
Lecture 11: Self
Balancing Trees

CSE 373: Data Structures and
Algorithms

1

Warm Up

2CSE 373 20 SP – CHAMPION & CHUN

6

3 8

2 4 10

12 1151

7

Binary Tree?

BST Invariant?

Balanced?

Yes

No

Yes

Administrivia
Midterm Assessment
- Goes live Friday 8:30am PDT on Canvas
- Due Sunday 8:30am PDT (NO LATE ASSIGNMENTS ACCEPTED)
- Logistics

- Individual assignment
- Open notes
- Piazza going “private” for 48 hours
- TAs won’t be able to answer questions about exam, section problems or exercises for 48 hours
- Kasey & Zach will be available to answer questions – zoom call during PDT business hours Friday & Saturday

Project 2 due Wednesday April 29th

Exercise 2 due Friday April 24th

3CSE 373 20 SP – CHAMPION & CHUN

Seriously

Questions

4CSE 373 20 SP – CHAMPION & CHUN

Review BST Extremes
Here are two different extremes our BST could end up in:

Perfectly balanced – for every node, its
descendants are split evenly between
left and right subtrees.

Degenerate – for every node, all of its
descendants are in the right subtree.

9

2

1 3

6

5 7

4

8

10

12

15

14

11 13

0

1

2

3

15

...

Review Can we do better?
Key observation: what ended up being important was the height of the tree!
- Height: the number of edges contained in the longest path from root node to any leaf node
- In the worst case, this is the number of recursive calls we’ll have to make

If we can limit the height of our tree, the BST invariant can take care of quickly finding
the target
- How do we limit?
- Let’s try to find an invariant that forces the height to be short

INVARIANT

INVA
RIAN

TIN
VA
RI
AN
T

IN
VA
RI
AN
T

In Search of a “Short BST” Invariant: Take 1
What about this?

BST Height Invariant
The height of the tree must not exceed Θ(logn)

IN
V
A
R
IA
N
T

public void insertBST(node, key) {
...

}

INVARIANT

INVARIANT

• This is technically what we want (would be amazing if true on entry)
• But how do we implement it so it’s true on exit?

- Should the insertBST method rebuild the entire tree balanced every time? This
invariant is too broad to have a clear implementation

• Invariants are tools – more of an art than a science, but we want to
pick one that is specific enough to be maintainable

??

Invariant Takeaways

In some ways, this makes sense: only
restricting a constant number of nodes
won’t help us with the asymptotic
runtime L

Forcing things to be exactly equal is
too difficult to maintain

Need requirements everywhere, not
just at root

Fortunately, it’s a two-way street: from the
same intuition, it makes sense that a
constant “amount of imbalance” wouldn’t
affect the runtime J

AVL Invariant
For every node, the height of its left and right
subtrees may only differ by at most 1

IN
V
A
R
IA
N
T

The AVL Invariant
Will this have the effect we want?
- If maintained, our tree will have height
𝜣(𝒍𝒐𝒈𝒏)

- Fantastic! Limiting the height avoids the
Θ(𝑛) worst case

Can we maintain this?
- We’ll need a way to fix this property when

violated in insert and delete

AVL Invariant
For every node, the height of its left and right
subtrees may only differ by at most 1

IN
V
A
R
IA
N
T

AVL Tree: A Binary Search Tree that also
maintains the AVL Invariant
• Named after Adelson-Velsky and Landis
• But also A Very Lovable Tree!

AVL Trees
AVL Trees must satisfy the following properties:
- binary trees: all nodes must have between 0 and 2 children
- binary search tree: for all nodes, all keys in the left subtree must be smaller and all keys in the right subtree

must be larger than the root node
- balanced: for all nodes, there can be no more than a difference of 1 in the height of the left subtree from the

right. Math.abs(height(left subtree) – height(right subtree)) ≤ 1

AVL stands for Adelson-Velsky and Landis (the inventors of the data structure)

CSE 373 SP 18 - KASEY CHAMPION 10

Measuring Balance
Measuring balance:
For each node, compare the heights of its two sub trees
Balanced when the difference in height between sub trees is no greater than 1

CSE 373 SP 18 - KASEY CHAMPION 11

10

15

12 18

8

7

7
8

7 9

Balanced

Unbalanced

Balanced

Balanced

Is this a valid AVL tree?

CSE 373 SP 18 - KASEY CHAMPION 12

7

4 10

3 9 125

8 11 13

14

2 6

Is it…
- Binary
- BST
- Balanced?

yes
yes
yes

Is this a valid AVL tree?

CSE 373 SP 18 - KASEY CHAMPION 13

6

2 8

1 7 124

9

10 13

11

3 5

Is it…
- Binary
- BST
- Balanced?

yes
yes
no

Height = 2Height = 0

2 Minutes

Maintaining the Invariant

containsKey benefits from
invariant: at worst θ log 𝑛 time
containsKey doesn’t modify
anything, so invariant holds after

public boolean containsKey(node, key) {
// find key

}

INVARIANT

INVARIANT

public boolean insert(node, key) {
// find where key would go
// insert

}

INVARIANT

INVARIANT??

• insert benefits from invariant: at
worst θ log 𝑛 time to find
location for key

• But need to maintain: with great
power comes great responsibility

• How?
- Track heights of subtrees
- Detect any imbalance
- Restore balance

😤😤😤

Insertion
What happens if when we do an insertion, we break the AVL condition?

1

2

3 1

2

3

The AVL rebalances itself!

AVL are a type of “Self Balancing Tree”
CSE 373 19 SU – ROBBIE WEBBER

Fixing AVL Invariant

1

5

8

h:2

h:1

h:0h:0

Fixing AVL Invariant: Left Rotation
In general, we can fix the AVL invariant by performing rotations wherever an
imbalance was created
Left Rotation
- Find the node that is violating the invariant (here,)
- Let it “fall” left to become a left child

1

5

8

h:2

h:1

h:0 1

5

8

h:1

h:0h:0

1

• Apply a left rotation whenever the newly inserted node is located
under the right child of the right child

Left Rotation: More Precisely
Subtrees are okay! They just come along for the ride.
- Only subtree 2 needs to hop – but notice that its relationship with nodes A and B doesn’t change in the

new position!

A

1

2

3 4

B

C

A < 2 2 < B

A

1 2 3 4

B

C

A < 2 2 < B

A

2

NODE

SUBTREE

...

...

3

Right Rotation
Right Rotation
- Mirror image of Left Rotation!

A

1 2

4

B

C

B < 3 3 < A

A

1 2 3 4

B

C

A

2

NODE

SUBTREE

B < 3 3 < A

...

...

20

6

8

1 3

10

9

72

4

5

11

CSE 373 19 SU – ROBBIE WEBBER

21

9

7

4

8

6

5

1 3

2

10

11

CSE 373 19 SU – ROBBIE WEBBER

It Gets More Complicated

1

3

2

Can’t do a left rotation
Do a “right” rotation around 3 first.

1

3

2

Now do a left rotation.

1

2

3

There’s a “kink” in
the tree where the
insertion happened.

CSE 373 19 SU – ROBBIE WEBBER

Not Quite as Straightforward
What if there’s a “kink” in the tree where the insertion happened?
Can we apply a Left Rotation?
- No, violates the BST invariant!

1

5

3

h:2

h:1

h:0 1

5

3

h:1

h:0h:0

Right/Left Rotation
Solution: Right/Left Rotation
- First rotate the bottom to the right, then rotate the whole thing to the left
- Easiest to think of as two steps
- Preserves BST invariant!

1

5

3

h:2

h:1

h:0

1

3

5

h:1

h:0h:0

1

3

5

h:2

h:1

h:0

Right/Left Rotation: More Precisely
Again, subtrees are invited to come with
- Now 2 and 3 both have to hop, but all BST ordering properties are still preserved (see below)

A

1

2 3

4

B

C

A < 2 2 < C

A

1 2 3 4

C

B

A

2

NODE

SUBTREE

C < 3 3 < B A < 2 2 < C C < 3 3 < B

...

...

Left/Right Rotation
Left/Right Rotation
- Mirror image of Right/Left Rotation!

A

1

2 3

4
B

C

B < 2 2 < C

A

1 2 3 4

C

B

A

2

NODE

SUBTREE

C < 3 3 < A B < 2 2 < C C < 3 3 < A

...

...

AVL Example: 8,9,10,12,11

CSE 373 SU 18 – BEN JONES 27

8

9

10

AVL Example: 8,9,10,12,11

CSE 373 SU 18 – BEN JONES 28

8

9

10

AVL Example: 8,9,10,12,11

CSE 373 SU 18 – BEN JONES 29

8

11

9

10

12

AVL Example: 8,9,10,12,11

CSE 373 SU 18 – BEN JONES 30

8

11

9

10

12

AVL Example: 8,9,10,12,11

CSE 373 SU 18 – BEN JONES 31

8

9

10

11

12

Two AVL Cases

CSE 373 SP 18 - KASEY CHAMPION 32

1

3

2

1

2

3

Line Case
Solve with 1 rotation

Kink Case
Solve with 2 rotations

3

2

1

Rotate Right
Parent’s left becomes child’s right
Child’s right becomes its parent

Rotate Left
Parent’s right becomes child’s left
Child’s left becomes its parent

3

1

2

Right Kink
Resolution
Rotate subtree left
Rotate root tree
right

Left Kink
Resolution
Rotate subtree right
Rotate root tree left

How Long Does Rebalancing Take?
Assume we store in each node the height of its subtree.
How do we find an unbalanced node?
-Just go back up the tree from where we inserted.

How many rotations might we have to do?
-Just a single or double rotation on the lowest unbalanced node.
-A rotation will cause the subtree rooted where the rotation happens to have the same
height it had before insertion

-log(n) time to traverse to a leaf of the tree
-log(n) time to find the imbalanced node
-constant time to do the rotation(s)
-Theta(log(n)) time for put (the worst case for all interesting + common AVL methods
(get/containsKey/put is logarithmic time)

AVL insert(): Approach
Our overall algorithm:

1. Insert the new node as in a BST (a new leaf)
2. For each node on the path from the root to the new leaf:

- The insertion may (or may not) have changed the node’s height
- Detect height imbalance and perform a rotation to restore balance

Facts that make this easier:
- Imbalances can only occur along the path from the new leaf to the root
- We only have to address the lowest unbalanced node
- Applying a rotation (or double rotation), restores the height of the subtree

before the insertion -- when everything was balanced!
- Therefore, we need at most one rebalancing operation

34

6

8

10

9 12

11

7

...

...

(1) Originally, whole tree
balanced, and this subtree
has height 2

(2) Insertion creates
imbalance(s), including
the subtree (8 is lowest
unbalanced node)

(3) Since the rotation on 8 will
restore the subtree to height
2, whole tree balanced again!

2

AVL delete()
Unfortunately, deletions in an AVL tree are more complicated
There’s a similar set of rotations that let you rebalance an AVL tree after deleting an element
- Beyond the scope of this class
- You can research on your own if you’re curious!

In the worst case, takes Θ(log 𝑛) time to rebalance after a deletion
- But finding the node to delete is also Θ(log 𝑛), and Θ(2 log 𝑛) is just a constant factor. Asymptotically the same

time

We won’t ask you to perform an AVL deletion

AVL Trees

All operations on an AVL Tree have a
logarithmic worst case
- Because these trees are always balanced!

The act of rebalancing adds no more
than a constant factor to insert and
delete
ØAsymptotically, just better than a
normal BST!

• Relatively difficult to program and
debug (so many moving parts
during a rotation)
• Additional space for the height

field
• Though asymptotically faster,

rebalancing does take some time
- Depends how important every little

bit of performance is to you

PROS CONS

Operation Case Runtime

containsKey(key)
best Θ(1)

worst Θ(log n)

insert(key)
best Θ(log n)

worst Θ(log n)

delete(key)
best Θ(log n)

worst Θ(log n)

Lots of cool Self-Balancing BSTs out there!

Popular self-balancing BSTs include:
AVL tree
Splay tree
2-3 tree
AA tree
Red-black tree
Scapegoat tree
Treap

(From https://en.wikipedia.org/wiki/Self-balancing_binary_search_tree#Implementations)

(Not covered in this class, but several are in the
textbook and all of them are online!)

CSE 373 SU 17 – LILIAN DE GREEF

https://en.wikipedia.org/wiki/AVL_tree
https://en.wikipedia.org/wiki/Splay_tree
https://en.wikipedia.org/wiki/2-3_tree
https://en.wikipedia.org/wiki/AA_tree
https://en.wikipedia.org/wiki/Red-black_tree
https://en.wikipedia.org/wiki/Scapegoat_tree
https://en.wikipedia.org/wiki/Treap
https://en.wikipedia.org/wiki/Self-balancing_binary_search_tree

Questions

39CSE 373 20 SP – CHAMPION & CHUN

40

Your toolbox so far…
ADT
- List – flexibility, easy movement of elements within structure
- Stack – optimized for first in last out ordering
- Queue – optimized for first in first out ordering
- Dictionary (Map) – stores two pieces of data at each entry

Data Structure Implementation
- Array – easy look up, hard to rearrange
- Linked Nodes – hard to look up, easy to rearrange
- Hash Table – constant time look up, no ordering of data
- BST – efficient look up, possibility of bad worst case
- AVL Tree – efficient look up, protects against bad worst case, hard to implement

CSE 373 20 SP – CHAMPION & CHUN

<- It’s all about data baby!
SUPER common in comp sci
- Databases
- Network router tables
- Compilers and Interpreters

Review: Dictionaries
Why are we so obsessed with Dictionaries?

CSE 373 SU 19 - ROBBIE WEBER 41

Dictionary ADT

put(key, item) add item to
collection indexed with key
get(key) return item
associated with key
containsKey(key) return if key
already in use
remove(key) remove item
and associated key
size() return count of items

state

behavior

Set of items & keys
Count of items

When dealing with data:
• Adding data to your collection
• Getting data out of your collection
• Rearranging data in your collection

Operation ArrayList LinkedList HashTable BST AVLTree

put(key,value)
best Θ(1) Θ(1) Θ(1) Θ(1) Θ(1)

worst Θ(n) Θ(n) Θ(n) Θ(n) Θ(logn)

get(key)
best Θ(1) Θ(1) Θ(1) Θ(1) Θ(1)

worst Θ(n) Θ(n) Θ(n) Θ(n) Θ(logn)

remove(key)
best Θ(1) Θ(1) Θ(1) Θ(1) Θ(logn)

worst Θ(n) Θ(n) Θ(n) Θ(n) Θ(logn)

Design Decisions
Before coding can begin engineers must carefully consider the design of their code will organize and
manage data
Things to consider:
What functionality is needed?
- What operations need to be supported?
- Which operations should be prioritized?

What type of data will you have?
- What are the relationships within the data?
- How much data will you have?
- Will your data set grow?
- Will your data set shrink?

How do you think things will play out?
- How likely are best cases?
- How likely are worst cases?

42CSE 373 20 SP – CHAMPION & CHUN

You have been asked to create a new system for organizing students in a course and their
accompanying grades

What type of data will you have?
What are the relationships within the data?

How much data will you have?

Will your data set grow?
Will your data set shrink?

How do you think things will play out?
How likely are best cases?
How likely are worst cases?

Example: Class Gradebook

43

What functionality is needed?
What operations need to be supported?

Add students to course
Add grade to student’s record
Update grade already in student’s record
Remove student from course
Check if student is in course
Find specific grade for student

Organize students by name, keep grades in time order…

A couple hundred students, < 20 grades per student

Which operations should be prioritized?

A lot at the beginning,
Not much after that

Lots of add and drops?
Lots of grade updates?
Students with similar identifiers?

pollev.com/cse373activity
What operations do you think the
grade book needs to support?
Please upvote which ones should be prioritized

Example: Class Gradebook
What data should we use to identify students? (keys)
-Student IDs – unique to each student, no confusion (or collisions)
-Names – easy to use, support easy to produce sorted by name

How should we store each student’s grades? (values)
-Array List – easy to access, keeps order of assignments
-Hash Table – super efficient access, no order maintained

Which data structure is the best fit to store students and their grades?
-Hash Table – student IDs as keys will make access very efficient
-AVL Tree - student names as keys will maintain alphabetical order

44CSE 373 20 SP – CHAMPION & CHUN

pollev.com/cse373activity
Which data structure is the best fit to store the
dictionary of students and their grades? Please
upvote which you think is optimal

Practice: Music Storage
You have been asked to create a new system for organizing songs in a music service. For
each song you need to store the artist and how many plays that song has.

45CSE 373 20 SP – CHAMPION & CHUN

What functionality is needed?
• What operations need to be supported?
• Which operations should be prioritized?

What type of data will you have?
• What are the relationships within the data?
• How much data will you have?
• Will your data set grow?
• Will your data set shrink?

How do you think things will play out?
• How likely are best cases?
• How likely are worst cases?

Update number of plays for a song
Add a new song to an artist’s collection
Add a new artist and their songs to the service
Find an artist’s most popular song
Find service’s most popular artist

more…

Artists need to be associated with their songs,
songs need t be associated with their play counts
Play counts will get updated a lot
New songs will get added regularly

Some artists and songs will need to be accessed a lot more than others
Artist and song names can be very similar

pollev.com/cse373activity
What operations do you think the
music system needs to support?
Please upvote which ones should be prioritized

Practice: Music Storage
How should we store songs and their play counts?
Hash Table – song titles as keys, play count as values, quick access for
updates
Array List – song titles as keys, play counts as values, maintain order of
addition to system
How should we store artists with their associated songs?
Hash Table – artist as key,

Hash Table of their (songs, play counts) as values
AVL Tree of their songs as values

AVL Tree – artists as key, hash tables of songs and counts as values

46CSE 373 20 SP – CHAMPION & CHUN

pollev.com/cse373activity
Which data structure is the best fit to store the
artists with their associated songs & play counts?
Please upvote which you think is optimal

