
Lecture 14: Heap
Percolations

CSE 373 Data Structures and
Algorithms

1CSE 373 20 SP – CHAN & CHAMPION

Warm Up

8

9 10

2

9 11

5

4 7

1

22

36 47

2

4

8 9 10

3

1

5

Valid Invalid Invalid

Are the following trees valid min heaps?

Announcements
P2 due today!
Midterm out this Friday – due 1 week later
NO LATE ASSIGNMENTS ACCEPTED
- Group assignment
- Open note/ open internet, closed course staff
- intended to take 1 person 1 hour
- Topics:

- ADTs
- Code Modeling
- Big O, Big Theta, Big Omega
- Case Analysis
- Recurrences
- Master Theorem & Tree Method
- Hashing
- BSTs & AVls
- Heaps
- Design Decisions

3CSE 373 21 SP – CHAMPION

Sorry about OH – we doing out best!

What’s NOT on the midterm:
- AVL Rotations
- Big O Proofs (C and N0 style)
- Summation Identities (Limited algebra)

Come to the Midterm Review!
- Thursday (tomorrow) evening 5:30-7:30 pm PST

Mid Quarter Surveys
- Lecture
- Section
- 90% response rate on all- 1 point EC for everyone!

4

Your toolbox so far…
-ADT

- List – flexibility, easy movement of elements within structure
- Stack – optimized for first in last out ordering
- Queue – optimized for first in first out ordering
- Dictionary (Map) – stores two pieces of data at each entry

-Data Structure Implementation
- Array – easy look up, hard to rearrange
- Linked Nodes – hard to look up, easy to rearrange
- Hash Table – constant time look up, no ordering of data
- BST – efficient look up, possibility of bad worst case
- AVL Tree – efficient look up, protects against bad worst case, hard to implement

CSE 373 20 SP – CHAMPION & CHUN

<- It’s all about data baby!
SUPER common in comp sci
- Databases
- Network router tables
- Compilers and Interpreters

Priority Queue / heaps roadmap
- PriorityQueue ADT
- PriorityQueue implementations with current toolkit
- Binary Heap idea + invariants
- Binary Heap methods

- Binary Heap implementation details

Implementing peekMin()

CSE 373 SP 18 - KASEY CHAMPION 6

4

5 8

7

10

2

9

11 13

Runtime: 𝚯(1)

Implementing removeMin()

CSE 373 SP 18 - KASEY CHAMPION 7

4

5 8

7

10

2

9

11 13

4

5 8

7

10

13

9

11

Structure invariant restored, heap invariant broken

1.) Return min
2.) replace with bottom level right-most node

Implementing removeMin() - percolateDown

CSE 373 SP 18 - KASEY CHAMPION 8

4

5 8

7

10

13

9

11

4

135

13

13

11

Recursively swap parent with smallest child
until parent is smaller than both children
(or we’re at a leaf).

3.) percolateDown()

Structure invariant restored, heap invariant restored

What’s the worst-case
running time?
Have to:
Find last element
Move it to top spot
Swap until invariant restored
(how many times do we
have to swap?)

this is why we want to keep the
height of the tree small! The
height of these tree structures
(BST, AVL, heaps) directly
correlates with the worst case
runtimes

This is a big idea! (height of
all these tree DS correlates w

worst case runtimes – we
want to design our trees to

have reasonably small
height!)

Practice: removeMin()

CSE 373 SP 18 - KASEY CHAMPION 9

10

17 14

9

11

5

13

20 2216 15 2419 18

18

18

9

18

11

1.) Remove min node
2.) replace with bottom level right-most
node
3.) percolateDown - Recursively swap
parent with smallest child
until parent is smaller than both children
(or we’re at a leaf).

Why does percolateDown swap with the smallest child instead of just any child?

If we swap 13 and 7, the heap invariant isn’t restored!
7 is greater than 4 (it’s not the smallest child!) so it will violate the invariant.

4

5 8

7

10

13

9

11

Implementing add()
add() Algorithm:
-Insert a node on the bottom
level that ensure no gaps

-Fix heap invariant by percolate
UP

i.e. swap with parent,
until your parent is
smaller than you
(or you’re the root).

CSE 373 19 SP - KASEY CHAMPION 11

4

5 8

7

10

2

9

11 13 3

3

8

3

4

Worst case runtime is similar to removeMin and percolateDown – might have to do log(n) swaps, so the
worst-case runtime is Theta(log(n))

Practice: Building a minHeap
Construct a Min Binary Heap by adding the following values in this order:

5, 10, 15, 20, 7, 2

CSE 373 SP 18 - KASEY CHAMPION 12

Min Binary Heap Invariants
1. Binary Tree – each node has at most 2 children
2. Min Heap – each node’s children are larger than itself
3. Level Complete - new nodes are added from left to right completely filling each

level before creating a new one

10

20 7

15

2

5

percolateUp!

7

10

percolateUp!

2

15

percolateUp!

2

5

Add() Algorithm:
- 1.) Insert a node on the bottom

level that ensures no gaps
- 2.)Fix heap invariant by

percolate UP
i.e. swap with parent,
until your parent is
smaller than you
(or you’re the root).

minHeap runtimes
removeMin():
- remove root node
- Find last node in tree and swap to top level
- Percolate down to fix heap invariant

CSE 373 SP 18 - KASEY CHAMPION 13

add():
- Insert new node into next available spot
- Percolate up to fix heap invariant

Finding the last node/next available spot is the hard part.
You can do it in Θ(log 𝑛) time on complete trees, with some extra class variables…
But it’s NOT fun

And there’s a much better way!

Implement Heaps with an array

CSE 373 19 SP - KASEY CHAMPION 14

I

A

B

D

H

C

K

E

J

F

L

G

0 1 2 3 4 5 6 7 8 9 10 11 12 13

A B C D E F G H I J K L

Fill array in level-order from left to right

We map our binary-tree
representation of a heap into an
array implementation where you fill
in the array in level-order from left
to right.

The array implementation of a heap
is what people actually implement,
but the tree drawing is how to think
of it conceptually. Everything
we’ve discussed about the tree
representation still is true!

Implement Heaps with an array

CSE 373 19 SP - KASEY CHAMPION 15

I

A

B

D

H

C

K

E

J

F

L

G

0 1 2 3 4 5 6 7 8 9 10 11 12 13

A B C D E F G H I J K L

Fill array in level-order from left to right

How do we find the minimum node?

How do we find the last node?

How do we find the next open space?

How do we find a node’s left child?

How do we find a node’s right child?

How do we find a node’s parent?

𝑝𝑎𝑟𝑒𝑛𝑡 𝑖 =
𝑖 − 1
2

𝑙𝑒𝑓𝑡𝐶ℎ𝑖𝑙𝑑 𝑖 = 2𝑖 + 1

𝑟𝑖𝑔ℎ𝑡𝐶ℎ𝑖𝑙𝑑 𝑖 = 2𝑖 + 2

𝑝𝑒𝑒𝑘𝑀𝑖𝑛() = 𝑎𝑟𝑟[0]

𝑙𝑎𝑠𝑡𝑁𝑜𝑑𝑒() = 𝑎𝑟𝑟[𝑠𝑖𝑧𝑒 − 1]

𝑜𝑝𝑒𝑛𝑆𝑝𝑎𝑐𝑒() = 𝑎𝑟𝑟[𝑠𝑖𝑧𝑒]

Implement Heaps with an array

CSE 373 19 SP - KASEY CHAMPION 16

I

A

B

D

H

C

K

E

J

F

L

G

0 1 2 3 4 5 6 7 8 9 10 11 12 13

/ A B C D E F G H I J K L

Fill array in level-order from left to right

How do we find the minimum node?

How do we find the last node?

How do we find the next open space?

How do we find a node’s left child?

How do we find a node’s right child?

How do we find a node’s parent?

𝑝𝑎𝑟𝑒𝑛𝑡 𝑖 =
𝑖
2

𝑙𝑒𝑓𝑡𝐶ℎ𝑖𝑙𝑑 𝑖 = 2𝑖

𝑟𝑖𝑔ℎ𝑡𝐶ℎ𝑖𝑙𝑑 𝑖 = 2𝑖

𝑝𝑒𝑒𝑘𝑀𝑖𝑛() = 𝑎𝑟𝑟[1]

𝑙𝑎𝑠𝑡𝑁𝑜𝑑𝑒() = 𝑎𝑟𝑟[𝑠𝑖𝑧𝑒]

𝑜𝑝𝑒𝑛𝑆𝑝𝑎𝑐𝑒() = 𝑎𝑟𝑟[𝑠𝑖𝑧𝑒 + 1]

Array-Implemented MinHeap Runtimes

E

A

B

D

C

F

0 1 2 3 4 5 6 7

/ A B C D E F

Operation Case Runtime

removeMin()

best Θ(1)

worst Θ(log n)

in practice Θ(log n)

add(key)

best Θ(1)

worst Θ(log n)

in practice Θ(1)
peekMin() all cases Θ(1)

• With array implementation, heaps match runtime of
finding min in AVL trees

• But better in many ways!
• Constant factors: array accesses give contiguous

memory/spatial locality, tree constant factor shorter
due to stricter height invariant

• In practice, add doesn’t require many swaps
• WAY simpler to implement!

AVL vs Heaps: Good For Different
Situations

HEAPS AVL TREES

• removeMin: much
better constant factors
than AVL Trees, though
asymptotically the same

• add: in-practice, sweet
sweet Θ(1) (few swaps
usually required)

• get, containsKey: worst-
case (log n) time (unlike
Heap, which has to do a
linear scan of the array)

PriorityQueue Map/Set

Project 3
Build a heap! Alongside hash maps, heaps are one of
the most useful data structures to know – and pop up
many more times this quarter!
- You’ll also get practice using multiple data structures together to

implement an ADT!
- Directly apply the invariants we’ve talked so much about in

lecture! Even has an invariant checker to verify this (a great
defensive programming technique!)

MIN PRIORITY QUEUE ADT

removeMin() – returns the element with
the smallest priority, removes it from
the collection

State

Behavior

Set of comparable values (ordered
based on “priority”)

peekMin() – find, but do not remove
the element with the smallest priority

add(value) – add a new element to
the collection

changePriority(item, priority) – update
the priority of an element
contains(item) – check if an element
exists in the priority queue

Project 3 Tips
Project 3 adds changePriority and contains to the
PriorityQueue ADT, which aren’t efficient on a heap
alone
You should utilize an extra data structure for
changePriority!
- Doesn’t affect correctness of PQ, just runtime. Please use a built-in

Java collection instead of implementing your own (although you
could in theory).

changePriority Implementation Strategy:
- implement without regards to efficiency (without the extra data

structure) at first
- analyze your code’s runtime and figure out which parts are

inefficient
- reflect on the data structures we’ve learned and see how any of

them could be useful in improving the slow parts in your code

MIN PRIORITY QUEUE ADT

removeMin() – returns the element with
the smallest priority, removes it from
the collection

State

Behavior

Set of comparable values (ordered
based on “priority”)

peekMin() – find, but do not remove
the element with the smallest priority

add(value) – add a new element to
the collection

changePriority(item, priority) – update
the priority of an element
contains(item) – check if an element
exists in the priority queue

More Priority Queue Operations

More Operations
We’ll use priority queues for lots of things
later in the quarter.
Let’s add them to our ADT now.
Some of these will be asymptotically faster for
a heap than an AVL tree!

BuildHeap(elements 𝑒E, … , 𝑒F)
Given 𝑛 elements, create a heap
containing exactly those 𝑛 elements.

Min Priority Queue ADT

removeMin() – returns the element
with the smallest priority, removes
it from the collection

state

behavior

Set of comparable values
- Ordered based on “priority”

peekMin() – find, but do not
remove the element with the
smallest priority

add(value) – add a new element
to the collection

Even More Operations
BuildHeap(elements 𝑒!, … , 𝑒") – Given 𝑛 elements, create a heap
containing exactly those 𝑛 elements.

Try 1: Just call insert 𝑛 times.
Worst case running time?
𝑛 calls, each worst case Θ(log 𝑛). So it’s Θ(𝑛 log 𝑛) right?
That proof isn’t valid. There’s no guarantee that we’re getting the worst
case every time!
Proof is right if we just want an 𝑂() bound
-But it’s not clear if it’s tight.

CSE 332 - SU 18 ROBBIE WEBER 23

BuildHeap Running Time
Let’s try again for a Theta bound.
The problem last time was making sure we always hit the worst case.
If we insert the elements in decreasing order we will!
-Every node will have to percolate all the way up to the root.

So we really have 𝑛 Θ(log 𝑛) operations. QED.

There’s still a bug with this proof!

CSE 332 - SU 18 ROBBIE WEBER 24

BuildHeap Running Time (again)
Let’s try once more.
Saying the worst case was decreasing order was a good start.
What are the actual running times?
It’s Θ(ℎ), where ℎ is the current height.
-The tree isn’t height log 𝑛 at the beginning.

But most nodes are inserted in the last two levels of the tree.
-For most nodes, ℎ is Θ log 𝑛 .

The number of operations is at least
"
#
⋅ Ω(log 𝑛) = Ω 𝑛 log 𝑛 .

CSE 332 - SU 18 ROBBIE WEBER 25

Can We Do Better?
What’s causing the 𝑛 add strategy to take so long?
- Most nodes are near the bottom, and might need to percolate all the way up.

Idea 2: Dump everything in the array, and percolate things down
until the heap invariant is satisfied
- Intuition: this could be faster!
-The bottom two levels of the tree have Ω(𝑛) nodes, the top two have 3 nodes
-Maybe we can make “most of the nodes” go only a constant distance

Floyd’s buildHeap algorithm

CSE 373 SP 18 - KASEY CHAMPION 27

8

12

5

3

4

11

7

10

15

2

6

9

0 1 2 3 4 5 6 7 8 9 10 11 12 13

4 8 15 7 6

1. Add all values to back of array
2. percolateDown(parent) starting at last index

Build a tree with the values:
12, 5, 11, 3, 10, 2, 9, 4, 8, 15, 7, 6

12 5 11 3 10 2 9

Floyd’s buildHeap algorithm

CSE 373 SP 18 - KASEY CHAMPION 28

8

12

5

3

4

11

7

10

15

2

6

9

0 1 2 3 4 5 6 7 8 9 10 11 12 13

4 8 15 7 6

1. Add all values to back of array
2. percolateDown(parent) starting at last index

1. percolateDown level 4
2. percolateDown level 3

Build a tree with the values:
12, 5, 11, 3, 10, 2, 9, 4, 8, 15, 7, 6

12 5 11 3 10 2 9

7

10

Floyd’s buildHeap algorithm

CSE 373 SP 18 - KASEY
CHAMPION 29

8

12

5

3

4

11

7

10

15

2

6

9

0 1 2 3 4 5 6 7 8 9 10 11 12 13

4 8 157 6

1. Add all values to back of array
2. percolateDown(parent) starting at last index

1. percolateDown level 4
2. percolateDown level 3
3. percolateDown level 2

Build a tree with the values:
12, 5, 11, 3, 10, 2, 9, 4, 8, 15, 7, 6

12 5 11 3 102 9

7

10

2

11

3

5 6

11

keep percolating down
like normal here and swap 5 and 4

Floyd’s buildHeap algorithm

CSE 373 SP 18 - KASEY
CHAMPION 30

8

12

5

3

5

11

7

10

15

2

6

9

0 1 2 3 4 5 6 7 8 9 10 11 12 13

5 8 157 6

1. Add all values to back of array
2. percolateDown(parent) starting at last index

1. percolateDown level 4
2. percolateDown level 3
3. percolateDown level 2
4. percolateDown level 1

Build a tree with the values:
12, 5, 11, 3, 10, 2, 9, 4, 8, 15, 7, 6

12 4 113 102 9

7

10

23

4

2

12

6

11

Floyd’s buildHeap algorithm

CSE 373 SP 18 - KASEY
CHAMPION 31

8

12

5

3

5

11

7

10

15

2

6

9

0 1 2 3 4 5 6 7 8 9 10 11 12 13

5 8 1576

1. Add all values to back of array
2. percolateDown(parent) starting at last index

1. percolateDown level 4
2. percolateDown level 3
3. percolateDown level 2
4. percolateDown level 1

Build a tree with the values:
12, 5, 11, 3, 10, 2, 9, 4, 8, 15, 7, 6

124 113 102 9

7

10

23

4

2

6

1112

6

11

Is It Really Faster?
percolateDown() has worst case log n in general, but for most of these nodes, it has a
much smaller worst case!
- n/2 nodes in the tree are leaves, have 0 levels to travel
- n/4 nodes have at most 1 level to travel
- n/8 nodes have at most 2 levels to travel
- etc…

worst-case-work(n) ≈ !
"
⋅ 1 + !

#
⋅ 2 + !

$
⋅ 3 + ⋯+ 1 ⋅ (log 𝑛)

Intuition: Even though there are log n levels, each level does a smaller and smaller
amount of work. Even with infinite levels, as we sum smaller and smaller values (think
%
"!

) we converge to a constant factor of n.

++

Floyd’s buildHeap runs in O(n) time!

much of
the work

a little
less

a little
less

barely
anything

Optional Slide Floyd’s buildHeap Summation
𝑛/2⋅ 1 +𝑛/4⋅ 2 +𝑛/8⋅ 3 +⋯+1⋅(log 𝑛)

factor out n

work(n) ≈𝑛 "
#
+ #

$
+ %

&
+⋯+ '() *

*

𝑤𝑜𝑟𝑘 𝑛 ≈ 𝑛5
+,"

?
𝑖
2+

𝑤𝑜𝑟𝑘 𝑛 ≤ 𝑛5
+,"

'(). 3
2

+

2+
𝑖𝑓 − 1 < 𝑥 < 1 𝑡ℎ𝑒𝑛5

+,/

0

𝑥+ =
1

1 − 𝑥 = 𝑥

Infinite geometric series

𝑤𝑜𝑟𝑘 𝑛 ≈ 𝑛 5
+,"

'().
𝑖
2+
≤ 𝑛5

+,/

0
3
4

+

= 𝑛 ∗ 4

find a pattern -> powers of 2 work(n) ≈ 𝑛 "
#!
+ #

#"
+ %

##
+⋯+ '() *

#$%& '

? = upper limit should give last term

Floyd’s buildHeap runs in O(n) time!

Summation!

We don’t have a summation for this! Let’s make it look more like a summation we do know.

Even More Operations
These operations will be useful in a few weeks…
IncreaseKey(element,priority) Given an element of the heap and a new, larger
priority, update that object’s priority.
DecreaseKey(element,priority) Given an element of the heap and a new,
smaller priority, update that object’s priority.
Delete(element) Given an element of the heap, remove that element.

Should just be going to the right spot and percolating…
Going to the right spot is the tricky part.
In the programming projects, you’ll use a dictionary to find an element quickly.

CSE 332 - SU 18 ROBBIE WEBER 34

