
Lecture 15: Midterm
Review

CSE 373 Data Structures and
Algorithms

1CSE 373 20 SP – CHAN & CHAMPION

Announcements
1 fill out the poll J
Midterm
1. NO LATE ASSIGNMENTS – DUE May 7th at 11:59pm
2. Closed course staff
- can ask clarifying questions

P2 succccked
extend late turn in for P2 until Monday night at 11:59pm
max usage of 3 late days on the assignment

Abstract Data Types (ADT)
Abstract Data Types
- An abstract definition for expected operations and behavior
- Defines the input and outputs, not the implementations

3

- each element is accessible by a 0-based index
- a list has a size (number of elements that have been

added)
- elements can be added to the front, back, or elsewhere
- in Java, a list can be represented as an ArrayList object

Review: List - a collection storing an ordered sequence of elements

CSE 373 20 SP – CHUN & CHAMPION

Review: Complexity Class

4

complexity class: A category of algorithm efficiency based on the algorithm's
relationship to the input size N.

Complexity
Class

Big-O Runtime if you
double N

Example Algorithm

constant O(1) unchanged Accessing an index of
an array

logarithmic O(log2 N) increases slightly Binary search

linear O(N) doubles Looping over an array

log-linear O(N log2 N) slightly more than
doubles

Merge sort algorithm

quadratic O(N2) quadruples Nested loops!

...

exponential O(2N) multiplies drastically Fibonacci with recursion

CSE 373 19 WI - KASEY CHAMPION

Note: You don’t have to understand all of this
right now – we’ll dive into it soon.

Case Study: The List ADT
list: a collection storing an ordered sequence of
elements.
-Each item is accessible by an index.
-A list has a size defined as the number of elements in the list

5

Expected Behavior:
- get(index): returns the item at the given index
- set(value, index): sets the item at the given
index to the given value

- append(value): adds the given item to the
end of the list

- insert(value, index): insert the given item at
the given index maintaining order

- delete(index): removes the item at the given
index maintaining order

- size(): returns the number of elements in the
list

CSE 373 20 SP – CHUN & CHAMPION

Case Study: List Implementations

6CSE 373 19 WI - KASEY CHAMPION

List ADT

get(index) return item at index
set(item, index) replace item at index
append(item) add item to end of list
insert(item, index) add item at index
delete(index) delete item at index
size() count of items

state

behavior

Set of ordered items
Count of items

ArrayList<E>

get return data[index]
set data[index] = value
append data[size] =
value, if out of space
grow data
insert shift values to
make hole at index,
data[index] = value, if
out of space grow data
delete shift following
values forward
size return size

state

behavior

data[]
size

LinkedList<E>

get loop until index,
return node’s value
set loop until index,
update node’s value
append create new node,
update next of last node
insert create new node,
loop until index, update
next fields
delete loop until index,
skip node
size return size

state

behavior

Node front
size

ArrayList
uses an Array as underlying storage

LinkedList
uses nodes as underlying storage

0 1 2 3 4

88.6 26.1 94.4 0 0
88.6 26.1 94.4

list free space

Review: What is a Stack?
stack: A collection based on the principle of adding elements and
retrieving them in the opposite order.
- Last-In, First-Out ("LIFO")
- Elements are stored in order of insertion.

- We do not think of them as having indexes.

- Client can only add/remove/examine the last element added (the "top").

CSE 143 SP 17 – ZORA FUNG 7

top 3
2

bottom 1

pop, peekpush

Stack ADT

push(item) add item to top
pop() return and remove
item at top
peek() look at item at top
size() count of items
isEmpty() count of items is 0?

state

behavior

Set of ordered items
Number of items

supported operations:
- push(item): Add an element to the top of stack
- pop(): Remove the top element and returns it
- peek(): Examine the top element without removing it
- size(): how many items are in the stack?
- isEmpty(): true if there are 1 or more items in stack, false otherwise

Implementing a Stack with an Array

0 1 2 3

8

push(3)
push(4)
pop()
push(5)

3 45

numberOfItems = 012

ArrayStack<E>

push data[size] = value, if
out of room grow data
pop return data[size - 1],
size-1
peek return data[size - 1]
size return size
isEmpty return size == 0

state

behavior

data[]
size

Big O Analysis
pop()

peek()

size()

isEmpty()

push() O(N) linear if you have to resize
O(1) otherwise

O(1) Constant
O(1) Constant

O(1) Constant

O(1) Constant

CSE 373 19 WI - KASEY CHAMPION

Stack ADT

push(item) add item to top
pop() return and remove
item at top
peek() look at item at top
size() count of items
isEmpty() count of items is 0?

state

behavior

Set of ordered items
Number of items

Take 1 min to respond to activity

www.pollev.com/cse373activity
What do you think the worst possible
runtime of the “push()” operation will be?

Implementing a Stack with Nodes

CSE 373 19 WI - KASEY CHAMPION 9

push(3)
push(4)
pop() numberOfItems = 012

LinkedStack<E>

push add new node at top
pop return and remove node at
top
peek return node at top
size return size
isEmpty return size == 0

state

behavior

Node top
size

Big O Analysis
pop()

peek()

size()

isEmpty()

push() O(1) Constant

O(1) Constant
O(1) Constant

O(1) Constant

O(1) Constant

Stack ADT

push(item) add item to top
pop() return and remove
item at top
peek() look at item at top
size() count of items
isEmpty() count of items is 0?

state

behavior

Set of ordered items
Number of items

4

3front

Take 1 min to respond to activity

www.pollev.com/cse373activity
What do you think the worst possible
runtime of the “push()” operation will be?

Review: What is a Queue?
queue: Retrieves elements in the order they were
added.
- First-In, First-Out ("FIFO")
- Elements are stored in order of insertion but don't have indexes.
- Client can only add to the end of the queue, and can only

examine/remove the front of the queue.

CSE 143 SP 17 – ZORA FUNG 10

front back
1 2 3

addremove, peekQueue ADT

add(item) add item to back
remove() remove and return
item at front
peek() return item at front
size() count of items
isEmpty() count of items is 0?

state

behavior

Set of ordered items
Number of items

supported operations:
- add(item): aka “enqueue” add an element to the back.
- remove(): aka “dequeue” Remove the front element and return.
- peek(): Examine the front element without removing it.
- size(): how many items are stored in the queue?
- isEmpty(): if 1 or more items in the queue returns true, false otherwise

Implementing a Queue with an Array

0 1 2 3 4

11

add(5)
add(8)
add(9)
remove()

numberOfItems = 0

5 8 9

123

ArrayQueue<E>

add – data[size] = value, if
out of room grow data
remove – return data[size -
1], size-1
peek – return data[size - 1]
size – return size
isEmpty – return size == 0

state

behavior

data[]
Size
front index
back index

Queue ADT

add(item) add item to back
remove() remove and return
item at front
peek() return item at front
size() count of items
isEmpty() count of items is 0?

state

behavior

Set of ordered items
Number of items

front = 0
back = 0

Big O Analysis
remove()

peek()

size()

isEmpty()

add() O(N) linear if you have to resize
O(1) otherwise

O(1) Constant
O(1) Constant

O(1) Constant

O(1) Constant

12
1

CSE 373 19 WI - KASEY CHAMPION

Take 1 min to respond to activity

www.pollev.com/cse373activity
What do you think the worst possible
runtime of the “add()” operation will be?

Implementing a Queue with Nodes

12

add(5)
add(8)
remove()

LinkedQueue<E>

add – add node to back
remove – return and remove
node at front
peek – return node at front
size – return size
isEmpty – return size == 0

state

behavior

Node front
Node back
size

Queue ADT

add(item) add item to back
remove() remove and return
item at front
peek() return item at front
size() count of items
isEmpty() count of items is 0?

state

behavior

Set of ordered items
Number of items

Big O Analysis
remove()

peek()

size()

isEmpty()

add() O(1) Constant

O(1) Constant
O(1) Constant

O(1) Constant

O(1) Constant

CSE 373 19 WI - KASEY CHAMPION

numberOfItems = 012

85front

back

Take 1 min to respond to activity

www.pollev.com/cse373activity
What do you think the worst case
runtime of the “add()” operation will be?

Review: Dictionaries
Why are we so obsessed with Dictionaries?

CSE 373 SU 19 - ROBBIE WEBER 13

Dictionary ADT

put(key, item) add item to
collection indexed with key
get(key) return item
associated with key
containsKey(key) return if key
already in use
remove(key) remove item
and associated key
size() return count of items

state

behavior

Set of items & keys
Count of items

When dealing with data:
• Adding data to your collection
• Getting data out of your collection
• Rearranging data in your collection

Operation ArrayList LinkedList HashTable BST AVLTree

put(key,value)
best Θ(1) Θ(1) Θ(1) Θ(1) Θ(1)

worst Θ(n) Θ(n) Θ(n) Θ(n) Θ(logn)

get(key)
best Θ(1) Θ(1) Θ(1) Θ(1) Θ(1)

worst Θ(n) Θ(n) Θ(n) Θ(n) Θ(logn)

remove(key)
best Θ(1) Θ(1) Θ(1) Θ(1) Θ(logn)

worst Θ(n) Θ(n) Θ(n) Θ(n) Θ(logn)

Review: Maps
map: Holds a set of distinct keys and a collection of
values, where each key is associated with one value.
- a.k.a. "dictionary"

CSE 373 19 SU - ROBBIE WEBER

key value

“you" 22

key value

“in" 37

key value

“the" 56

key value

“at" 43

map.get("the") 56

Dictionary ADT

put(key, item) add item to
collection indexed with key
get(key) return item
associated with key
containsKey(key) return if key
already in use
remove(key) remove item
and associated key
size() return count of items

state

behavior

Set of items & keys
Count of items

supported operations:
- put(key, value): Adds a given item into

collection with associated key,
- if the map previously had a mapping

for the given key, old value is replaced.
- get(key): Retrieves the value mapped to

the key
- containsKey(key): returns true if key is

already associated with value in map,
false otherwise

- remove(key): Removes the given key and
its mapped value

Implementing a Map with an Array
ArrayMap<K, V>

put find key, overwrite value if there.
Otherwise create new pair, add to next
available spot, grow array if necessary
get scan all pairs looking for given
key, return associated item if found
containsKey scan all pairs, return if
key is found
remove scan all pairs, replace pair to
be removed with last pair in collection
size return count of items in
dictionary

state

behavior

Pair<K, V>[] data

Big O Analysis – (if key is the last one looked
at / not in the dictionary)
put()

get()

containsKey()

remove()

size() O(1) constant

O(N) linear
O(N) linear

O(N) linear

O(N) linear

0 1 2 3
containsKey(‘c’)
get(‘d’)
put(‘b’, 97)
put(‘e’, 20)

(‘a’, 1) (‘b’, 2)

Map ADT

put(key, item) add item to
collection indexed with key
get(key) return item
associated with key
containsKey(key) return if key
already in use
remove(key) remove item
and associated key
size() return count of items

state

behavior

Set of items & keys
Count of items

(‘c’, 3)97) (‘d’, 4)
CSE 373 19 SU - ROBBIE WEBER

Big O Analysis – (if the key is the first one
looked at)
put()

get()

containsKey()

remove()

size() O(1) constant

O(1) constant
O(1) constant

O(1) constant

O(1) constant
4

(‘e’, 20)

Implementing a Map with Nodes
LinkedMap<K, V>

put if key is unused, create new with
pair, add to front of list, else
replace with new value
get scan all pairs looking for given
key, return associated item if found
containsKey scan all pairs, return if
key is found
remove scan all pairs, skip pair to be
removed
size return count of items in
dictionary

state

behavior

front
size

containsKey(‘c’)
get(‘d’)
put(‘b’, 20)

Map ADT

put(key, item) add item to
collection indexed with key
get(key) return item
associated with key
containsKey(key) return if key
already in use
remove(key) remove item
and associated key
size() return count of items

state

behavior

Set of items & keys
Count of items

front

‘c’ 9‘b’ 7 ‘d’ 4‘a’ 1 20

CSE 373 19 SU - ROBBIE WEBER

Big O Analysis – (if key is the last one looked
at / not in the dictionary)
put()

get()

containsKey()

remove()

size() O(1) constant

O(N) linear
O(N) linear

O(N) linear

O(N) linear

Big O Analysis – (if the key is the first one
looked at)
put()

get()

containsKey()

remove()

size()
O(1) constant

O(1) constant
O(1) constant

O(1) constant

O(1) constant

Algorithmic Analysis Roadmap

CODE

BEST CASE
FUNCTION

for (i = 0; i < n; i++) {
if (arr[i] == toFind) {

return i;
}

}
return -1;

f(n) = 2

TIGHT
BIG-OH2

TIGHT
BIG-OMEGA

BIG-THETA

O(n)

Ω(n)

Θ(n)

1

Asymptotic
Analysis

WORST CASE
FUNCTION

OTHER CASE
FUNCTION

Case
Analysis

f(n) = 3n+1

Code Modeling Example 2

18CSE 373 20 AU – SCHAFER

public void method2(int n) {
int sum = 0;
int i = 0;
while (i < n) {

int j = 0;
while (j < n) {

if (j % 2 == 0) {
// do nothing

}
sum = sum + (i * 3) + j;
j = j + 1;

}
i = i + 1;

} return sum;
}

+1
+1

+1

+2

+1

+9 *n

This inner loop
runs n times

f(n) = (9n+4)n + 3

+1
+1

+2

+2

+4

9n + 4 *n

This outer loop
runs n times

Review Oh, and Omega, and Theta, oh my
Big-Oh is an upper bound
-My code takes at most this long to run

Big-Omega is a lower bound
-My code takes at least this long to run

Big Theta is “equal to”
- My code takes “exactly”* this long to run
- *Except for constant factors and lower order
terms

- Only exists when Big-Oh == Big-Omega!

𝑓(𝑛) is Ω(𝑔 𝑛) if there exist positive constants
𝑐, 𝑛! such that for all 𝑛 ≥ 𝑛!,

𝑓 𝑛 ≥ 𝑐 ⋅ 𝑔 𝑛

Big-Omega

𝑓(𝑛) is Θ(𝑔 𝑛) if
𝑓 𝑛 is 𝑂(𝑔 𝑛) and 𝑓 𝑛 is Ω(𝑔 𝑛).
(in	other	words:	there exist positive constants 𝑐1, c2, 𝑛!
such that for all 𝑛 ≥ 𝑛!)

c1 ⋅ 𝑔 𝑛 ≤ 𝑓 𝑛 ≤ c2 ⋅ 𝑔 𝑛

Big-Theta

𝑓(𝑛) is 𝑂(𝑔 𝑛) if there exist positive
constants 𝑐, 𝑛! such that for all 𝑛 ≥ 𝑛!,

𝑓 𝑛 ≤ 𝑐 ⋅ 𝑔 𝑛

Big-Oh

Function growth

CSE 332 SU 18 - ROBBIE WEBER 20

…but since both are linear
eventually look similar at large
input sizes

whereas h(n) has a distinctly
different growth rate

The growth rate for f(n) and
g(n) looks very different for
small numbers of input

But for very small input values
h(n) actually has a slower growth
rate than either f(n) or g(n)

Imagine you have three possible algorithms to choose between.
Each has already been reduced to its mathematical model 𝑓 𝑛 = 𝑛 𝑔 𝑛 = 4𝑛 ℎ 𝑛 = 𝑛!

𝑇 𝑛

𝑛

𝑇 𝑛

𝑛

𝑇 𝑛

𝑛

Examples
4n2 ∈ Ω(1)

true
4n2 ∈ Ω(n)
true
4n2 ∈ Ω(n2)

true
4n2 ∈ Ω(n3)
false
4n2 ∈ Ω(n4)

false

CSE 332 SU 18 - ROBBIE WEBER 21

4n2 ∈ O(1)

false
4n2 ∈ O(n)
false
4n2 ∈ O(n2)

true
4n2 ∈ O(n3)
true
4n2 ∈ O(n4)

true

𝑓(𝑛) ∈ 𝑂(𝑔 𝑛) if there exist positive
constants 𝑐, 𝑛" such that for all 𝑛 ≥ 𝑛",

𝑓 𝑛 ≤ 𝑐 ⋅ 𝑔 𝑛

Big-O

𝑓(𝑛) ∈ Ω(𝑔 𝑛) if there exist positive
constants 𝑐, 𝑛" such that for all 𝑛 ≥ 𝑛",

𝑓 𝑛 ≥ 𝑐 ⋅ 𝑔 𝑛

Big-Omega

𝑓(𝑛) ∈ Θ(𝑔 𝑛) if
𝑓 𝑛 is 𝑂(𝑔 𝑛) and 𝑓 𝑛 is Ω(𝑔 𝑛).

Big-Theta

Case Analysis
Case: a description of inputs/state for an algorithm that is specific enough to build
a code model (runtime function) whose only parameter is the input size
- Case Analysis is our tool for reasoning about all variation other than n!
- Occurs during the code à function step instead of function à O/Ω/Θ step!

• (Best Case: fastest/Worst Case: slowest) that our
code could finish on input of size n.

• Importantly, any position of toFind in arr could be
its own case!
• For this simple example, probably don’t care

(they all still have bound O(n))
• But intermediate cases will be important later

Worst

Best

Other Cases

Review When to do Case Analysis?
Imagine a 3-dimensional plot
- Which case we’re considering is one dimension
- Choosing a case lets us take a “slice” of the other dimensions: n and f(n)
- We do asymptotic analysis on each slice in step 2

f(n) n

toFind position

At front
(Best Case)

Not present
(Worst Case)

How to do case analysis
1. Look at the code, understand how thing could change depending on the input.
- How can you exit loops early?
- Can you return (exit the method) early?
- Are some if/else branches much slower than others?

2. Figure out what inputs can cause you to hit the (best/worst) parts of the code.
3. Now do the analysis like normal!

CSE 373 19 SU - ROBBIE WEBER

Warm Up!

25CSE 373 SP 20 – CHUN & CHAMPION

𝑇 𝑛 = 3
𝑑 if 𝑛 is at most some constant
𝑎𝑇

𝑛
𝑏 + 𝑓 𝑛 otherwise

Where 𝑓 𝑛 is Θ 𝑛#

𝑇 𝑛 ∈ Θ 𝑛#log$ 𝑎 < 𝑐
log$ 𝑎 = 𝑐 𝑇 𝑛 ∈ Θ 𝑛# log 𝑛
log$ 𝑎 > 𝑐 𝑇 𝑛 ∈ Θ 𝑛%&'! (

If
If
If

then
then
then

Master Theorem

What’s the theta bound for the runtime function for this piece of code?
public void method1(int n) {

if (n <= 100) {
System.out.println(“:3”);

} else {
System.out.println(“:D”);
for (int i = 0; i<16; i++) {

method1(n / 4);
}

}
}

Please fill out the Poll at- pollev.com/21sp373

𝑇 𝑛 = 3
𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑤𝑜𝑟𝑘 if 𝑛 ≤ 100

16𝑇
𝑛
4 + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑤𝑜𝑟𝑘 otherwise

a = 16, b = 4, c = 0

log) 16 = 2

log) 16 > 0

𝑇 𝑛 ∈ Θ 𝑛%&'! (

Θ 𝑛%&'" *+ = 𝜣 𝒏𝟐

Meet the Recurrence
A recurrence relation is an equation that defines a sequence based on a rule that
gives the next term as a function of the previous term(s)
It’s a lot like recursive code:
-At least one base case and at least one recursive case
-Each case should include the values for n to which it corresponds
-The recursive case should reduce the input size in a way that eventually triggers
the base case

-The cases of your recurrence usually correspond exactly to the cases of the code

CSE 373 SP 20 – CHUN & CHAMPION

𝑇 𝑛 = .
5 if 𝑛 < 3

2𝑇
𝑛
2
+ 10 otherwise

How much work is done at each layer?
64 for this example -> n work at each
layer
Work is variable per layer, but across the
entire layer work is constant - always n

How many layers are in our function call
tree?
Hint: how many levels of recursive calls
does it take binary search to get to the
base case?
Height = log2n
It takes log2n divisions by 2 for n to be
reduced to the base case 1
log264 = 6 -> 6 levels of this tree

27

f(n=64)
work = 64

f(n=32
)

w=32

f(n=32
)

w=32

f(n=16)
w=16

f(n=16)
w=16

f(n=16)
w=16

f(n=16)
w=16

f(n=8
)

w=8

f(n=8
)

w=8

f(n=8
)

w=8

f(n=8
)

w=8

f(n=8
)

w=8

f(n=8)
w=8

f(n=8
)

w=8

f(n=8
)

w=8

1 if n<= 1
2T(n/2) + n otherwiseT(n) =

… and so on…
CSE 373 20 WI – HANNAH TANG

Tree Method
Draw out call stack, what is the input to each call? How much work is done by each call?

Merge Sort

Tree Method
input = n
work = n

i = "#
w = "#

… … … … … … … …… … …… … … … …

How many
nodes at each

level?

How much
work across
each level?

1 n

2

4

8

n

n

n

n

n

𝑇 𝑛 =
1 𝑤ℎ𝑒𝑛 𝑛 ≤ 1
2𝑇

𝑛
2
+ 𝑛 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒a

How much
work done by
each node?

n

𝒏
𝟐

𝒏
𝟒

𝒏
𝟖

𝟏

i = "
#

w = "
#

i = "
$

w = "
$

i = "$
w = "$

i = "$
w = "

$

i = "$
w = "

$

i = "
%

w = "
%

i = "
%

w = "
%

i = "%
w = "%

i = "
%

w = "
%

i = "%
w = "%

i = "%
w = "%

i = "%
w = "%

i = "
%

w = "
%

i = 1
w =
1

i = 1
w =
1

i = 1
w =
1

i = 1
w =
1

i = 1
w =
1

i = 1
w =
1

i = 1
w =
1

i = 1
w =
1

i = 1
w =
1

i = 1
w =
1

i = 1
w =
1

i = 1
w =
1

i = 1
w =
1

Recursive level

0

1

2

3

logn

Tree Method Practice

29

Level (i) Number of
Nodes

Work per
Node

Work per
Level

0 1 𝑛 𝑛

1 2
𝑛
2 𝑛

2 4
𝑛
4 𝑛

3 8
𝑛
8 𝑛

log2n 𝑛 1

1. What is the size of the input on level 𝑖?

2. What is the work done by each node on the 𝑖01
recursive level?

3. What is the number of nodes at level 𝑖?

4. What is the total work done at the 𝑖23recursive
level?

5. What value of 𝑖 does the last level occur?

6. What is the total work across the base case
level?

𝑛
24

(
𝑛
24
)

Combining it all together…

24

𝑛𝑢𝑚𝑁𝑜𝑑𝑒𝑠 ∗ 𝑤𝑜𝑟𝑘𝑃𝑒𝑟𝑁𝑜𝑑𝑒 = 24
𝑛
24

= 𝑛

𝑇 𝑛 = ^
45"

%&'# 6 7*

𝑛
6
!$
= 1à 𝑛 = 24à 𝑖 = log! 𝑛

power of a log
𝑥%&'! 8 = 𝑦%&'! 9

𝑇 𝑛 =
1 𝑤ℎ𝑒𝑛 𝑛 ≤ 1
2𝑇

𝑛
2
+ 𝑛 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒a

𝑛𝑢𝑚𝑁𝑜𝑑𝑒𝑠 ∗ 𝑤𝑜𝑟𝑘𝑃𝑒𝑟𝑁𝑜𝑑𝑒 = 2:;<!6 1 = 𝑛

+ 𝑛 = 𝑛𝑙𝑜𝑔2𝑛 + 𝑛 = Θ(nlogn)

Summation of a
constant

6
()!

*+,

𝑐 = 𝑐𝑛

Separate chaining
// some pseudocode

public boolean containsKey(int key) {

int bucketIndex = key % data.length;

loop through data[bucketIndex]

return true if we find the key in

data[bucketIndex]

return false if we get to here (didn’t

find it)

}

CSE 373 ROBBIE WEBER + HANNAH TANG 30

1

2
3
4
5
6
7
8

1

9

0
indices

13

22

7

44

21

Reminder: the implementations of put/get/containsKey are all very similar,
and almost always will have the same complexity class runtime

runtime analysis
Are there different possible states for our
Hash Map that make this code run
slower/faster, assuming there are already n
key-value pairs being stored?

Yes! If we had to do a lot of loop iterations to find the key in the bucket, our code will run slower.

A best case situation for separate chaining
0 1 2 3 4 5 6 7 8 9

(0, b) (2, b) (3, b) (4, b) (5, b) (6, b) (7, b) (8, b)

It’s possible (and likely if you follow some best-practices) that everything is spread out across the buckets pretty
evenly. This is the opposite of the last slide: when we have minimal collisions, our runtime should be less. For
example, if we have a bucket with only 0 or 1 element in it, checking containsKey for something in that bucket will
only take a constant amount of time.

We’re going to try a lot of stuff we can to make it more likely we achieve this beautiful state J.

CSE 373 20 SP – CHAMPION & CHUN

When to Resize?
In ArrayList, we were forced to resize when we ran out of room
- In SeparateChainingHashMap, never forced to resize, but we want to make sure the buckets don’t get

too long for good runtime

How do we quantify “too full”?
- Look at the average bucket size: number of elements / number of buckets

LOAD FACTOR λ

n: total number of key/value pairs
c: capacity of the array (# of

buckets)

𝜆 =
𝑛
𝑐

(22,tan) (7,blue) (77,aqua)

(4,orange)

0

1

2

3

4

(1,red) (6,pink)

(8,lilac) (53,puce)

𝜆 =
8
5 = 1.6

Linear Probing

CSE 373 SP 18 - KASEY CHAMPION 33

0 1 2 3 4 5 6 7 8 9

Insert the following values into the Hash Table using a hashFunction of % table size and
linear probing to resolve collisions
38, 19, 8, 109, 10

38 1988 10910

Problem:
• Linear probing causes clustering
• Clustering causes more looping when probing

Primary Clustering
When probing causes long chains of
occupied slots within a hash table

Quadratic Probing

CSE 373 SP 18 - KASEY CHAMPION 34

0 1 2 3 4 5 6 7 8 9

(49 % 10 + 0 * 0) % 10 = 9
(49 % 10 + 1 * 1) % 10 = 0

(58 % 10 + 0 * 0) % 10 = 8
(58 % 10 + 1 * 1) % 10 = 9
(58 % 10 + 2 * 2) % 10 = 2

8918 49

Insert the following values into the Hash Table using a hashFunction of % table size and
quadratic probing to resolve collisions
89, 18, 49, 58, 79, 27

58 79

(79 % 10 + 0 * 0) % 10 = 9
(79 % 10 + 1 * 1) % 10 = 0
(79 % 10 + 2 * 2) % 10 = 3

Problems:
If λ≥ ½ we might never find an empty spot

Infinite loop!
Can still get clusters

27

Now try to insert 9.

Uh-oh

Review: Handling Collisions
Solution 1: Chaining

Each space holds a “bucket” that can store multiple values. Bucket is often implemented
with a LinkedList

CSE 373 SP 18 - KASEY CHAMPION 35

Operation Array w/ indices as keys

put(key,value)

best O(1)

average O(1 + λ)

worst O(n)

get(key)

best O(1)

average O(1 + λ)

worst O(n)

remove(key)

best O(1)

average O(1 + λ)

worst O(n)

Average Case:
Depends on average number of
elements per chain

Load Factor λ
If n is the total number of key-
value pairs
Let c be the capacity of array
Load Factor λ = 6

#

Tree Height
What is the height (the number of edges contained in the longest path from root node to
some leaf node) of the following binary trees?

CSE 373 SP 18 - KASEY CHAMPION 36

1

2 5

7

7

overallRoot overallRoot overallRoot

null

Height = 2 Height = 0 Height = -1 or NA

Binary Search Tree (BST)
Invariants (A.K.A. rules for your DS or algorithm)
- Things that are always true. If they’re always true, you can assume
them so that you can write simpler and more efficient code.
- You can also check invariants at the ends/beginnings of your methods
to ensure that your state is valid and that everything is working.

Binary Search Tree invariants:
-For every node with key 𝑘:

-The left subtree has only keys smaller than 𝑘.
-The right subtree has only keys greater than 𝑘.

CSE 373 SP 18 - KASEY CHAMPION 37

10

8 32

2 11 50

5 38

9

BST different states
Two different extreme states our BST could be in (there’s in-between, but it’s easiest to focus on the
extremes as a starting point). Try containsKey(15) to see what the difference is.

Perfectly balanced – for every node, its
descendants are split evenly between
left and right subtrees.

Degenerate – for every node, all of its
descendants are in the right subtree.

9

2

1 3
6

5 7

4
8

10

12

15

14

11 13

1

2
3

4

15

…

AVL Trees
AVL Trees must satisfy the following properties:
- binary trees: all nodes must have between 0 and 2 children
- binary search tree: for all nodes, all keys in the left subtree must be smaller and all keys in the right subtree

must be larger than the root node
- balanced: for all nodes, there can be no more than a difference of 1 in the height of the left subtree from the

right. Math.abs(height(left subtree) – height(right subtree)) ≤ 1

AVL stands for Adelson-Velsky and Landis (the inventors of the data structure)

CSE 373 SP 18 - KASEY CHAMPION 39

Measuring Balance
Measuring balance:
For each node, compare the heights of its two sub trees
Balanced when the difference in height between sub trees is no greater than 1

CSE 373 SP 18 - KASEY CHAMPION 40

10

15

12 18

8

7

7
8

7 9

Balanced

Unbalanced

Balanced

Balanced

Is this a valid AVL tree?

CSE 373 SP 18 - KASEY CHAMPION 41

7

4 10

3 9 125

8 11 13

14

2 6

Is it…
- Binary
- BST
- Balanced?

yes
yes
yes

Design Decisions
Before coding can begin engineers must carefully consider the design of their code will organize and
manage data
Things to consider:
What functionality is needed?
- What operations need to be supported?
- Which operations should be prioritized?

What type of data will you have?
- What are the relationships within the data?
- How much data will you have?
- Will your data set grow?
- Will your data set shrink?

How do you think things will play out?
- How likely are best cases?
- How likely are worst cases?

42CSE 373 20 SP – CHAMPION & CHUN

Practice: Music Storage
You have been asked to create a new system for organizing songs in a music service. For
each song you need to store the artist and how many plays that song has.

43CSE 373 20 SP – CHAMPION & CHUN

What functionality is needed?
• What operations need to be supported?
• Which operations should be prioritized?

What type of data will you have?
• What are the relationships within the data?
• How much data will you have?
• Will your data set grow?
• Will your data set shrink?

How do you think things will play out?
• How likely are best cases?
• How likely are worst cases?

Update number of plays for a song
Add a new song to an artist’s collection
Add a new artist and their songs to the service
Find an artist’s most popular song
Find service’s most popular artist

more…

Artists need to be associated with their songs,
songs need t be associated with their play counts
Play counts will get updated a lot
New songs will get added regularly

Some artists and songs will need to be accessed a lot more than others
Artist and song names can be very similar

Practice: Music Storage
How should we store songs and their play counts?
Hash Table – song titles as keys, play count as values, quick access for
updates
Array List – song titles as keys, play counts as values, maintain order of
addition to system
How should we store artists with their associated songs?
Hash Table – artist as key,

Hash Table of their (songs, play counts) as values
AVL Tree of their songs as values

AVL Tree – artists as key, hash tables of songs and counts as values

44CSE 373 20 SP – CHAMPION & CHUN

Priority Queue ADT
Min Priority Queue ADT

removeMin() – returns the element
with the smallest priority, removes
it from the collection

state

behavior

Set of comparable values
- Ordered based on “priority”

peekMin() – find, but do not
remove the element with the
smallest priority

add(value) – add a new element
to the collection

Imagine you’re managing a queue of food orders at a
restaurant, which normally takes food orders first-come-
first-served. But suddenly, Ana Marie Cauce walks into
the restaurant. You know that you should server her as
soon as possible (to either suck up or kick her out of the
restaurant), and realize other celebrities (CSE 373 staff)
could also arrive soon. Your new food management
system should rank customers and let us know which
food order we should work on next (the most prioritized
thing).

Other uses:
• Well-designed printers
• Huffman Coding (see in CSE 143 last hw)
• Sorting algorithms
• Graph algorithms CSE 332 SU 18 - ROBBIE WEBER 45

Binary Heap invariants summary
One flavor of heap is a binary heap.
1. Binary Tree: every node has at most 2
children
2. Heap invariant: every node is smaller
than (or equal to) its children

CSE 373 SP 18 - KASEY CHAMPION 46

8

9 10 2

4 5

3

6 7

1

3. Heap structure invariant: Each level is
“complete” meaning it has no “gaps”
- Heaps are filled up left to right

22

36 47

2

4

8 9 10

3

1

5

This is a big idea!
(heap invariants!)

Announcements
P2 due today!
Midterm out this Friday – due 1 week later
NO LATE ASSIGNMENTS ACCEPTED
- Group assignment
- Open note/ open internet, closed course staff
- intended to take 1 person 1 hour
- Topics:

- ADTs
- Code Modeling
- Big O, Big Theta, Big Omega
- Case Analysis
- Recurrences
- Master Theorem & Tree Method
- Hashing
- BSTs & AVls
- Heaps
- Design Decisions

47CSE 373 21 SP – CHAMPION

Sorry about OH – we doing out best!

What’s NOT on the midterm:
- AVL Rotations
- Big O Proofs (C and N0 style)
- Summation Identities (Limited algebra)

Come to the Midterm Review!
- Thursday (tomorrow) evening 5:30-7:30 pm PST

Mid Quarter Surveys
- Lecture
- Section
- 90% response rate on all- 1 point EC for everyone!

Implementing peekMin()

CSE 373 SP 18 - KASEY CHAMPION 48

4

5 8

7

10

2

9

11 13

Runtime: 𝚯(1)

Practice: removeMin()

CSE 373 SP 18 - KASEY CHAMPION 49

10

17 14

9

11

5

13

20 2216 15 2419 18

18

18

9

18

11

1.) Remove min node
2.) replace with bottom level right-most
node
3.) percolateDown - Recursively swap
parent with smallest child
until parent is smaller than both children
(or we’re at a leaf).

Implement Heaps with an array

CSE 373 19 SP - KASEY CHAMPION 50

I

A

B

D

H

C

K

E

J

F

L

G

0 1 2 3 4 5 6 7 8 9 10 11 12 13

A B C D E F G H I J K L

Fill array in level-order from left to right

How do we find the minimum node?

How do we find the last node?

How do we find the next open space?

How do we find a node’s left child?

How do we find a node’s right child?

How do we find a node’s parent?

𝑝𝑎𝑟𝑒𝑛𝑡 𝑖 =
𝑖 − 1
2

𝑙𝑒𝑓𝑡𝐶ℎ𝑖𝑙𝑑 𝑖 = 2𝑖 + 1

𝑟𝑖𝑔ℎ𝑡𝐶ℎ𝑖𝑙𝑑 𝑖 = 2𝑖 + 2

𝑝𝑒𝑒𝑘𝑀𝑖𝑛() = 𝑎𝑟𝑟[0]

𝑙𝑎𝑠𝑡𝑁𝑜𝑑𝑒() = 𝑎𝑟𝑟[𝑠𝑖𝑧𝑒 − 1]

𝑜𝑝𝑒𝑛𝑆𝑝𝑎𝑐𝑒() = 𝑎𝑟𝑟[𝑠𝑖𝑧𝑒]

Implement Heaps with an array

CSE 373 19 SP - KASEY CHAMPION 51

I

A

B

D

H

C

K

E

J

F

L

G

0 1 2 3 4 5 6 7 8 9 10 11 12 13

/ A B C D E F G H I J K L

Fill array in level-order from left to right

How do we find the minimum node?

How do we find the last node?

How do we find the next open space?

How do we find a node’s left child?

How do we find a node’s right child?

How do we find a node’s parent?

𝑝𝑎𝑟𝑒𝑛𝑡 𝑖 =
𝑖
2

𝑙𝑒𝑓𝑡𝐶ℎ𝑖𝑙𝑑 𝑖 = 2𝑖

𝑟𝑖𝑔ℎ𝑡𝐶ℎ𝑖𝑙𝑑 𝑖 = 2𝑖 + 1

𝑝𝑒𝑒𝑘𝑀𝑖𝑛() = 𝑎𝑟𝑟[1]

𝑙𝑎𝑠𝑡𝑁𝑜𝑑𝑒() = 𝑎𝑟𝑟[𝑠𝑖𝑧𝑒]

𝑜𝑝𝑒𝑛𝑆𝑝𝑎𝑐𝑒() = 𝑎𝑟𝑟[𝑠𝑖𝑧𝑒 + 1]

Array-Implemented MinHeap Runtimes

E

A

B

D

C

F

0 1 2 3 4 5 6 7

/ A B C D E F

Operation Case Runtime

removeMin()

best Θ(1)

worst Θ(log n)

in practice Θ(log n)

add(key)

best Θ(1)

worst Θ(log n)

in practice Θ(1)
peekMin() all cases Θ(1)

• With array implementation, heaps match runtime of
finding min in AVL trees

• But better in many ways!
• Constant factors: array accesses give contiguous

memory/spatial locality, tree constant factor shorter
due to stricter height invariant

• In practice, add doesn’t require many swaps
• WAY simpler to implement!

