
Lecture 13: Intro to
Heaps

CSE 373 Data Structures and
Algorithms

1CSE 373 20 SP – CHAN & CHAMPION

You have been asked to create a new system for organizing students in a course and their
accompanying grades

What type of data will you have?
What are the relationships within the data?

How much data will you have?

Will your data set grow?
Will your data set shrink?

How do you think things will play out?
How likely are best cases?
How likely are worst cases?

Warm Up: Class Gradebook

2

What functionality is needed?
What operations need to be supported?

Add students to course
Add grade to student’s record
Update grade already in student’s record
Remove student from course
Check if student is in course
Find specific grade for student

Organize students by name, keep grades in time order…

A couple hundred students, < 20 grades per student

Which operations should be prioritized?

A lot at the beginning,
Not much after that

Lots of add and drops?
Lots of grade updates?
Students with similar identifiers?

Example: Class Gradebook
What data should we use to identify students? (keys)
-Student IDs – unique to each student, no confusion (or collisions)
-Names – easy to use, support easy to produce sorted by name

How should we store each student’s grades? (values)
-Array List – easy to access, keeps order of assignments
-Hash Table – super efficient access, no order maintained

Which data structure is the best fit to store students and their grades?
-Hash Table – student IDs as keys will make access very efficient
-AVL Tree - student names as keys will maintain alphabetical order

3CSE 373 20 SP – CHAMPION & CHUN

Announcements
P2 due Wednesday
Midterm out this Friday – due 1 week later
- Group assignment
- Open note/ open internet, closed course staff
- intended to take 1 person 1 hour
- Topics:

- ADTs
- Code Modeling
- Big O, Big Theta, Big Omega
- Case Analysis
- Recurrences
- Master Theorem & Tree Method
- Hashing
- BSTs & AVls
- Heaps
- Design Decisions

4CSE 373 21 SP – CHAMPION

5

Your toolbox so far…
-ADT

- List – flexibility, easy movement of elements within structure
- Stack – optimized for first in last out ordering
- Queue – optimized for first in first out ordering
- Dictionary (Map) – stores two pieces of data at each entry

-Data Structure Implementation
- Array – easy look up, hard to rearrange
- Linked Nodes – hard to look up, easy to rearrange
- Hash Table – constant time look up, no ordering of data
- BST – efficient look up, possibility of bad worst case
- AVL Tree – efficient look up, protects against bad worst case, hard to implement

CSE 373 20 SP – CHAMPION & CHUN

<- It’s all about data baby!
SUPER common in comp sci
- Databases
- Network router tables
- Compilers and Interpreters

Review: Dictionaries
Why are we so obsessed with Dictionaries?

CSE 373 SU 19 - ROBBIE WEBER 6

Dictionary ADT

put(key, item) add item to
collection indexed with key
get(key) return item
associated with key
containsKey(key) return if key
already in use
remove(key) remove item
and associated key
size() return count of items

state

behavior

Set of items & keys
Count of items

When dealing with data:
• Adding data to your collection
• Getting data out of your collection
• Rearranging data in your collection

Operation ArrayList LinkedList HashTable BST AVLTree

put(key,value)
best Θ(1) Θ(1) Θ(1) Θ(1) Θ(1)

worst Θ(n) Θ(n) Θ(n) Θ(n) Θ(logn)

get(key)
best Θ(1) Θ(1) Θ(1) Θ(1) Θ(1)

worst Θ(n) Θ(n) Θ(n) Θ(n) Θ(logn)

remove(key)
best Θ(1) Θ(1) Θ(1) Θ(1) Θ(logn)

worst Θ(n) Θ(n) Θ(n) Θ(n) Θ(logn)

Design Decisions
Before coding can begin engineers must carefully consider the design of their code will organize and
manage data
Things to consider:
What functionality is needed?
- What operations need to be supported?
- Which operations should be prioritized?

What type of data will you have?
- What are the relationships within the data?
- How much data will you have?
- Will your data set grow?
- Will your data set shrink?

How do you think things will play out?
- How likely are best cases?
- How likely are worst cases?

7CSE 373 20 SP – CHAMPION & CHUN

Practice: Music Storage
You have been asked to create a new system for organizing songs in a music service. For
each song you need to store the artist and how many plays that song has.

8CSE 373 20 SP – CHAMPION & CHUN

What functionality is needed?
• What operations need to be supported?
• Which operations should be prioritized?

What type of data will you have?
• What are the relationships within the data?
• How much data will you have?
• Will your data set grow?
• Will your data set shrink?

How do you think things will play out?
• How likely are best cases?
• How likely are worst cases?

Update number of plays for a song
Add a new song to an artist’s collection
Add a new artist and their songs to the service
Find an artist’s most popular song
Find service’s most popular artist

more…

Artists need to be associated with their songs,
songs need t be associated with their play counts
Play counts will get updated a lot
New songs will get added regularly

Some artists and songs will need to be accessed a lot more than others
Artist and song names can be very similar

Practice: Music Storage
How should we store songs and their play counts?
Hash Table – song titles as keys, play count as values, quick access for
updates
Array List – song titles as keys, play counts as values, maintain order of
addition to system
How should we store artists with their associated songs?
Hash Table – artist as key,

Hash Table of their (songs, play counts) as values
AVL Tree of their songs as values

AVL Tree – artists as key, hash tables of songs and counts as values

9CSE 373 20 SP – CHAMPION & CHUN

Priority Queues

CSE 373 SP 18 - KASEY CHAMPION 10

PriorityQueue<FoodOrder> pq = new PriorityQueue<>();

some motivation for today’s lecture:
§ PQs are a staple of Java’s built-in data structures, commonly used for

sorting needs
§ Using PQs and knowing their implementations are common technical

interview subjects
§ You’re implementing one in the next project – so everything you get out of

today should be useful for that!

Priority Queue / heaps roadmap
- PriorityQueue ADT
- PriorityQueue implementations with current toolkit
- Binary Heap idea + invariants
- Binary Heap methods
- Binary Heap implementation details

A new ADT!
Imagine you’re managing a queue of food orders at a restaurant, which normally
takes food orders first-come-first-served.

Suddenly, Ana Mari Cauce walks into the restaurant!

You realize that you should serve her as soon as possible (to gain political influence
or so that she leaves the restaurant as soon as possible), and realize other
celebrities (CSE 373 staff) could also arrive soon. Your new food management
system should rank customers and let us know which food order we should work on
next (the most prioritized thing).

Priority Queue ADT
Min Priority Queue ADT

removeMin() – returns the element
with the smallest priority, removes
it from the collection

state

behavior

Set of comparable values
- Ordered based on “priority”

peekMin() – find, but do not
remove the element with the
smallest priority

add(value) – add a new element
to the collection

Imagine you’re managing a queue of food orders at a
restaurant, which normally takes food orders first-come-
first-served. But suddenly, Ana Marie Cauce walks into
the restaurant. You know that you should server her as
soon as possible (to either suck up or kick her out of the
restaurant), and realize other celebrities (CSE 373 staff)
could also arrive soon. Your new food management
system should rank customers and let us know which
food order we should work on next (the most prioritized
thing).

Other uses:
• Well-designed printers
• Huffman Coding (see in CSE 143 last hw)
• Sorting algorithms
• Graph algorithms CSE 332 SU 18 - ROBBIE WEBER 13

Priority Queue ADT

CSE 373 SP 18 - KASEY CHAMPION 14

Min Priority Queue ADT

removeMin() – returns the
element with the smallest
priority, removes it from the
collection

state

behavior

Set of comparable values
- Ordered based on
“priority”

peekMin() – find, but do
not remove the element
with the smallest priority
add(value) – add a new
element to the collection

Max Priority Queue ADT

removeMax() – returns the
element with the largest
priority, removes it from the
collection

state

behavior

Set of comparable values
- Ordered based on
“priority”

peekMax() – find, but do
not remove the element
with the largest priority
add(value) – add a new
element to the collection

If a Queue is “First-In-First-Out” (FIFO) Priority
Queues are “Most-Important-Out-First”

Items in Priority Queue must be comparable –
The data structure will maintain some amount of
internal sorting, in a sort of similar way to
BSTs/AVLs

Implementing Priority Queues: Take I

Implementation add removeMin Peek

Unsorted Array

Linked List (sorted)

AVL Tree

Maybe we already know how to implement a priority queue.
How long would removeMin and peek take with these data structures?

For Array implementations, assume you do not need to resize.
Other than this assumption, do worst case analysis. CSE 332 SU 18 - ROBBIE WEBER 15

Implementing Priority Queues: Take I

Implementation add removeMin Peek

Unsorted Array Θ(1) Θ(𝑛) Θ(𝑛)

Linked List (sorted) Θ(𝑛) Θ(1) Θ(1)

AVL Tree Θ(log 𝑛) Θ(log 𝑛) Θ(log 𝑛)

Maybe we already know how to implement a priority queue.
How long would removeMin and peek take with these data structures?

For Array implementations, assume you do not need to resize.
Other than this assumption, do worst case analysis.

CSE 332 SU 18 - ROBBIE WEBER 16

Implementing Priority Queues: Take I

Implementation add removeMin Peek

Unsorted Array Θ(1) Θ(𝑛) Θ 𝑛 Θ(1)

Linked List (sorted) Θ(𝑛) Θ(1) Θ(1)

AVL Tree Θ(log 𝑛) Θ(log 𝑛) Θ(log 𝑛) Θ(1)

Maybe we already know how to implement a priority queue.
How long would removeMin and peek take with these data structures?

Add a field to keep track of the min.
Update on every insert or remove.

CSE 332 SU 18 - ROBBIE WEBER 17

AVL Trees are our baseline – let’s look at what computer
scientists came up with as an alternative, analyze that, and
then come back to AVL Tree as an option later

Review: Binary Search Trees

A Binary Search Tree is a binary tree with the following invariant: for every node with value k
in the BST:
- The left subtree only contains values <k
- The right subtree only contains values >k

18

class BSTNode<Value> {
Value v;
BSTNode left;
BSTNode right;

}

9

5 17

8 311

Reminder: the BST ordering applies recursively to the
entire subtree

Heaps
Idea:
In a BST, we organized the data to find anything quickly. (go left or right to find a value
deeper in the tree)
Now we just want to find the smallest things fast, so let’s write a different invariant:

In particular, the smallest node is at the root!
- Super easy to peek now!

Do we need more invariants?

Heap invariant
Every node is less than or equal to both of its children.

6 5

4

8 7373

4

5

6

7

Heaps
With the current definition we could still have degenerate trees. From our BST / AVL
intuition, we know that degenerate trees take a long time to traverse from root à leaf, so
we want to avoid these tree structures.
The BST invariant was a bit complicated to maintain.
- Because we had to make sure when we inserted we could maintain the exact BST structure where nodes to the

left are less than, nodes to the right are greater than…
- The heap invariant is looser than the BST invariant.
- Which means we can make our structure invariant stricter.

A tree is complete if:
- Every row, except possibly the last, is completely full.
- The last row is filled from left to right (no “gap”)

Heap structure invariant:
A heap is always a complete tree.

2

58

46

9

5

4

98

6 5

4

Binary Heap invariants summary
One flavor of heap is a binary heap.
1. Binary Tree: every node has at most 2
children
2. Heap invariant: every node is smaller
than (or equal to) its children

CSE 373 SP 18 - KASEY CHAMPION 21

8

9 10 2

4 5

3

6 7

1

3. Heap structure invariant: Each level is
“complete” meaning it has no “gaps”
- Heaps are filled up left to right

22

36 47

2

4

8 9 10

3

1

5

This is a big idea!
(heap invariants!)

Self Check - Are these valid heaps?

CSE 373 SP 18 - KASEY CHAMPION 22

Binary Heap Invariants:
1. Binary Tree
2. Heap
3. Complete

2

3

5

7 8

4

9 11 10

7

9 8

5

6

4

3

7

1

6

INVALID

INVALID

VALID

Heap heights
A binary heap bounds our height at Theta(log(n)) because it’s complete – and it’s actually a
little stricter and better than AVL.

4

5 8

7

10

2

9

11 13

This means the runtime to
traverse from root to leaf or leaf
to root will be log(n) time.

Questions?
Priority Queue ADT
Priority Queue possible implementations
Heap invariants
Heap height

Priority Queue / heaps roadmap
- PriorityQueue ADT
- PriorityQueue implementations with current toolkit
- Binary Heap idea + invariants
- Binary Heap methods

- Binary Heap implementation details

Implementing peekMin()

CSE 373 SP 18 - KASEY CHAMPION 26

4

5 8

7

10

2

9

11 13

Runtime: 𝚯(1)

Implementing removeMin()

CSE 373 SP 18 - KASEY CHAMPION 27

4

5 8

7

10

2

9

11 13

4

5 8

7

10

13

9

11

Structure invariant restored, heap invariant broken

1.) Return min
2.) replace with bottom level right-most node

Implementing removeMin() - percolateDown

CSE 373 SP 18 - KASEY CHAMPION 28

4

5 8

7

10

13

9

11

4

135

13

13

11

Recursively swap parent with smallest child
until parent is smaller than both children
(or we’re at a leaf).

3.) percolateDown()

Structure invariant restored, heap invariant restored

What’s the worst-case
running time?
Have to:
Find last element
Move it to top spot
Swap until invariant restored
(how many times do we
have to swap?)

this is why we want to keep the
height of the tree small! The
height of these tree structures
(BST, AVL, heaps) directly
correlates with the worst case
runtimes

This is a big idea! (height of
all these tree DS correlates w

worst case runtimes – we
want to design our trees to

have reasonably small
height!)

Practice: removeMin()

CSE 373 SP 18 - KASEY CHAMPION 29

10

17 14

9

11

5

13

20 2216 15 2419 18

18

18

9

18

11

1.) Remove min node
2.) replace with bottom level right-most
node
3.) percolateDown - Recursively swap
parent with smallest child
until parent is smaller than both children
(or we’re at a leaf).

Why does percolateDown swap with the smallest child instead of just any child?

If we swap 13 and 7, the heap invariant isn’t restored!
7 is greater than 4 (it’s not the smallest child!) so it will violate the invariant.

4

5 8

7

10

13

9

11

Implementing add()
add() Algorithm:
-Insert a node on the bottom
level that ensure no gaps

-Fix heap invariant by percolate
UP

i.e. swap with parent,
until your parent is
smaller than you
(or you’re the root).

CSE 373 19 SP - KASEY CHAMPION 31

4

5 8

7

10

2

9

11 13 3

3

8

3

4

Worst case runtime is similar to removeMin and percolateDown – might have to do log(n) swaps, so the
worst-case runtime is Theta(log(n))

Practice: Building a minHeap
Construct a Min Binary Heap by adding the following values in this order:

5, 10, 15, 20, 7, 2

CSE 373 SP 18 - KASEY CHAMPION 32

Min Binary Heap Invariants
1. Binary Tree – each node has at most 2 children
2. Min Heap – each node’s children are larger than itself
3. Level Complete - new nodes are added from left to right completely filling each

level before creating a new one

10

20 7

15

2

5

percolateUp!

7

10

percolateUp!

2

15

percolateUp!

2

5

Add() Algorithm:
- 1.) Insert a node on the bottom

level that ensures no gaps
- 2.)Fix heap invariant by

percolate UP
i.e. swap with parent,
until your parent is
smaller than you
(or you’re the root).

minHeap runtimes
removeMin():
- remove root node
- Find last node in tree and swap to top level
- Percolate down to fix heap invariant

CSE 373 SP 18 - KASEY CHAMPION 33

add():
- Insert new node into next available spot
- Percolate up to fix heap invariant

Finding the last node/next available spot is the hard part.
You can do it in Θ(log 𝑛) time on complete trees, with some extra class variables…
But it’s NOT fun

And there’s a much better way!

Implement Heaps with an array

CSE 373 19 SP - KASEY CHAMPION 34

I

A

B

D

H

C

K

E

J

F

L

G

0 1 2 3 4 5 6 7 8 9 10 11 12 13

A B C D E F G H I J K L

Fill array in level-order from left to right

We map our binary-tree
representation of a heap into an
array implementation where you fill
in the array in level-order from left
to right.

The array implementation of a heap
is what people actually implement,
but the tree drawing is how to think
of it conceptually. Everything
we’ve discussed about the tree
representation still is true!

Implement Heaps with an array

CSE 373 19 SP - KASEY CHAMPION 35

I

A

B

D

H

C

K

E

J

F

L

G

0 1 2 3 4 5 6 7 8 9 10 11 12 13

A B C D E F G H I J K L

Fill array in level-order from left to right

How do we find the minimum node?

How do we find the last node?

How do we find the next open space?

How do we find a node’s left child?

How do we find a node’s right child?

How do we find a node’s parent?

𝑝𝑎𝑟𝑒𝑛𝑡 𝑖 =
𝑖 − 1
2

𝑙𝑒𝑓𝑡𝐶ℎ𝑖𝑙𝑑 𝑖 = 2𝑖 + 1

𝑟𝑖𝑔ℎ𝑡𝐶ℎ𝑖𝑙𝑑 𝑖 = 2𝑖 + 2

𝑝𝑒𝑒𝑘𝑀𝑖𝑛() = 𝑎𝑟𝑟[0]

𝑙𝑎𝑠𝑡𝑁𝑜𝑑𝑒() = 𝑎𝑟𝑟[𝑠𝑖𝑧𝑒 − 1]

𝑜𝑝𝑒𝑛𝑆𝑝𝑎𝑐𝑒() = 𝑎𝑟𝑟[𝑠𝑖𝑧𝑒]

Implement Heaps with an array

CSE 373 19 SP - KASEY CHAMPION 36

I

A

B

D

H

C

K

E

J

F

L

G

0 1 2 3 4 5 6 7 8 9 10 11 12 13

/ A B C D E F G H I J K L

Fill array in level-order from left to right

How do we find the minimum node?

How do we find the last node?

How do we find the next open space?

How do we find a node’s left child?

How do we find a node’s right child?

How do we find a node’s parent?

𝑝𝑎𝑟𝑒𝑛𝑡 𝑖 =
𝑖
2

𝑙𝑒𝑓𝑡𝐶ℎ𝑖𝑙𝑑 𝑖 = 2𝑖

𝑟𝑖𝑔ℎ𝑡𝐶ℎ𝑖𝑙𝑑 𝑖 = 2𝑖

𝑝𝑒𝑒𝑘𝑀𝑖𝑛() = 𝑎𝑟𝑟[1]

𝑙𝑎𝑠𝑡𝑁𝑜𝑑𝑒() = 𝑎𝑟𝑟[𝑠𝑖𝑧𝑒]

𝑜𝑝𝑒𝑛𝑆𝑝𝑎𝑐𝑒() = 𝑎𝑟𝑟[𝑠𝑖𝑧𝑒 + 1]

Heap Implementation Runtimes

CSE 373 SP 18 - KASEY CHAMPION 37

E

A

B

D

C

F

0 1 2 3 4 5 6 7

A B C D E F

Implementation add removeMin Peek

Array-based
heap

worst: Θ(log 𝑛)
in-practice: Θ(1)

worst: Θ(log 𝑛)
in−practice: Θ(log 𝑛)

Θ(1)

We’ve matched the asymptotic worst-case behavior of
AVL trees.

But we’re actually doing better!

- The constant factors for array accesses are better.
- The tree can be a constant factor shorter because of
stricter height invariants.
- In-practice case for add is really good.
- A heap is MUCH simpler to implement.

Are heaps always better? AVL vs Heaps
- The really amazing things about heaps over AVL implementations are the constant factors
(e.g. 1.2n instead of 2n) and the sweet sweet Theta(1) in-practice `add` time.

- The really amazing things about AVL implementations over heaps is that AVL trees are
absolutely sorted, and they guarantee worst-case be able to find (contains/get) in
Theta(log(n)) time.

If heaps have to implement methods like contains/get/ (more generally: finding a particular
value inside the data structure) – it pretty much just has to loop through the array and incur
a worst case Theta(n) runtime.
Heaps are stuck at Theta(n) runtime and we can’t do anything more clever…. aha, just
kidding.. unless…?

Relevant hint for project 3:
- When coming up with data structures, we can actually combine them with existing tools to
improve our algorithms and runtimes. We can improve the worst-case runtime of
get/contains to be a lot better than Theta(n) time depending on how we have our heap
utilize an extra data-structure.

- For project 3, you should use an additional data structure to improve the runtime for
changePriority(). It does not affect the correctness of your PQ at all (i.e. you can implement it
correctly without the additional data structure). Please use a built-in Java collection instead
of implementing your own (although you could in-theory).
-For project 3, feel free to try the following development strategy for the changePriority
method
- implement changePriority without regards to efficiency (without the extra data structure) at first
- then, analyze your code’s runtime and figure out which parts are inefficient
- reflect on the data structures we’ve learned and see how any of them could be useful in improving the slow

parts in your code

More Priority Queue Operations

More Operations
We’ll use priority queues for lots of things
later in the quarter.
Let’s add them to our ADT now.
Some of these will be asymptotically faster for
a heap than an AVL tree!

BuildHeap(elements 𝑒E, … , 𝑒F)
Given 𝑛 elements, create a heap
containing exactly those 𝑛 elements.

Min Priority Queue ADT

removeMin() – returns the element
with the smallest priority, removes
it from the collection

state

behavior

Set of comparable values
- Ordered based on “priority”

peekMin() – find, but do not
remove the element with the
smallest priority

add(value) – add a new element
to the collection

Even More Operations
BuildHeap(elements 𝑒!, … , 𝑒") – Given 𝑛 elements, create a heap
containing exactly those 𝑛 elements.

Try 1: Just call insert 𝑛 times.
Worst case running time?
𝑛 calls, each worst case Θ(log 𝑛). So it’s Θ(𝑛 log 𝑛) right?
That proof isn’t valid. There’s no guarantee that we’re getting the worst
case every time!
Proof is right if we just want an 𝑂() bound
-But it’s not clear if it’s tight.

CSE 332 - SU 18 ROBBIE WEBER 42

BuildHeap Running Time
Let’s try again for a Theta bound.
The problem last time was making sure we always hit the worst case.
If we insert the elements in decreasing order we will!
-Every node will have to percolate all the way up to the root.

So we really have 𝑛 Θ(log 𝑛) operations. QED.

There’s still a bug with this proof!

CSE 332 - SU 18 ROBBIE WEBER 43

BuildHeap Running Time (again)
Let’s try once more.
Saying the worst case was decreasing order was a good start.
What are the actual running times?
It’s Θ(ℎ), where ℎ is the current height.
-The tree isn’t height log 𝑛 at the beginning.

But most nodes are inserted in the last two levels of the tree.
-For most nodes, ℎ is Θ log 𝑛 .

The number of operations is at least
"
#
⋅ Ω(log 𝑛) = Ω 𝑛 log 𝑛 .

CSE 332 - SU 18 ROBBIE WEBER 44

Where Were We?
We were trying to design an algorithm for:
BuildHeap(elements 𝑒!, … , 𝑒") – Given 𝑛 elements, create a heap
containing exactly those 𝑛 elements.
Just inserting leads to a Θ(𝑛 log 𝑛) algorithm in the worst case.
Can we do better?

CSE 332 - SU 18 ROBBIE WEBER 45

Can We Do Better?
What’s causing the 𝑛 insert strategy to take so long?
Most nodes are near the bottom, and they might need to percolate all
the way up.
What if instead we dumped everything in the array and then
tried to percolate things down to fix the invariant?

Seems like it might be faster
-The bottom two levels of the tree have Ω(𝑛) nodes, the top two have 3 nodes.
-Maybe we can make “most nodes” go a constant distance.

CSE 332 - SU 18 ROBBIE WEBER 46

Is It Really Faster?
Assume the tree is perfect
- the proof for complete trees just gives a different constant factor.

percolateDown() doesn’t take log 𝑛 steps each time!
Half the nodes of the tree are leaves

-Leaves run percolate down in constant time
1/4 of the nodes have at most 1 level to travel
1/8 the nodes have at most 2 levels to travel
etc…

work(n) ≈ !
"
⋅ 1 + !

#
⋅ 2 + !

$
⋅ 3 + ⋯+ 1 ⋅ (log 𝑛)

CSE 373 SP 18 - KASEY CHAMPION 47

Closed form Floyd’s buildHeap
𝑛/2⋅ 1 +𝑛/4⋅ 2 +𝑛/8⋅ 3 +⋯+1⋅(log 𝑛)

factor out n

work(n) ≈𝑛 !
"
+ "

#
+ $

%
+⋯+ &'()

)

CSE 373 SP 18 - KASEY CHAMPION 48

𝑤𝑜𝑟𝑘 𝑛 ≈ 𝑛O
*+!

?
𝑖
2*

𝑤𝑜𝑟𝑘 𝑛 ≤ 𝑛O
*+!

&'(- 3
2

*

2*
𝑖𝑓 − 1 < 𝑥 < 1 𝑡ℎ𝑒𝑛O

*+.

/

𝑥* =
1

1 − 𝑥 = 𝑥

Infinite geometric series

𝑤𝑜𝑟𝑘 𝑛 ≈ 𝑛 O
*+!

&'(-
𝑖
2*
≤ 𝑛O

*+.

/
3
4

*

= 𝑛 ∗ 4

find a pattern -> powers of 2 work(n) ≈ 𝑛 !
"!
+ "

""
+ $

"#
+⋯+ &'()

"$%& '

? = upper limit should give last term

Floyd’s buildHeap runs in O(n) time!

Summation!

We don’t have a summation for this! Let’s make it look more like a summation we do know.

Floyd’s BuildHeap
Ok, it’s really faster.
But can we make it work?
It’s not clear what order to call the percolateDown’s in.
Should we start at the top or bottom? Will one percolateDown on
each element be enough?

CSE 332 - SU 18 ROBBIE WEBER 49

Floyd’s buildHeap algorithm

CSE 373 SP 18 - KASEY CHAMPION 50

8

12

5

3

4

11

7

10

15

2

6

9

0 1 2 3 4 5 6 7 8 9 10 11 12 13

4 8 15 7 6

1. Add all values to back of array
2. percolateDown(parent) starting at last index

Build a tree with the values:
12, 5, 11, 3, 10, 2, 9, 4, 8, 15, 7, 6

12 5 11 3 10 2 9

Floyd’s buildHeap algorithm

CSE 373 SP 18 - KASEY CHAMPION 51

8

12

5

3

4

11

7

10

15

2

6

9

0 1 2 3 4 5 6 7 8 9 10 11 12 13

4 8 15 7 6

1. Add all values to back of array
2. percolateDown(parent) starting at last index

1. percolateDown level 4
2. percolateDown level 3

Build a tree with the values:
12, 5, 11, 3, 10, 2, 9, 4, 8, 15, 7, 6

12 5 11 3 10 2 9

7

10

Floyd’s buildHeap algorithm

CSE 373 SP 18 - KASEY
CHAMPION 52

8

12

5

3

4

11

7

10

15

2

6

9

0 1 2 3 4 5 6 7 8 9 10 11 12 13

4 8 157 6

1. Add all values to back of array
2. percolateDown(parent) starting at last index

1. percolateDown level 4
2. percolateDown level 3
3. percolateDown level 2

Build a tree with the values:
12, 5, 11, 3, 10, 2, 9, 4, 8, 15, 7, 6

12 5 11 3 102 9

7

10

2

11

3

5 6

11

keep percolating down
like normal here and swap 5 and 4

Floyd’s buildHeap algorithm

CSE 373 SP 18 - KASEY
CHAMPION 53

8

12

5

3

5

11

7

10

15

2

6

9

0 1 2 3 4 5 6 7 8 9 10 11 12 13

5 8 157 6

1. Add all values to back of array
2. percolateDown(parent) starting at last index

1. percolateDown level 4
2. percolateDown level 3
3. percolateDown level 2
4. percolateDown level 1

Build a tree with the values:
12, 5, 11, 3, 10, 2, 9, 4, 8, 15, 7, 6

12 4 113 102 9

7

10

23

4

2

12

6

11

Floyd’s buildHeap algorithm

CSE 373 SP 18 - KASEY
CHAMPION 54

8

12

5

3

5

11

7

10

15

2

6

9

0 1 2 3 4 5 6 7 8 9 10 11 12 13

5 8 1576

1. Add all values to back of array
2. percolateDown(parent) starting at last index

1. percolateDown level 4
2. percolateDown level 3
3. percolateDown level 2
4. percolateDown level 1

Build a tree with the values:
12, 5, 11, 3, 10, 2, 9, 4, 8, 15, 7, 6

124 113 102 9

7

10

23

4

2

6

1112

6

11

Even More Operations
These operations will be useful in a few weeks…
IncreaseKey(element,priority) Given an element of the heap and a new, larger
priority, update that object’s priority.
DecreaseKey(element,priority) Given an element of the heap and a new,
smaller priority, update that object’s priority.
Delete(element) Given an element of the heap, remove that element.

Should just be going to the right spot and percolating…
Going to the right spot is the tricky part.
In the programming projects, you’ll use a dictionary to find an element quickly.

CSE 332 - SU 18 ROBBIE WEBER 55

