
Lecture 14: Heap 
Percolations

CSE 373 Data Structures and 
Algorithms
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Valid Invalid Invalid

Are the following trees valid min heaps?



Announcements
P2 due today!
Midterm out this Friday – due 1 week later
NO LATE ASSIGNMENTS ACCEPTED
- Group assignment
- Open note/ open internet, closed course staff
- intended to take 1 person 1 hour
- Topics:

- ADTs
- Code Modeling
- Big O, Big Theta, Big Omega
- Case Analysis
- Recurrences
- Master Theorem & Tree Method
- Hashing
- BSTs & AVls
- Heaps
- Design Decisions
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Sorry about OH – we doing out best!

What’s NOT on the midterm:
- AVL Rotations
- Big O Proofs (C and N0 style)
- Summation Identities (Limited algebra)

Come to the Midterm Review!
- Thursday (tomorrow) evening 5:30-7:30 pm PST

Mid Quarter Surveys
- Lecture
- Section
- 90% response rate on all- 1 point EC for everyone!
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Your toolbox so far…
-ADT

- List – flexibility, easy movement of elements within structure
- Stack – optimized for first in last out ordering
- Queue – optimized for first in first out ordering
- Dictionary (Map) – stores two pieces of data at each entry

-Data Structure Implementation
- Array – easy look up, hard to rearrange
- Linked Nodes – hard to look up, easy to rearrange
- Hash Table – constant time look up, no ordering of data
- BST – efficient look up, possibility of bad worst case
- AVL Tree – efficient look up, protects against bad worst case, hard to implement
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<- It’s all about data baby!
SUPER common in comp sci 
- Databases
- Network router tables
- Compilers and Interpreters



Priority Queue / heaps roadmap
- PriorityQueue ADT
- PriorityQueue implementations with current toolkit
- Binary Heap idea + invariants
- Binary Heap methods

- Binary Heap implementation details



Implementing peekMin()
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Runtime: 𝚯(1)



Implementing removeMin()
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Structure invariant restored, heap invariant broken

1.) Return min 
2.) replace with bottom level right-most node 



Implementing removeMin() - percolateDown
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Recursively swap parent with smallest child
until parent is smaller than both children 
(or we’re at a leaf).

3.) percolateDown()

Structure invariant restored, heap invariant restored

What’s the worst-case 
running time?
Have to:
Find last element
Move it to top spot
Swap until invariant restored
(how many times do we 
have to swap?)

this is why we want to keep the 
height of the tree small! The 
height of these tree structures 
(BST, AVL, heaps) directly 
correlates with the worst case
runtimes

This is a big idea! (height of 
all these tree DS correlates w 

worst case runtimes – we 
want to design our trees to 

have reasonably small 
height!)



Practice: removeMin()
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1.) Remove min node
2.) replace with bottom level right-most 
node
3.) percolateDown - Recursively swap 
parent with smallest child
until parent is smaller than both children 
(or we’re at a leaf).



Why does percolateDown swap with the smallest child instead of just any child?

If we swap 13 and 7, the heap invariant isn’t restored! 
7 is greater than 4 (it’s not the smallest child!) so it will violate the invariant.
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Implementing add()
add() Algorithm:
-Insert a node on the bottom 
level that ensure no gaps

-Fix heap invariant by percolate 
UP

i.e. swap with parent, 
until your parent is 
smaller than you
(or you’re the root).
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Worst case runtime is similar to removeMin and percolateDown – might have to do log(n) swaps, so the 
worst-case runtime is Theta(log(n))



Practice: Building a minHeap
Construct a Min Binary Heap by adding the following values in this order:

5, 10, 15, 20, 7, 2
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Min Binary Heap Invariants
1. Binary Tree – each node has at most 2 children
2. Min Heap – each node’s children are larger than itself
3. Level Complete - new nodes are added from left to right completely filling each 

level before creating a new one
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Add() Algorithm:
- 1.) Insert a node on the bottom 

level that ensures no gaps
- 2. )Fix heap invariant by 

percolate UP
i.e. swap with parent, 
until your parent is 
smaller than you
(or you’re the root).



minHeap runtimes
removeMin():
- remove root node
- Find last node in tree and swap to top level
- Percolate down to fix heap invariant
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add():
- Insert new node into next available spot
- Percolate up to fix heap invariant

Finding the last node/next available spot is the hard part.
You can do it in Θ(log 𝑛) time on complete trees, with some extra class variables…
But it’s NOT fun

And there’s a much better way!



Implement Heaps with an array
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Fill array in level-order from left to right

We map our binary-tree 
representation of a heap into an 
array implementation where you fill 
in the array in level-order from left 
to right.

The array implementation of a heap 
is what people actually implement, 
but the tree drawing is how to think 
of it conceptually.   Everything 
we’ve discussed about the tree 
representation still is true!



Implement Heaps with an array
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Fill array in level-order from left to right

How do we find the minimum node?

How do we find the last node?

How do we find the next open space?

How do we find a node’s left child?

How do we find a node’s right child?

How do we find a node’s parent?

𝑝𝑎𝑟𝑒𝑛𝑡 𝑖 =
𝑖 − 1
2

𝑙𝑒𝑓𝑡𝐶ℎ𝑖𝑙𝑑 𝑖 = 2𝑖 + 1

𝑟𝑖𝑔ℎ𝑡𝐶ℎ𝑖𝑙𝑑 𝑖 = 2𝑖 + 2

𝑝𝑒𝑒𝑘𝑀𝑖𝑛() = 𝑎𝑟𝑟[0]

𝑙𝑎𝑠𝑡𝑁𝑜𝑑𝑒() = 𝑎𝑟𝑟[𝑠𝑖𝑧𝑒 − 1]

𝑜𝑝𝑒𝑛𝑆𝑝𝑎𝑐𝑒() = 𝑎𝑟𝑟[𝑠𝑖𝑧𝑒]



Implement Heaps with an array
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Fill array in level-order from left to right

How do we find the minimum node?

How do we find the last node?

How do we find the next open space?

How do we find a node’s left child?

How do we find a node’s right child?

How do we find a node’s parent?

𝑝𝑎𝑟𝑒𝑛𝑡 𝑖 =
𝑖
2

𝑙𝑒𝑓𝑡𝐶ℎ𝑖𝑙𝑑 𝑖 = 2𝑖

𝑟𝑖𝑔ℎ𝑡𝐶ℎ𝑖𝑙𝑑 𝑖 = 2𝑖

𝑝𝑒𝑒𝑘𝑀𝑖𝑛() = 𝑎𝑟𝑟[1]

𝑙𝑎𝑠𝑡𝑁𝑜𝑑𝑒() = 𝑎𝑟𝑟[𝑠𝑖𝑧𝑒]

𝑜𝑝𝑒𝑛𝑆𝑝𝑎𝑐𝑒() = 𝑎𝑟𝑟[𝑠𝑖𝑧𝑒 + 1]



Array-Implemented MinHeap Runtimes
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Operation Case Runtime

removeMin()

best Θ(1)

worst Θ(log n)

in practice Θ(log n)

add(key)

best Θ(1)

worst Θ(log n)

in practice Θ(1)
peekMin() all cases Θ(1)

• With array implementation, heaps match runtime of 
finding min in AVL trees

• But better in many ways!
• Constant factors: array accesses give contiguous 

memory/spatial locality, tree constant factor shorter 
due to stricter height invariant

• In practice, add doesn’t require many swaps
• WAY simpler to implement!



AVL vs Heaps: Good For Different 
Situations

HEAPS AVL TREES

• removeMin: much 
better constant factors 
than AVL Trees, though 
asymptotically the same

• add: in-practice, sweet 
sweet Θ(1) (few swaps 
usually required)

• get, containsKey: worst-
case (log n) time (unlike 
Heap, which has to do a 
linear scan of the array)

PriorityQueue Map/Set



Project 3
Build a heap! Alongside hash maps, heaps are one of 
the most useful data structures to know – and pop up 
many more times this quarter!
- You’ll also get practice using multiple data structures together to 

implement an ADT!
- Directly apply the invariants we’ve talked so much about in 

lecture! Even has an invariant checker to verify this (a great
defensive programming technique!)

MIN PRIORITY QUEUE ADT

removeMin() – returns the element with 
the smallest priority, removes it from 
the collection

State

Behavior

Set of comparable values (ordered 
based on “priority”)

peekMin() – find, but do not remove 
the element with the smallest priority

add(value) – add a new element to 
the collection

changePriority(item, priority) – update 
the priority of an element
contains(item) – check if an element 
exists in the priority queue



Project 3 Tips
Project 3 adds changePriority and contains to the 
PriorityQueue ADT, which aren’t efficient on a heap 
alone
You should utilize an extra data structure for 
changePriority!
- Doesn’t affect correctness of PQ, just runtime. Please use a built-in 

Java collection instead of implementing your own (although you 
could in theory).

changePriority Implementation Strategy:
- implement without regards to efficiency (without the extra data 

structure) at first
- analyze your code’s runtime and figure out which parts are 

inefficient
- reflect on the data structures we’ve learned and see how any of 

them could be useful in improving the slow parts in your code

MIN PRIORITY QUEUE ADT

removeMin() – returns the element with 
the smallest priority, removes it from 
the collection

State

Behavior

Set of comparable values (ordered 
based on “priority”)

peekMin() – find, but do not remove 
the element with the smallest priority

add(value) – add a new element to 
the collection

changePriority(item, priority) – update 
the priority of an element
contains(item) – check if an element 
exists in the priority queue



More Priority Queue Operations



More Operations
We’ll use priority queues for lots of things 
later in the quarter. 
Let’s add them to our ADT now.
Some of these will be asymptotically faster for 
a heap than an AVL tree!

BuildHeap(elements 𝑒E, … , 𝑒F )  
Given 𝑛 elements, create a heap 
containing exactly those 𝑛 elements. 

Min Priority Queue ADT

removeMin() – returns the element 
with the smallest priority, removes 
it from the collection

state

behavior

Set of comparable values
- Ordered based on “priority”

peekMin() – find, but do not 
remove the element with the 
smallest priority

add(value) – add a new element 
to the collection



Even More Operations
BuildHeap(elements 𝑒!, … , 𝑒" ) – Given 𝑛 elements, create a heap 
containing exactly those 𝑛 elements. 

Try 1: Just call insert 𝑛 times.
Worst case running time?
𝑛 calls, each worst case Θ(log 𝑛). So it’s Θ(𝑛 log 𝑛) right?
That proof isn’t valid. There’s no guarantee that we’re getting the worst 
case every time!
Proof is right if we just want an 𝑂() bound
-But it’s not clear if it’s tight.
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BuildHeap Running Time
Let’s try again for a Theta bound. 
The problem last time was making sure we always hit the worst case.
If we insert the elements in decreasing order we will!
-Every node will have to percolate all the way up to the root.

So we really have 𝑛 Θ(log 𝑛) operations. QED. 

There’s still a bug with this proof!
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BuildHeap Running Time (again)
Let’s try once more.
Saying the worst case was decreasing order was a good start.
What are the actual running times?
It’s Θ(ℎ), where ℎ is the current height.
-The tree isn’t height log 𝑛 at the beginning.

But most nodes are inserted in the last two levels of the tree.
-For most nodes, ℎ is Θ log 𝑛 . 

The number of operations is at least
"
#
⋅ Ω(log 𝑛) = Ω 𝑛 log 𝑛 .

CSE 332 - SU 18 ROBBIE WEBER 25



Can We Do Better?
What’s causing the 𝑛 add strategy to take so long?
- Most nodes are near the bottom, and might need to percolate all the way up. 

Idea 2: Dump everything in the array, and percolate things down 
until the heap invariant is satisfied
- Intuition: this could be faster!
-The bottom two levels of the tree have Ω(𝑛) nodes, the top two have 3 nodes
-Maybe we can make “most of the nodes” go only a constant distance



Floyd’s buildHeap algorithm
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1. Add all values to back of array
2. percolateDown(parent) starting at last index

Build a tree with the values:
12, 5, 11, 3, 10, 2, 9, 4, 8, 15, 7, 6

12 5 11 3 10 2 9



Floyd’s buildHeap algorithm

CSE 373 SP 18 - KASEY CHAMPION 28

8

12

5

3

4

11

7

10

15

2

6

9

0 1 2 3 4 5 6 7 8 9 10 11 12 13

4 8 15 7 6

1. Add all values to back of array
2. percolateDown(parent) starting at last index

1. percolateDown level 4
2. percolateDown level 3

Build a tree with the values:
12, 5, 11, 3, 10, 2, 9, 4, 8, 15, 7, 6

12 5 11 3 10 2 9
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10



Floyd’s buildHeap algorithm

CSE 373 SP 18 - KASEY 
CHAMPION 29

8

12

5

3

4

11

7

10

15

2

6

9

0 1 2 3 4 5 6 7 8 9 10 11 12 13

4 8 157 6

1. Add all values to back of array
2. percolateDown(parent) starting at last index

1. percolateDown level 4
2. percolateDown level 3
3. percolateDown level 2

Build a tree with the values:
12, 5, 11, 3, 10, 2, 9, 4, 8, 15, 7, 6

12 5 11 3 102 9
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5 6

11

keep percolating down
like normal here and swap 5 and 4



Floyd’s buildHeap algorithm
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1. Add all values to back of array
2. percolateDown(parent) starting at last index

1. percolateDown level 4
2. percolateDown level 3
3. percolateDown level 2
4. percolateDown level 1

Build a tree with the values:
12, 5, 11, 3, 10, 2, 9, 4, 8, 15, 7, 6

12 4 113 102 9
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Floyd’s buildHeap algorithm
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1. Add all values to back of array
2. percolateDown(parent) starting at last index

1. percolateDown level 4
2. percolateDown level 3
3. percolateDown level 2
4. percolateDown level 1

Build a tree with the values:
12, 5, 11, 3, 10, 2, 9, 4, 8, 15, 7, 6

124 113 102 9
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Is It Really Faster?
percolateDown() has worst case log n in general, but for most of these nodes, it has a 
much smaller worst case!
- n/2 nodes in the tree are leaves, have 0 levels to travel
- n/4 nodes have at most 1 level to travel
- n/8 nodes have at most 2 levels to travel
- etc…

worst-case-work(n) ≈ !
"
⋅ 1 + !

#
⋅ 2 + !

$
⋅ 3 + ⋯+ 1 ⋅ (log 𝑛)

Intuition: Even though there are log n levels, each level does a smaller and smaller 
amount of work. Even with infinite levels, as we sum smaller and smaller values (think 
%
"!

) we converge to a constant factor of n.

++

Floyd’s buildHeap runs in O(n) time!

much of 
the work

a little 
less

a little 
less

barely 
anything



Optional Slide  Floyd’s buildHeap Summation
𝑛/2⋅ 1 +𝑛/4⋅ 2 +𝑛/8⋅ 3 +⋯+1⋅(log 𝑛)

factor out n

work(n) ≈𝑛 "
#
+ #

$
+ %

&
+⋯+ '() *

*

𝑤𝑜𝑟𝑘 𝑛 ≈ 𝑛5
+,"

?
𝑖
2+

𝑤𝑜𝑟𝑘 𝑛 ≤ 𝑛5
+,"

'(). 3
2

+

2+
𝑖𝑓 − 1 < 𝑥 < 1 𝑡ℎ𝑒𝑛5

+,/

0

𝑥+ =
1

1 − 𝑥 = 𝑥

Infinite geometric series

𝑤𝑜𝑟𝑘 𝑛 ≈ 𝑛 5
+,"

'().
𝑖
2+
≤ 𝑛5

+,/

0
3
4

+

= 𝑛 ∗ 4

find a pattern -> powers of 2 work(n) ≈ 𝑛 "
#!
+ #

#"
+ %

##
+⋯+ '() *

#$%& '

? = upper limit should give last term

Floyd’s buildHeap runs in O(n) time!

Summation!

We don’t have a summation for this! Let’s make it look more like a summation we do know.



Even More Operations
These operations will be useful in a few weeks…
IncreaseKey(element,priority) Given an element of the heap and a new, larger 
priority, update that object’s priority.
DecreaseKey(element,priority) Given an element of the heap and a new, 
smaller priority, update that object’s priority.
Delete(element) Given an element of the heap, remove that element.

Should just be going to the right spot and percolating…
Going to the right spot is the tricky part.
In the programming projects, you’ll use a dictionary to find an element quickly.
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