
Lecture 10: Hash
Collision Resolutions

CSE 373: Data Structures and
Algorithms

1

Practice
Consider a StringDictionary using separate chaining with an internal capacity of 10. Assume
our buckets are implemented using a LinkedList. Use the following hash function:
public int hashCode(String input) {

return input.length() % arr.length;
}

Now, insert the following key-value pairs. What does the dictionary internally look like?
(“a”, 1) (“ab”, 2) (“c”, 3) (“abc”, 4) (“abcd”, 5) (“abcdabcd”, 6) (“five”, 7) (“hello world”, 8)

CSE 373 SU 19 - ROBBIE WEBER 2

0 1 2 3 4 5 6 7 8 9

(“a”, 1) (“abcd”, 5)

(“c”, 3)

(“five”, 7)

(“abc”, 4)(“ab”, 2)

(“hello world”, 8)

(“abcdabcd”, 6)

Announcements
Exercise 2 due Friday April
Project 2 due Wednesday April
Midterm 1 coming next Friday April

Lecture Outline

ArrayMap

DirectAccessMap

SimpleHashMap

SeparateChaining
HashMap

4
3

2
1

FASTER: Jump directly to
element, only int keys

MORE FLEXIBLE: Hash
function supports any
type of key

YOUR BEST FRIEND:
Addresses limitations
with hash collisions, but
still fast!

Review

MAP ADT

As seen on
Project 2

As seen on
Project 2

There are multiple strategies. In this class, we’ll cover the following ones:

1. Separate chaining
2. Open addressing
-Linear probing
-Quadratic probing
-Double hashing

Strategies to handle hash collision

CSE 373 AU 18 – SHRI MARE 5

Separate chaining
// some pseudocode

public boolean containsKey(int key) {

int bucketIndex = key % data.length;

loop through data[bucketIndex]

return true if we find the key in

data[bucketIndex]

return false if we get to here (didn’t

find it)

}

CSE 373 ROBBIE WEBER + HANNAH TANG 6

1

2
3
4
5
6
7
8

1

9

0
indices

13

22

7

44

21

Reminder: the implementations of put/get/containsKey are all very similar,
and almost always will have the same complexity class runtime

runtime analysis
Are there different possible states for our
Hash Map that make this code run
slower/faster, assuming there are already n
key-value pairs being stored?

Yes! If we had to do a lot of loop iterations to find the key in the bucket, our code will run slower.

A best case situation for separate chaining
0 1 2 3 4 5 6 7 8 9

(0, b) (2, b) (3, b) (4, b) (5, b) (6, b) (7, b) (8, b)

It’s possible (and likely if you follow some best-practices) that everything is spread out across the buckets pretty
evenly. This is the opposite of the last slide: when we have minimal collisions, our runtime should be less. For
example, if we have a bucket with only 0 or 1 element in it, checking containsKey for something in that bucket will
only take a constant amount of time.

We’re going to try a lot of stuff we can to make it more likely we achieve this beautiful state J.

CSE 373 20 SP – CHAMPION & CHUN

Review: Handling Collisions
Solution 1: Chaining

Each space holds a “bucket” that can store multiple values. Bucket is often implemented
with a LinkedList

CSE 373 SP 18 - KASEY CHAMPION 8

Operation Array w/ indices as keys

put(key,value)

best O(1)

average O(1 + λ)

worst O(n)

get(key)

best O(1)

average O(1 + λ)

worst O(n)

remove(key)

best O(1)

average O(1 + λ)

worst O(n)

Average Case:
Depends on average number of
elements per chain

Load Factor λ
If n is the total number of key-
value pairs
Let c be the capacity of array
Load Factor λ = !

"

Best practices for a nice distribution of keys
recap
§ resize when lambda (number of elements / number of buckets) increases up to 1
§ when you resize, you can choose a the table length that will help reduce collisions if you
multiply the array length by 2 and then choose the nearest prime number
§ design the hashCode of your keys to be somewhat complex and lead to a distribution of
different output numbers

CSE 373 20 SP – CHAMPION & CHUN

Java and Hash Functions
Object class includes default functionality:
- equals
- hashCode

If you want to implement your own hashCode you should:
- Override BOTH hashCode() and equals()

If a.equals(b) is true then a.hashCode() == b.hashCode() MUST also be true

That requirement is part of the Object interface.
Other people’s code will assume you’ve followed this rule.
Java’s HashMap (and HashSet) will assume you follow these rules and conventions for your
custom objects if you want to use your custom objects as keys.

CSE 373 SU 19 - ROBBIE WEBER 10

Resizing Don’t forget to re-distribute your keys! As seen on

Project 20

1

2

3

4

5

6

7

8

9

(7,blue)

(4,orange)

0

1

2

3

4

5

6

7

8

9

(1,red)

(22,tan)(22,tan) (7,blue) (77,aqua)

(4,orange)

(1,red) (6,pink)

(8,lilac) (53,puce)

(6,pink)

(77,aqua)

(53,puce)

(8,lilac)

If we just expand
the buckets array,
several values are
hashed in the
wrong place

How to Resize:
1. Expand the buckets array
2. For every element in the old

hash table, re-distribute!
Recompute its position by
taking the mod with the new
length

When to Resize?
In ArrayList, we were forced to resize when we ran out of room
- In SeparateChainingHashMap, never forced to resize, but we want to make sure the buckets don’t get

too long for good runtime

How do we quantify “too full”?
- Look at the average bucket size: number of elements / number of buckets

LOAD FACTOR λ

n: total number of key/value pairs
c: capacity of the array (# of buckets)

𝜆 =
𝑛
𝑐

(22,tan) (7,blue) (77,aqua)

(4,orange)

0

1

2

3

4

(1,red) (6,pink)

(8,lilac) (53,puce)

𝜆 =
8
5 = 1.6

When to Resize?
In ArrayList, we were forced to resize when we ran out of room
- In SeparateChainingHashMap, never forced to resize, but we want to make sure the buckets don’t get

too long for good runtime

How do we quantify “too full”?
- Look at the average bucket size: number of elements / number of buckets

LOAD FACTOR λ

n: total number of key/value pairs
c: capacity of the array (# of buckets)

𝜆 =
𝑛
𝑐

• If we resize when λ hits some constant
value like 1:

- We expect to see 1 element per bucket:
constant runtime!

- If we double the capacity each time, the
expensive resize operation becomes less and
less frequent

Questions?

Good Hashing

15CSE 373 20 WI – HANNAH TANG

The hash function of a HashDictionary gets called a LOT:
- When first inserting something into the map
- When checking if a key is already in the map
- When resizing and redistributing all values into new structure

This is why it is so important to have a “good” hash function. A good hash function is:
1. Deterministic – same input should generate the same output
2. Efficiency - it should take a reasonable amount o time
3. Uniformity – inputs should be spread “evenly” over output range

public int hashFn(String s) {
return random.nextInt()

}

public int hashFn(String s) {
int retVal = 0;
for (int I = 0; I < s.length(); i++) {

for (int j = 0; j < s.length(); j++) {
retVal += helperFun(s, I, j);

}
}
return retVal;

}

public int hashFn(String s) {
if (s.length() % 2 == 0) {

if (s.length(). % 2 == 0) {
return 17;

} else {
return 43;

}
}

}

NOT deterministic

NOT efficient

NOT uniform

Handling Collisions
Solution 2: Open Addressing

Resolves collisions by choosing a different location to store a value if natural choice is
already full.
Type 1: Linear Probing
If there is a collision, keep checking the next element until we find an open spot.
int findFinalLocation(Key s)

int naturalHash = this.getHash(s);
int index = natrualHash % TableSize;
while (index in use) {

i++;
index = (naturalHash + i) % TableSize;

}
return index;

CSE 373 SP 18 - KASEY CHAMPION 16

Linear Probing

0 1 2 3 4 5 6 7 8 9

CSE 373 SP 18 - KASEY CHAMPION 17

Insert the following values into the Hash Table using a hashFunction of % table size and
linear probing to resolve collisions
1, 5, 11, 7, 12, 17, 6, 25

1 511 712 17625

Linear Probing

CSE 373 SP 18 - KASEY CHAMPION 18

0 1 2 3 4 5 6 7 8 9

Insert the following values into the Hash Table using a hashFunction of % table size and
linear probing to resolve collisions
38, 19, 8, 109, 10

38 1988 10910

Problem:
• Linear probing causes clustering
• Clustering causes more looping when probing

Primary Clustering
When probing causes long chains of
occupied slots within a hash table

Runtime
When is runtime good?
When we hit an empty slot
- (or an empty slot is a very short distance away)

When is runtime bad?
When we hit a “cluster”

Maximum Load Factor?
λ at most 1.0

When do we resize the array?
λ ≈ ½ is a good rule of thumb

CSE 373 SP 18 - KASEY CHAMPION 19

Can we do better?
Clusters are caused by picking new space near natural index

Solution 2: Open Addressing
Type 2: Quadratic Probing
Instead of checking 𝑖 past the original location, check 𝑖! from the original location.
int findFinalLocation(Key s)

int naturalHash = this.getHash(s);
int index = natrualHash % TableSize;
while (index in use) {

i++;
index = (naturalHash + i*i) % TableSize;

}
return index;

CSE 373 SP 18 - KASEY CHAMPION 20

Quadratic Probing

CSE 373 SP 18 - KASEY CHAMPION 21

0 1 2 3 4 5 6 7 8 9

(49 % 10 + 0 * 0) % 10 = 9
(49 % 10 + 1 * 1) % 10 = 0

(58 % 10 + 0 * 0) % 10 = 8
(58 % 10 + 1 * 1) % 10 = 9
(58 % 10 + 2 * 2) % 10 = 2

8918 49

Insert the following values into the Hash Table using a hashFunction of % table size and
quadratic probing to resolve collisions
89, 18, 49, 58, 79, 27

58 79

(79 % 10 + 0 * 0) % 10 = 9
(79 % 10 + 1 * 1) % 10 = 0
(79 % 10 + 2 * 2) % 10 = 3

Problems:
If λ≥ ½ we might never find an empty spot

Infinite loop!
Can still get clusters

27

Now try to insert 9.

Uh-oh

Quadratic Probing
There were empty spots. What gives?

Quadratic probing is not guaranteed to check every possible spot in the hash table.

The following is true:

Notice we have to assume 𝑝 is prime to get that guarantee.

If the table size is a prime number 𝑝, then the first 𝑝/2 probes check
distinct indices.

Secondary Clustering

CSE 373 SP 18 - KASEY CHAMPION 23

0 1 2 3 4 5 6 7 8 9

Insert the following values into the Hash Table using a hashFunction of % table size and
quadratic probing to resolve collisions
19, 39, 29, 9

39 29 199

Secondary Clustering
When using quadratic probing sometimes need
to probe the same sequence of table cells, not
necessarily next to one another

Probing
- h(k) = the natural hash
- h’(k, i) = resulting hash after probing
- i = iteration of the probe
- T = table size

Linear Probing:
h’(k, i) = (h(k) + i) % T
Quadratic Probing

h’(k, i) = (h(k) + i2) % T

CSE 373 SP 18 - KASEY CHAMPION 24

Questions

25

Topics Covered:
- Writing good hash functions
- Open addressing to resolve collisions:

- Linear probing
- Quadratic probing

CSE 373 20 SP – CHAMPION & CHUN

Double Hashing
Probing causes us to check the same indices over and over- can we check different ones instead?

Use a second hash function!

h’(k, i) = (h(k) + i * g(k)) % T

int findFinalLocation(Key s)
int naturalHash = this.getHash(s);
int index = natrualHash % TableSize;
while (index in use) {

i++;
index = (naturalHash + i*jumpHash(s)) % TableSize;
}
return index;

CSE 373 SP 18 - KASEY CHAMPION 26

<- Most effective if g(k) returns value relatively prime to table size

Second Hash Function
Effective if g(k) returns a value that is relatively prime to table size
-If T is a power of 2, make g(k) return an odd integer
-If T is a prime, make g(k) return anything except a multiple of the TableSize

CSE 373 SP 18 - KASEY CHAMPION 27

Resizing: Open Addressing
How do we resize? Same as separate chaining
-Remake the table
-Evaluate the hash function over again.
-Re-insert.

When to resize?
-Depending on our load factor 𝜆 AND our probing strategy.
-Hard Maximums:

- If 𝜆 = 1, put with a new key fails for linear probing.
- If 𝜆 > 1/2 put with a new key might fail for quadratic probing, even with a prime tableSize

- And it might fail earlier with a non-prime size.
- If 𝜆 = 1 put with a new key fails for double hashing

- And it might fail earlier if the second hash isn’t relatively prime with the tableSize

What are the running times for:
insert

Best: 𝑂(1)
Worst: 𝑂(𝑛) (we have to make sure the key isn’t already in the bucket.)

find

Best: 𝑂(1)
Worst: 𝑂(𝑛)

delete

Best: 𝑂(1)
Worst: 𝑂(𝑛)

Running Times

CSE 332 SU 18 – ROBBIE WEBER

In-Practice
For open addressing:
We’ll assume you’ve set 𝜆 appropriately, and that all the operations are Θ 1 .

The actual dependence on 𝜆 is complicated – see the textbook (or ask me in office hours)
And the explanations are well-beyond the scope of this course.

Summary
1. Pick a hash function to:
- Avoid collisions
- Uniformly distribute data
- Reduce hash computational costs

2. Pick a collision strategy
- Chaining

- LinkedList
- AVL Tree

- Probing
- Linear
- Quadratic
- Double Hashing

CSE 373 SP 18 - KASEY CHAMPION 31

No clustering
Potentially more “compact” (λ can be higher)

Managing clustering can be tricky
Less compact (keep λ < ½)
Array lookups tend to be a constant factor faster than traversing pointers

Summary
Separate Chaining
-Easy to implement
-Running times 𝑂(1 + 𝜆) in practice

Open Addressing
-Uses less memory (usually).
-Various schemes:
-Linear Probing – easiest, but lots of clusters
-Quadratic Probing – middle ground, but need to be more careful about 𝜆.
-Double Hashing – need a whole new hash function, but low chance of clustering.

Which you use depends on your application and what you’re worried
about.

Extra optimizations
Idea 1: Take in better keys
-Really up to your client, but if you can control them, do!

Idea 2: Optimize the bucket
-Use an AVL tree instead of a Linked List
-Java starts off as a linked list then converts to AVL tree when buckets get large

Idea 3: Modify the array’s internal capacity
-When load factor gets too high, resize array

- Increase array size to next prime number that’s roughly double the array size
- Let the client fine-tune the 𝜆 that causes you to resize

CSE 373 SP 18 - KASEY CHAMPION 33

Other Hashing Applications
We use it for hash tables but there are lots of uses! Hashing is a really good way of taking
arbitrary data and creating a succinct and unique summary of data.

34CSE 373 20 WI – HANNAH TANG

Cryptography

Hashing also ”hides” the data by translating it, this can
be used for security
§ For password verification: Storing passwords in

plaintext is insecure. So your passwords are stored as
a hash

§ Digital signatures

Fingerprinting
git hashes (“identification”)
§ That crazy number that is attached to each of your

commits
§ SHA-1 hash incorporates the contents of your change, the

name of the files and the lines of the files you changes
Ad Tracking
§ track who has seen an ad if they saw it on a different

device (if they saw it on their phone don’t want to show it
on their laptop)

§ https://panopticlick.eff.org will show you what is being
hashed about you

YouTube Content ID
§ Do two files contain the same thing? Copyright

infringement
§ Change the files a bit!

Caching
§ you’ve downloaded a large video file, You want to

know if a new version is available, Rather than re-
downloading the entire file, compare your file’s
hash value with the server's hash value.

File Verification / Error Checking:
§ compare the hash of a file instead of the file itself
§ Find similar substrings in a large collection of

strings – detecting plagiarism

https://panopticlick.eff.org/

