problem
//. . . this is the main loop/code for BFS

while (!perimeter.isEmpty()) {

Vertex from = perimeter.remove();

for (E edge : graph.outgoingEdgesFrom(from)) {
Vertex to = edge.to();

if (!discovered.contains(to)) {

perimeter.add(to);

discovered.add(to)

}

}
}

// with modifications to return true if

// there is a path where s can reach t

while (!perimeter.isEmpty()) {

Vertex from = perimeter.remove();
if (from == t) {

return true;
}
for (E edge : graph.outgoingEdgesFrom(from)) {

Vertex to = edge.to();

if (!discovered.contains(to)) {
perimeter.add(to);

discovered.add(to)

}

}

}

return false;

Small note: for this s-t problem, we didn’t really need the power of BFS in particular, just
some way of looping through the graph starting at a particular point and seeing everything
it was connected to. So we could have just as easily used DFS.

There are plenty of unique applications of both, however, and we’ll cover some of them in
this course – for a more comprehensive list, feel free to google or check out resources like:
- https://www.geeksforgeeks.org/applications-of-breadth-first-traversal/
- https://www.geeksforgeeks.org/applications-of-depth-first-search/

https://www.geeksforgeeks.org/applications-of-breadth-first-traversal/
https://www.geeksforgeeks.org/applications-of-depth-first-search/

Questions /
clarifications on

anything?
we covered:
- s-t path problem
- BFS/DFS visually + high-level
- BFS/DFS pseudocode
- modifying BFS/DFS to solve s-t path problem

Roadmap for today
§ review Wednesday intro to graphs key points
§graph problems
§s-t path problem
§ detour: BFS/DFS
§ visually
§pseudocode
§modifications to solve problems (circling back to s-t path)

§shortest path problem (for unweighted graphs)

Shortest Path problem (unweighted graph)
§ For the graph on the right, find the shortest path (the
path that has the fewest number of edges) between the
0 node and the 5 node. Describe the path by
describing each edge (i.e. (0, 1) edge).
§ What’s the answer? How did we get that as humans?
How do we want to do it comprehensively defined in
an algorithm?

1

2

4

5 6

7

8

0
s

t

Shortest Path problem (unweighted graph)
how do we find a shortest paths?

What’s the shortest path from 0 to 0?
- Well….we’re already there.

What’s the shortest path from 0 to 1 or 8?
- Just go on the edge from 0

From 0 to 4 or 2 or 5?
- Can’t get there directly from 0, if we want a length 2 path, have to go through 1 or 8.

From 0 to 6?
- Can’t get there directly from 0, if we want a length 3 path, have to go through 5.

40CSE 373 19 SU - ROBBIE WEBER

1

2

4

5 6

7

8

0
s

t

Shortest Path problem (unweighted graph)
key idea
To find the set of vertices at distance k, just find the set of vertices at distance k-1, and see if any of
them have an outgoing edge to an undiscovered vertex. Basically, if we traverse level by level and
we’re checking all the nodes that show up at each level comprehensively (and only recording the
earliest time they show up), when we find our target at level k, we can keep using the edge that led
to it from the previous level to justify the shortest path.
Do we already know an algorithm that can help us traverse the graph level by level?
Yes! BFS! Let’s modify it to fit our needs.

41CSE 373 19 SU - ROBBIE WEBER

perimeter.add(start);
discovered.add(start);

start.distance = 0;
while (!perimeter.isEmpty()) {

Vertex from = perimeter.remove();
for (E edge : graph.outgoingEdgesFrom(from)) {

Vertex to = edge.to();

if (!discovered.contains(to)) {
to.distance = from.distance + 1;
to.predecessorEdge = edge;
perimeter.add(to);

discovered.add(to)
}

}
}

Changes from traversal BFS:
- Every node now will have an associated

distance (for convenience)
- Every node V now will have an associated

predecessor edge that is the edge that
connects V on the shortest path from S to V.
The edges that each of the nodes store are
the final result.

Unweighted Graphs
Use BFS to find shortest paths in this graph.

CSE 373 19 SU - ROBBIE WEBER

perimeter.add(start);
discovered.add(start);

start.distance = 0;
while (!perimeter.isEmpty()) {

Vertex from = perimeter.remove();

for (E edge : graph.outgoingEdgesFrom(from)) {
Vertex to = edge.to();
if (!discovered.contains(to)) {

to.distance = from.distance + 1;
to.predecessorEdge = edge;
perimeter.add(to);

discovered.add(to)
}

}
}

1

2

4

5 6

7

8

0
s

t

Unweighted Graphs

43CSE 373 19 SU - ROBBIE WEBER

Use BFS to find shortest paths in this graph.
1

2

4

5 6

7

8

0
s

t

perimeter.add(start);
discovered.add(start);

start.distance = 0;
while (!perimeter.isEmpty()) {

Vertex from = perimeter.remove();

for (E edge : graph.outgoingEdgesFrom(from)) {
Vertex to = edge.to();
if (!discovered.contains(to)) {

to.distance = from.distance + 1;
to.predecessorEdge = edge;
perimeter.add(to);

discovered.add(to)
}

}
}

If trying to recall the best path from 0 to 5:
5’s predecessor edge is (8, 5)
8’s predecessor edge is (0, 8)
0 was the start vertex

Note: this BFS modification produces these edges, but there’s
extra work to figure out a specific path from a start / target

What about the target vertex?

44

Given: a directed graph G and vertices s,t
Find: the shortest path from s to t.

Shortest Path Problem

BFS didn’t mention a target vertex…
It actually finds the distance from s to every other vertex. The resulting edges are
called the shortest path tree.

All our shortest path algorithms have this property.
If you only care about one target, you can sometimes stop early (in
bfsShortestPaths, when the target pops off the queue)

CSE 373 19 SU - ROBBIE WEBER

Map<V, E> bfsFindShortestPathsEdges(G graph, V start) {
// stores the edge `E` that connects `V` in the shortest path from s to V
Map<V, E> edgeToV = empty map

// stores the shortest path length from `start` to `V`
Map<V, Double> distToV = empty map

Queue<V> perimeter = new Queue<>();
Set<V> discovered = new Set<>();

// setting up the shortest distance from start to start is just 0 with
// no edge leading to it
edgeTo.put(start, null);
distTo.put(start, 0.0);

perimeter.add(start);

while (!perimeter.isEmpty()) {
V from = perimeter.remove();
for (E e : graph.outgoingEdgesFrom(from)) {

V to = e.to();
if (!discovered.contains(to)) {

edgeTo.put(to, e);
distTo.put(to, distTo(from) + 1);
perimeter.add(to, newDist);
discovered.add(to)

}
}

}
return edgeToV;

}

1

2

4

5 6

7

8

0
s

t

This is an alternative way to
implement bfsShortestPaths that has
an easier time accessing the actual
paths / distances by using Maps

