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You have been asked to create a new system for organizing students in a course and their 
accompanying grades

What type of data will you have?
What are the relationships within the data?

How much data will you have?

Will your data set grow?
Will your data set shrink?

How do you think things will play out?
How likely are best cases?
How likely are worst cases?

Warm Up: Class Gradebook
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What functionality is needed?
What operations need to be supported?

Add students to course
Add grade to student’s record
Update grade already in student’s record
Remove student from course
Check if student is in course
Find specific grade for student

Organize students by name, keep grades in time order…

A couple hundred students, < 20 grades per student

Which operations should be prioritized?

A lot at the beginning,
Not much after that

Lots of add and drops?
Lots of grade updates?
Students with similar identifiers?



Example: Class Gradebook
What data should we use to identify students? (keys)
-Student IDs – unique to each student, no confusion (or collisions)
-Names – easy to use, support easy to produce sorted by name

How should we store each student’s grades? (values)
-Array List – easy to access, keeps order of assignments
-Hash Table – super efficient access, no order maintained

Which data structure is the best fit to store students and their grades?
-Hash Table – student IDs as keys will make access very efficient
-AVL Tree - student names as keys will maintain alphabetical order
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Announcements
P2 due Wednesday
Midterm out this Friday – due 1 week later
- Group assignment
- Open note/ open internet, closed course staff
- intended to take 1 person 1 hour
- Topics:

- ADTs
- Code Modeling
- Big O, Big Theta, Big Omega
- Case Analysis
- Recurrences
- Master Theorem & Tree Method
- Hashing
- BSTs & AVls
- Heaps
- Design Decisions
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Your toolbox so far…
-ADT

- List – flexibility, easy movement of elements within structure
- Stack – optimized for first in last out ordering
- Queue – optimized for first in first out ordering
- Dictionary (Map) – stores two pieces of data at each entry

-Data Structure Implementation
- Array – easy look up, hard to rearrange
- Linked Nodes – hard to look up, easy to rearrange
- Hash Table – constant time look up, no ordering of data
- BST – efficient look up, possibility of bad worst case
- AVL Tree – efficient look up, protects against bad worst case, hard to implement
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<- It’s all about data baby!
SUPER common in comp sci 
- Databases
- Network router tables
- Compilers and Interpreters



Review: Dictionaries
Why are we so obsessed with Dictionaries? 
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Dictionary ADT

put(key, item) add item to 
collection indexed with key
get(key) return item 
associated with key
containsKey(key) return if key 
already in use
remove(key) remove item 
and associated key
size() return count of items

state

behavior

Set of items & keys
Count of items

When dealing with data:
• Adding data to your collection
• Getting data out of your collection
• Rearranging data in your collection

Operation ArrayList LinkedList HashTable BST AVLTree

put(key,value)
best Θ(1) Θ(1) Θ(1) Θ(1) Θ(1)

worst Θ(n) Θ(n) Θ(n) Θ(n) Θ(logn)

get(key)
best Θ(1) Θ(1) Θ(1) Θ(1) Θ(1)

worst Θ(n) Θ(n) Θ(n) Θ(n) Θ(logn)

remove(key)
best Θ(1) Θ(1) Θ(1) Θ(1) Θ(logn)

worst Θ(n) Θ(n) Θ(n) Θ(n) Θ(logn) 



Design Decisions
Before coding can begin engineers must carefully consider the design of their code will organize and 
manage data
Things to consider:
What functionality is needed?
- What operations need to be supported?
- Which operations should be prioritized?

What type of data will you have?
- What are the relationships within the data?
- How much data will you have?
- Will your data set grow?
- Will your data set shrink?

How do you think things will play out?
- How likely are best cases?
- How likely are worst cases?
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Practice: Music Storage
You have been asked to create a new system for organizing songs in a music service. For 
each song you need to store the artist and how many plays that song has. 
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What functionality is needed?
• What operations need to be supported?
• Which operations should be prioritized?

What type of data will you have?
• What are the relationships within the data?
• How much data will you have?
• Will your data set grow?
• Will your data set shrink?

How do you think things will play out?
• How likely are best cases?
• How likely are worst cases?

Update number of plays for a song
Add a new song to an artist’s collection
Add a new artist and their songs to the service
Find an artist’s most popular song
Find service’s most popular artist

more…

Artists need to be associated with their songs, 
songs need t be associated with their play counts
Play counts will get updated a lot
New songs will get added regularly

Some artists and songs will need to be accessed a lot more than others
Artist and song names can be very similar



Practice: Music Storage
How should we store songs and their play counts?
Hash Table – song titles as keys, play count as values, quick access for 
updates
Array List – song titles as keys, play counts as values, maintain order of 
addition to system
How should we store artists with their associated songs?
Hash Table – artist as key, 

Hash Table of their (songs, play counts) as values
AVL Tree of their songs as values

AVL Tree – artists as key, hash tables of songs and counts as values
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Priority Queues

CSE 373 SP 18 - KASEY CHAMPION 10

PriorityQueue<FoodOrder> pq = new PriorityQueue<>();

some motivation for today’s lecture:
§ PQs are a staple of Java’s built-in data structures, commonly used for 

sorting needs
§ Using PQs and knowing their implementations are common technical 

interview subjects
§ You’re implementing one in the next project – so everything you get out of 

today should be useful for that!



Priority Queue / heaps roadmap
- PriorityQueue ADT
- PriorityQueue implementations with current toolkit
- Binary Heap idea + invariants
- Binary Heap methods
- Binary Heap implementation details



A new ADT!
Imagine you’re managing a queue of food orders at a restaurant, which normally 
takes food orders first-come-first-served. 

Suddenly, Ana Mari Cauce walks into the restaurant! 

You realize that you should serve her as soon as possible (to gain political influence 
or so that she leaves the restaurant as soon as possible), and realize other 
celebrities (CSE 373 staff) could also arrive soon.  Your new food management 
system should rank customers and let us know which food order we should work on 
next (the most prioritized thing).



Priority Queue ADT
Min Priority Queue ADT

removeMin() – returns the element 
with the smallest priority, removes 
it from the collection

state

behavior

Set of comparable values
- Ordered based on “priority”

peekMin() – find, but do not 
remove the element with the 
smallest priority

add(value) – add a new element 
to the collection

Imagine you’re managing a queue of food orders at a 
restaurant, which normally takes food orders first-come-
first-served.  But suddenly, Ana Marie Cauce walks into 
the restaurant.  You know that you should server her as 
soon as possible (to either suck up or kick her out of the 
restaurant), and realize other celebrities (CSE 373 staff) 
could also arrive soon.  Your new food management 
system should rank customers and let us know which 
food order we should work on next (the most prioritized 
thing).

Other uses:
• Well-designed printers
• Huffman Coding (see in CSE 143 last hw)
• Sorting algorithms
• Graph algorithms CSE 332 SU 18 - ROBBIE WEBER 13



Priority Queue ADT
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Min Priority Queue ADT

removeMin() – returns the 
element with the smallest
priority, removes it from the 
collection

state

behavior

Set of comparable values
- Ordered based on 
“priority”

peekMin() – find, but do 
not remove the element 
with the smallest priority
add(value) – add a new 
element to the collection

Max Priority Queue ADT

removeMax() – returns the 
element with the largest
priority, removes it from the 
collection

state

behavior

Set of comparable values
- Ordered based on 
“priority”

peekMax() – find, but do 
not remove the element 
with the largest priority
add(value) – add a new 
element to the collection

If a Queue is “First-In-First-Out” (FIFO) Priority 
Queues are “Most-Important-Out-First”

Items in Priority Queue must be comparable –
The data structure will maintain some amount of 
internal sorting, in a sort of similar way to 
BSTs/AVLs



Implementing Priority Queues: Take I

Implementation add removeMin Peek

Unsorted Array

Linked List (sorted)

AVL Tree

Maybe we already know how to implement a priority queue. 
How long would removeMin and peek take with these data structures?

For Array implementations, assume you do not need to resize.
Other than this assumption, do worst case analysis. CSE 332 SU 18 - ROBBIE WEBER 15



Implementing Priority Queues: Take I

Implementation add removeMin Peek

Unsorted Array Θ(1) Θ(𝑛) Θ(𝑛)

Linked List (sorted) Θ(𝑛) Θ(1) Θ(1)

AVL Tree Θ(log 𝑛) Θ(log 𝑛) Θ(log 𝑛)

Maybe we already know how to implement a priority queue. 
How long would removeMin and peek take with these data structures?

For Array implementations, assume you do not need to resize.
Other than this assumption, do worst case analysis.
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Implementing Priority Queues: Take I

Implementation add removeMin Peek

Unsorted Array Θ(1) Θ(𝑛) Θ 𝑛 Θ(1)

Linked List (sorted) Θ(𝑛) Θ(1) Θ(1)

AVL Tree Θ(log 𝑛) Θ(log 𝑛) Θ(log 𝑛) Θ(1)

Maybe we already know how to implement a priority queue. 
How long would removeMin and peek take with these data structures?

Add a field to keep track of the min. 
Update on every insert or remove. 

CSE 332 SU 18 - ROBBIE WEBER 17

AVL Trees are our baseline – let’s look at what computer 
scientists came up with as an alternative, analyze that, and 
then come back to AVL Tree as an option later



Review: Binary Search Trees

A Binary Search Tree is a binary tree with the following invariant: for every node with value k 
in the BST:
- The left subtree only contains values <k
- The right subtree only contains values >k

18

class BSTNode<Value> {
Value v;
BSTNode left;
BSTNode right;

}

9

5 17

8 311

Reminder: the BST ordering applies recursively to the 
entire subtree



Heaps
Idea:
In a BST, we organized the data to find anything quickly. (go left or right to find a value 
deeper in the tree)
Now we just want to find the smallest things fast, so let’s write a different invariant:

In particular, the smallest node is at the root!
- Super easy to peek now!

Do we need more invariants?

Heap invariant
Every node is less than or equal to both of its children.

6 5

4

8 7373

4

5

6

7



Heaps
With the current definition we could still have degenerate trees. From our BST / AVL 
intuition, we know that degenerate trees take a long time to traverse from root à leaf, so 
we want to avoid these tree structures.
The BST invariant was a bit complicated to maintain.
- Because we had to make sure when we inserted we could maintain the exact BST structure where nodes to the 

left are less than, nodes to the right are greater than…
- The heap invariant is looser than the BST invariant. 
- Which means we can make our structure invariant stricter.

A tree is complete if:
- Every row, except possibly the last, is completely full.
- The last row is filled from left to right (no “gap”)

Heap structure invariant:
A heap is always a complete tree.

2
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Binary Heap invariants summary 
One flavor of heap is a binary heap.
1. Binary Tree: every node has at most 2 
children
2. Heap invariant: every node is smaller  
than (or equal to) its children
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8

9 10 2

4 5

3

6 7

1

3. Heap structure invariant: Each level is 
“complete” meaning it has no “gaps”
- Heaps are filled up left to right

22

36 47

2

4

8 9 10

3

1

5

This is a big idea! 
(heap invariants!)



Self Check - Are these valid heaps?
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Binary Heap Invariants:
1. Binary Tree
2. Heap
3. Complete
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7 8

4

9 11 10
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1
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INVALID

INVALID

VALID



Heap heights
A binary heap bounds our height at Theta(log(n)) because it’s complete – and it’s actually a 
little stricter and better than AVL.

4

5 8

7

10

2

9

11 13

This means the runtime to 
traverse from root to leaf or leaf 
to root will be log(n) time. 



Questions?
Priority Queue ADT
Priority Queue possible implementations
Heap invariants
Heap height



Priority Queue / heaps roadmap
- PriorityQueue ADT
- PriorityQueue implementations with current toolkit
- Binary Heap idea + invariants
- Binary Heap methods

- Binary Heap implementation details



Implementing peekMin()
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Runtime: 𝚯(1)



Implementing removeMin()
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Structure invariant restored, heap invariant broken

1.) Return min 
2.) replace with bottom level right-most node 



Implementing removeMin() - percolateDown
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Recursively swap parent with smallest child
until parent is smaller than both children 
(or we’re at a leaf).

3.) percolateDown()

Structure invariant restored, heap invariant restored

What’s the worst-case 
running time?
Have to:
Find last element
Move it to top spot
Swap until invariant restored
(how many times do we 
have to swap?)

this is why we want to keep the 
height of the tree small! The 
height of these tree structures 
(BST, AVL, heaps) directly 
correlates with the worst case
runtimes

This is a big idea! (height of 
all these tree DS correlates w 

worst case runtimes – we 
want to design our trees to 

have reasonably small 
height!)



Practice: removeMin()
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18
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1.) Remove min node
2.) replace with bottom level right-most 
node
3.) percolateDown - Recursively swap 
parent with smallest child
until parent is smaller than both children 
(or we’re at a leaf).



Why does percolateDown swap with the smallest child instead of just any child?

If we swap 13 and 7, the heap invariant isn’t restored! 
7 is greater than 4 (it’s not the smallest child!) so it will violate the invariant.

4

5 8

7

10

13

9

11



Implementing add()
add() Algorithm:
-Insert a node on the bottom 
level that ensure no gaps

-Fix heap invariant by percolate 
UP

i.e. swap with parent, 
until your parent is 
smaller than you
(or you’re the root).
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Worst case runtime is similar to removeMin and percolateDown – might have to do log(n) swaps, so the 
worst-case runtime is Theta(log(n))



Practice: Building a minHeap
Construct a Min Binary Heap by adding the following values in this order:

5, 10, 15, 20, 7, 2
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Min Binary Heap Invariants
1. Binary Tree – each node has at most 2 children
2. Min Heap – each node’s children are larger than itself
3. Level Complete - new nodes are added from left to right completely filling each 

level before creating a new one

10

20 7

15

2

5

percolateUp!

7

10

percolateUp!

2

15

percolateUp!

2

5

Add() Algorithm:
- 1.) Insert a node on the bottom 

level that ensures no gaps
- 2. )Fix heap invariant by 

percolate UP
i.e. swap with parent, 
until your parent is 
smaller than you
(or you’re the root).



minHeap runtimes
removeMin():
- remove root node
- Find last node in tree and swap to top level
- Percolate down to fix heap invariant
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add():
- Insert new node into next available spot
- Percolate up to fix heap invariant

Finding the last node/next available spot is the hard part.
You can do it in Θ(log 𝑛) time on complete trees, with some extra class variables…
But it’s NOT fun

And there’s a much better way!



Implement Heaps with an array

CSE 373 19 SP - KASEY CHAMPION 34

I

A

B

D

H

C

K

E

J

F

L

G

0 1 2 3 4 5 6 7 8 9 10 11 12 13

A B C D E F G H I J K L

Fill array in level-order from left to right

We map our binary-tree 
representation of a heap into an 
array implementation where you fill 
in the array in level-order from left 
to right.

The array implementation of a heap 
is what people actually implement, 
but the tree drawing is how to think 
of it conceptually.   Everything 
we’ve discussed about the tree 
representation still is true!



Implement Heaps with an array
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I

A

B

D

H

C

K

E

J

F

L

G

0 1 2 3 4 5 6 7 8 9 10 11 12 13

A B C D E F G H I J K L

Fill array in level-order from left to right

How do we find the minimum node?

How do we find the last node?

How do we find the next open space?

How do we find a node’s left child?

How do we find a node’s right child?

How do we find a node’s parent?

𝑝𝑎𝑟𝑒𝑛𝑡 𝑖 =
𝑖 − 1
2

𝑙𝑒𝑓𝑡𝐶ℎ𝑖𝑙𝑑 𝑖 = 2𝑖 + 1

𝑟𝑖𝑔ℎ𝑡𝐶ℎ𝑖𝑙𝑑 𝑖 = 2𝑖 + 2

𝑝𝑒𝑒𝑘𝑀𝑖𝑛() = 𝑎𝑟𝑟[0]

𝑙𝑎𝑠𝑡𝑁𝑜𝑑𝑒() = 𝑎𝑟𝑟[𝑠𝑖𝑧𝑒 − 1]

𝑜𝑝𝑒𝑛𝑆𝑝𝑎𝑐𝑒() = 𝑎𝑟𝑟[𝑠𝑖𝑧𝑒]



Implement Heaps with an array

CSE 373 19 SP - KASEY CHAMPION 36

I

A

B

D

H

C

K

E

J

F

L

G

0 1 2 3 4 5 6 7 8 9 10 11 12 13

/ A B C D E F G H I J K L

Fill array in level-order from left to right

How do we find the minimum node?

How do we find the last node?

How do we find the next open space?

How do we find a node’s left child?

How do we find a node’s right child?

How do we find a node’s parent?

𝑝𝑎𝑟𝑒𝑛𝑡 𝑖 =
𝑖
2

𝑙𝑒𝑓𝑡𝐶ℎ𝑖𝑙𝑑 𝑖 = 2𝑖

𝑟𝑖𝑔ℎ𝑡𝐶ℎ𝑖𝑙𝑑 𝑖 = 2𝑖

𝑝𝑒𝑒𝑘𝑀𝑖𝑛() = 𝑎𝑟𝑟[1]

𝑙𝑎𝑠𝑡𝑁𝑜𝑑𝑒() = 𝑎𝑟𝑟[𝑠𝑖𝑧𝑒]

𝑜𝑝𝑒𝑛𝑆𝑝𝑎𝑐𝑒() = 𝑎𝑟𝑟[𝑠𝑖𝑧𝑒 + 1]



Heap Implementation Runtimes
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E

A

B

D

C

F

0 1 2 3 4 5 6 7

A B C D E F

Implementation add removeMin Peek

Array-based 
heap

worst: Θ(log 𝑛)
in-practice: Θ(1)

worst: Θ(log 𝑛)
in−practice: Θ(log 𝑛)

Θ(1)

We’ve matched the asymptotic worst-case behavior of 
AVL trees. 

But we’re actually doing better!

- The constant factors for array accesses are better.
- The tree can be a constant factor shorter because of 
stricter height invariants.
- In-practice case for add is really good.
- A heap is MUCH simpler to implement. 



Are heaps always better? AVL vs Heaps
- The really amazing things about heaps over AVL implementations are the constant factors 
(e.g. 1.2n instead of 2n) and the sweet sweet Theta(1) in-practice `add` time.

- The really amazing things about AVL implementations over heaps is that AVL trees are 
absolutely sorted, and they guarantee worst-case be able to find (contains/get) in 
Theta(log(n)) time.

If heaps have to implement methods like contains/get/ (more generally: finding a particular 
value inside the data structure) – it pretty much just has to loop through the array and incur 
a worst case Theta(n) runtime. 
Heaps are stuck at Theta(n) runtime and we can’t do anything more clever…. aha, just 
kidding.. unless…?



Relevant hint for project 3: 
- When coming up with data structures, we can actually combine them with existing tools to 
improve our algorithms and runtimes.  We can improve the worst-case runtime of 
get/contains to be a lot better than Theta(n) time depending on how we have our heap 
utilize an extra data-structure. 

- For project 3, you should use an additional data structure to improve the runtime for 
changePriority(). It does not affect the correctness of your PQ at all (i.e. you can implement it 
correctly without the additional data structure). Please use a built-in Java collection instead 
of implementing your own (although you could in-theory).
-For project 3, feel free to try the following development strategy for the changePriority
method
- implement changePriority without regards to efficiency (without the extra data structure) at first
- then, analyze your code’s runtime and figure out which parts are inefficient
- reflect on the data structures we’ve learned and see how any of them could be useful in improving the slow 

parts in your code



More Priority Queue Operations



More Operations
We’ll use priority queues for lots of things 
later in the quarter. 
Let’s add them to our ADT now.
Some of these will be asymptotically faster for 
a heap than an AVL tree!

BuildHeap(elements 𝑒E, … , 𝑒F )  
Given 𝑛 elements, create a heap 
containing exactly those 𝑛 elements. 

Min Priority Queue ADT

removeMin() – returns the element 
with the smallest priority, removes 
it from the collection

state

behavior

Set of comparable values
- Ordered based on “priority”

peekMin() – find, but do not 
remove the element with the 
smallest priority

add(value) – add a new element 
to the collection



Even More Operations
BuildHeap(elements 𝑒!, … , 𝑒" ) – Given 𝑛 elements, create a heap 
containing exactly those 𝑛 elements. 

Try 1: Just call insert 𝑛 times.
Worst case running time?
𝑛 calls, each worst case Θ(log 𝑛). So it’s Θ(𝑛 log 𝑛) right?
That proof isn’t valid. There’s no guarantee that we’re getting the worst 
case every time!
Proof is right if we just want an 𝑂() bound
-But it’s not clear if it’s tight.
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BuildHeap Running Time
Let’s try again for a Theta bound. 
The problem last time was making sure we always hit the worst case.
If we insert the elements in decreasing order we will!
-Every node will have to percolate all the way up to the root.

So we really have 𝑛 Θ(log 𝑛) operations. QED. 

There’s still a bug with this proof!
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BuildHeap Running Time (again)
Let’s try once more.
Saying the worst case was decreasing order was a good start.
What are the actual running times?
It’s Θ(ℎ), where ℎ is the current height.
-The tree isn’t height log 𝑛 at the beginning.

But most nodes are inserted in the last two levels of the tree.
-For most nodes, ℎ is Θ log 𝑛 . 

The number of operations is at least
"
#
⋅ Ω(log 𝑛) = Ω 𝑛 log 𝑛 .
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Where Were We?
We were trying to design an algorithm for:
BuildHeap(elements 𝑒!, … , 𝑒" ) – Given 𝑛 elements, create a heap 
containing exactly those 𝑛 elements. 
Just inserting leads to a Θ(𝑛 log 𝑛) algorithm in the worst case. 
Can we do better?
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Can We Do Better?
What’s causing the 𝑛 insert strategy to take so long?
Most nodes are near the bottom, and they might need to percolate all 
the way up. 
What if instead we dumped everything in the array and then 
tried to percolate things down to fix the invariant?

Seems like it might be faster
-The bottom two levels of the tree have Ω(𝑛) nodes, the top two have 3 nodes.
-Maybe we can make “most nodes” go a constant distance.
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Is It Really Faster?
Assume the tree is perfect
- the proof for complete trees just gives a different constant factor.

percolateDown() doesn’t take log 𝑛 steps each time!
Half the nodes of the tree are leaves

-Leaves run percolate down in constant time
1/4 of the nodes have at most 1 level to travel
1/8 the nodes have at most 2 levels to travel
etc…

work(n) ≈ !
"
⋅ 1 + !

#
⋅ 2 + !

$
⋅ 3 + ⋯+ 1 ⋅ (log 𝑛)
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Closed form Floyd’s buildHeap
𝑛/2⋅ 1 +𝑛/4⋅ 2 +𝑛/8⋅ 3 +⋯+1⋅(log 𝑛)

factor out n

work(n) ≈𝑛 !
"
+ "

#
+ $

%
+⋯+ &'( )

)
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𝑤𝑜𝑟𝑘 𝑛 ≈ 𝑛O
*+!

?
𝑖
2*

𝑤𝑜𝑟𝑘 𝑛 ≤ 𝑛O
*+!

&'(- 3
2

*

2*
𝑖𝑓 − 1 < 𝑥 < 1 𝑡ℎ𝑒𝑛O

*+.

/

𝑥* =
1

1 − 𝑥 = 𝑥

Infinite geometric series

𝑤𝑜𝑟𝑘 𝑛 ≈ 𝑛 O
*+!

&'(-
𝑖
2*
≤ 𝑛O

*+.

/
3
4

*

= 𝑛 ∗ 4

find a pattern -> powers of 2 work(n) ≈ 𝑛 !
"!
+ "

""
+ $

"#
+⋯+ &'( )

"$%& '

? = upper limit should give last term

Floyd’s buildHeap runs in O(n) time!

Summation!

We don’t have a summation for this! Let’s make it look more like a summation we do know.



Floyd’s BuildHeap
Ok, it’s really faster. 
But can we make it work?
It’s not clear what order to call the percolateDown’s in.
Should we start at the top or bottom? Will one percolateDown on 
each element be enough?
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Floyd’s buildHeap algorithm
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8

12

5

3

4

11

7

10

15

2

6

9

0 1 2 3 4 5 6 7 8 9 10 11 12 13

4 8 15 7 6

1. Add all values to back of array
2. percolateDown(parent) starting at last index

Build a tree with the values:
12, 5, 11, 3, 10, 2, 9, 4, 8, 15, 7, 6

12 5 11 3 10 2 9



Floyd’s buildHeap algorithm

CSE 373 SP 18 - KASEY CHAMPION 51

8

12

5

3

4

11

7

10

15

2

6

9

0 1 2 3 4 5 6 7 8 9 10 11 12 13

4 8 15 7 6

1. Add all values to back of array
2. percolateDown(parent) starting at last index

1. percolateDown level 4
2. percolateDown level 3

Build a tree with the values:
12, 5, 11, 3, 10, 2, 9, 4, 8, 15, 7, 6

12 5 11 3 10 2 9

7

10



Floyd’s buildHeap algorithm
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8

12

5

3

4

11

7

10

15

2

6

9

0 1 2 3 4 5 6 7 8 9 10 11 12 13

4 8 157 6

1. Add all values to back of array
2. percolateDown(parent) starting at last index

1. percolateDown level 4
2. percolateDown level 3
3. percolateDown level 2

Build a tree with the values:
12, 5, 11, 3, 10, 2, 9, 4, 8, 15, 7, 6

12 5 11 3 102 9

7

10

2

11

3

5 6

11

keep percolating down
like normal here and swap 5 and 4



Floyd’s buildHeap algorithm
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8

12

5

3

5

11

7

10

15

2

6

9

0 1 2 3 4 5 6 7 8 9 10 11 12 13

5 8 157 6

1. Add all values to back of array
2. percolateDown(parent) starting at last index

1. percolateDown level 4
2. percolateDown level 3
3. percolateDown level 2
4. percolateDown level 1

Build a tree with the values:
12, 5, 11, 3, 10, 2, 9, 4, 8, 15, 7, 6

12 4 113 102 9

7

10

23

4

2

12

6

11



Floyd’s buildHeap algorithm
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8

12

5

3

5

11

7

10

15

2

6

9

0 1 2 3 4 5 6 7 8 9 10 11 12 13

5 8 1576

1. Add all values to back of array
2. percolateDown(parent) starting at last index

1. percolateDown level 4
2. percolateDown level 3
3. percolateDown level 2
4. percolateDown level 1

Build a tree with the values:
12, 5, 11, 3, 10, 2, 9, 4, 8, 15, 7, 6

124 113 102 9

7

10

23

4

2

6

1112

6

11



Even More Operations
These operations will be useful in a few weeks…
IncreaseKey(element,priority) Given an element of the heap and a new, larger 
priority, update that object’s priority.
DecreaseKey(element,priority) Given an element of the heap and a new, 
smaller priority, update that object’s priority.
Delete(element) Given an element of the heap, remove that element.

Should just be going to the right spot and percolating…
Going to the right spot is the tricky part.
In the programming projects, you’ll use a dictionary to find an element quickly.
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