
Lecture 8: Solving
Recurrences

CSE 373: Data Structures and
Algorithms

1

Warm Up!

2CSE 373 SP 20 – CHUN & CHAMPION

𝑇 𝑛 = $
𝑑 if 𝑛 is at most some constant
𝑎𝑇

𝑛
𝑏 + 𝑓 𝑛 otherwise

Where 𝑓 𝑛 is Θ 𝑛!

𝑇 𝑛 ∈ Θ 𝑛!log" 𝑎 < 𝑐
log" 𝑎 = 𝑐 𝑇 𝑛 ∈ Θ 𝑛! log 𝑛
log" 𝑎 > 𝑐 𝑇 𝑛 ∈ Θ 𝑛#$%! &

If

If
If

then

then
then

Master Theorem

What’s the theta bound for the runtime function for this piece of code?

public void method1(int n) {
if (n <= 100) {

System.out.println(“:3”);
} else {

System.out.println(“:D”);
for (int i = 0; i<16; i++) {

method1(n / 4);
}

}
}

Please fill out the Poll at- pollev.com/21sp373

𝑇 𝑛 = $
𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑤𝑜𝑟𝑘 if 𝑛 ≤ 100

16𝑇
𝑛
4 + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑤𝑜𝑟𝑘 otherwise

a = 16, b = 4, c = 0

log' 16 = 2

log' 16 > 0

𝑇 𝑛 ∈ Θ 𝑛#$%! &

Θ 𝑛#$%" () = 𝜣 𝒏𝟐

Announcements
Exercise 1 – Algorithm Analysis – Due Friday April 16th

Project 1 – Deques – Due Wednesday April 14th

Project 2 Goes out this Friday, due Wednesday April 28th

Midterm goes out Friday April 30th

3CSE 373 20 SP – CHAMPION & CHUN

Questions

4CSE 373 20 SP – CHAMPION & CHUN

5

Modeling Recursive Code

CSE 373 20 SP – CHAMPION & CHUN

Meet the Recurrence
A recurrence relation is an equation that defines a sequence based on a rule that
gives the next term as a function of the previous term(s)
It’s a lot like recursive code:
-At least one base case and at least one recursive case
-Each case should include the values for n to which it corresponds
-The recursive case should reduce the input size in a way that eventually triggers
the base case

-The cases of your recurrence usually correspond exactly to the cases of the code

CSE 373 SP 20 – CHUN & CHAMPION

𝑇 𝑛 = $
5 if 𝑛 < 3

2𝑇
𝑛
2
+ 10 otherwise

Recursive Patterns
Modeling and analyzing recursive code is all about finding patterns in how the input
changes between calls and how much work is done within each call
Let’s explore some of the more common recursive patterns
Pattern #1: Halving the Input
Pattern #2: Constant size input and doing work
Pattern #3: Doubling the Input

7CSE 373 20 SP – CHAMPION & CHUN

Review Why Include Non-Recursive Work?
public int recurse(int n) {

if (n < 3) {
return 80;

}

for (int i = 0; i < n; i++) {
System.out.println(i);

}

int val1 = recurse(n / 3);
int val2 = recurse(n / 3);
int val3 = recurse(n / 3);

return val1 + val2 + val3;
}

Base Case

+n

+3

𝑇 𝑛 = $
2 if 𝑛 < 3

3𝑇
𝑛
3
+ 𝑛 otherwise

Think of it this way:

Recursive Case

“work that happens if we
enter base case”

“work that happens if we
enter recursive case”

Non-recursive parts of recursive
cases are sometimes where the
bulk of the work takes place!

Recurrence to Big-Θ

It’s still really hard to tell what the big-O is just by looking at it.

But fancy mathematicians have a formula for us to use!

𝑇 𝑛 = $
2 if 𝑛 < 3

2𝑇
𝑛
3
+ 𝑛 otherwise

𝑇 𝑛 = $
𝑑 if 𝑛 is at most some constant
𝑎𝑇

𝑛
𝑏 + 𝑓 𝑛 otherwise

Where 𝑓 𝑛 is Θ 𝑛!

𝑇 𝑛 ∈ Θ 𝑛!log" 𝑎 < 𝑐
log" 𝑎 = 𝑐 𝑇 𝑛 ∈ Θ 𝑛! log 𝑛
log" 𝑎 > 𝑐 𝑇 𝑛 ∈ Θ 𝑛#$%! &

If

If
If

then

then
then

Master Theorem
a=2	b=3	and	c=1	

logM 2 = 𝑥 ⇒ 3N = 2 ⇒ 𝑥 ≅ 0.63
logM 2 < 1
We’re	in	case	1
𝑇 𝑛 ∈ Θ(𝑛)

𝑦 = log! 𝑥 𝑖𝑠 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝑏" = 𝑥

CSE 373 SP 20 – CHUN & CHAMPION

Understanding Master Theorem
The case
- Recursive case does a lot of non recursive work in

comparison to how quickly it divides the input size
- Most work happens in beginning of call stack
- Non recursive work in recursive case dominates growth, nc

term

The case
- Recursive case evenly splits work between non recursive

work and passing along inputs to subsequent recursive
calls

- Work is distributed across call stack

The case
- Recursive case breaks inputs apart quickly and doesn’t do

much non recursive work
- Most work happens near bottom of call stack

10

log! 𝑎 < 𝑐

log! 𝑎 = 𝑐

log! 𝑎 > 𝑐

𝑇 𝑛 = $
𝑑 if 𝑛 is at most some constant
𝑎𝑇

𝑛
𝑏 + 𝑓 𝑛 otherwise

Where 𝑓 𝑛 is Θ 𝑛!

𝑇 𝑛 ∈ Θ 𝑛!log" 𝑎 < 𝑐
log" 𝑎 = 𝑐 𝑇 𝑛 ∈ Θ 𝑛! log 𝑛
log" 𝑎 > 𝑐 𝑇 𝑛 ∈ Θ 𝑛#$%! &

If

If
If

then

then
then

Master Theorem

§ A measures how many recursive calls are
triggered by each method instance

§ B measures the rate of change for input
§ C measures the dominating term of the non

recursive work within the recursive method
§ D measures the work done in the base case

CSE 373 SP 20 – CHUN & CHAMPION

Recursive Patterns
Pattern #1: Halving the Input

Pattern #2: Constant size input and doing work

Pattern #3: Doubling the Input

11CSE 373 20 WI – HANNAH TANG

Binary Search Θ(logn)

Merge Sort

Merge Sort

CSE 373 SP 18 - KASEY CHAMPION 12

0 1 2 3 4 5 6 7 8 9

8 2 91 22 57 1 10 6 7 4

Divide

0 1 2 3 4

8 2 91 22 57

5 6 7 8 9

1 10 6 7 4

Conquer
0

8

0

8

0 1 2 3 4

2 8 22 57 91

5 6 7 8 9

1 4 6 7 10

0 1 2 3 4 5 6 7 8 9

1 2 4 6 7 8 10 22 57 91

Combine

Merge Sort

CSE 373 SP 18 - KASEY CHAMPION 13

mergeSort(input) {
if (input.length == 1)

return
else

smallerHalf = mergeSort(new [0, ..., mid])
largerHalf = mergeSort(new [mid + 1, ...])
return merge(smallerHalf, largerHalf)

}

0 1 2 3 4

8 2 57 91 22

0 1

8 2

0 1 2

57 91 22

0

8

0

2

0

57

0 1

91 22

0

91

0

22

0 1

22 91

0 1 2

22 57 91

0 1

2 8

0 1 2 3 4

2 8 22 57 91

1 if n<= 1
2T(n/2) + n otherwiseT(n) =

Pattern #2 – Constant size input and doing work

Take 1 min to respond to activity

www.pollev.conm/cse373activity
Take a guess! What is the Big-O
of worst case merge sort?

http://www.pollev.conm/cse373activity

Merge Sort Recurrence to Big-Θ

𝑇 𝑛 = $
𝑑 if 𝑛 is at most some constant
𝑎𝑇

𝑛
𝑏 + 𝑓 𝑛 otherwise

Where 𝑓 𝑛 is Θ 𝑛!

𝑇 𝑛 ∈ Θ 𝑛!log" 𝑎 < 𝑐
log" 𝑎 = 𝑐 𝑇 𝑛 ∈ Θ 𝑛! log 𝑛
log" 𝑎 > 𝑐 𝑇 𝑛 ∈ Θ 𝑛#$%! &

If

If
If

then

then
then

Master Theorem a=2	b=2	and	c=1	

logO 2 = 𝑥 ⇒ 2N = 2 ⇒ 𝑥 = 1
logO 2 = 1
We’re	in	case	2
𝑇 𝑛 ∈ Θ(𝑛 log 𝑛)

𝑦 = log! 𝑥 𝑖𝑠 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝑏" = 𝑥

CSE 373 SP 20 – CHUN & CHAMPION

1 if n<= 1
2T(n/2) + n otherwise

T(n) =

Recursive Patterns
Pattern #1: Halving the Input

Pattern #2: Constant size input and doing work

Pattern #3: Doubling the Input

15CSE 373 20 WI – HANNAH TANG

Binary Search Θ(logn)

Merge Sort Θ(nlogn)

Calculating Fibonacci

Calculating Fibonacci
public int fib(int n) {

if (n <= 1) {

return 1;

}

return fib(n-1) + fib(n-1);

}

16CSE 373 20 WI – HANNAH TANG

Almost

f(4)

f(3) f(3)

f(2) f(2) f(2) f(2)

f(1) f(1)f(1) f(1)f(1) f(1)f(1) f(1)

• Each call creates 2 more calls
• Each new call has a copy of the

input, almost
• Almost doubling the input at

each call

Pattern #3 – Doubling the Input

Calculating Fibonacci Recurrence to Big-Θ
public int f(int n) {

if (n <= 1) {

return 1;

}

return f(n-1) + f(n-1);

}

17CSE 373 20 WI – HANNAH TANG

d

2T(n-1) + c

𝑇 𝑛 = F 𝑑 𝑤ℎ𝑒𝑛 𝑛 ≤ 1
2𝑇 𝑛 − 1 + 𝑐 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑇 𝑛 = $
𝑑 if 𝑛 is at most some constant
𝑎𝑇

𝑛
𝑏
+ 𝑓 𝑛 otherwise

Master Theorem

Can we use master theorem?

Uh oh, our model doesn’t match that format…

Maybe geometry can help!

Can we intuit a pattern?
T(1) = d
T(2) = 2T(2-1) + c = 2(d) + c
T(3) = 2T(3-1) + c = 2(2(d) + c) + c = 4d + 3c
T(4) = 2T(4-1) + c = 2(4d + 3c) + c = 8d + 7c
T(5) = 2T(5-1) + c = 2(8d + 7c) + c = 16d +25c
Looks like something’s happening but it’s tough

Calculating Fibonacci Recurrence to Big-Θ

18CSE 373 20 WI – HANNAH TANG

f(4)

f(3) f(3)

f(2) f(2) f(2) f(2)

f(1) f(1)f(1) f(1)f(1) f(1)f(1) f(1)

𝑇 𝑛 = P 𝑑 𝑤ℎ𝑒𝑛 𝑛 ≤ 1
2𝑇 𝑛 − 1 + 𝑐 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

How many layers in the function call tree?

How many layers will it take to transform
“n” to the base case of “1” by subtracting 1
For our example, 4 -> Height = n

How many function calls per layer?
Layer Function

calls

1 1

2 2

3 4

4 8

How many function calls on layer k?

2k-1

How many function calls TOTAL
for a tree of k layers?

1 + 2 + 3 + 4 + … + 2k-1

Calculating Fibonacci Recurrence to Big-Θ
Patterns found:

19CSE 373 20 SP – CHAMPION & CHUN

How many function calls on layer k? 2k-1

How many function calls TOTAL for a tree of k layers?

1 + 2 + 4 + 8 + … + 2k-1

Total runtime = (total function calls) x (runtime of each function call)

Total runtime = (1 + 2 + 4 + 8 + … + 2k-1) x (constant work)

1 + 2 + 4 + 8 + … + 2k-1 = U
+,(

-.(

2+ =
2- − 1
2 − 1 = 2- − 1

How many layers in the function call tree? n

𝑻 𝒏 = 𝟐𝒏 − 𝟏 ∈ 𝚯(𝟐𝒏)

Summation Identity
Finite Geometric Series

U
+,(

-.(

𝑥+ =
𝑥- − 1
𝑥 − 1

Recursive Patterns
Pattern #1: Halving the Input

Pattern #2: Constant size input and doing work

Pattern #3: Doubling the Input

20CSE 373 20 WI – HANNAH TANG

Binary Search Θ(logn)

Merge Sort Θ(nlogn)

Calculating Fibonacci Θ(2n)

0

5

10

15

20

25

30

35

1 2 3 4 5

Runtime Comparison

logn nlogn 2^n

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10

Runtime Comparison

logn nlogn 2^n

0

2E+14

4E+14

6E+14

8E+14

1E+15

1.2E+15

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Runtime Comparison

logn nlogn 2^n

Questions?

21CSE 373 20 SP – CHAMPION & CHUN

Code Analysis Process

22CSE 373 20 SP – CHAMPION & CHUN

code
modeling

code

model of best-
case runtime f(n)

Best-case upper bound O(n)

Best-case lower bound Ω(n)

Best-case tight fit Θ(n)

best case

worst case model of worst-
case runtime f(n)

Worst-case upper bound O(n)

Worst-case lower bound Ω(n)

Worst-case tight fit Θ(n)

case
analysis

asymptotic
analysis

Recurrence
Closed Form

Master Theorem

If code is recursive:
Tree Method

Recurrence to Big Θ Techniques
A recurrence is a mathematical function that includes itself in its definition
This makes it very difficult to find the dominating term that will dictate the asymptotic
growth
Solving the recurrence or “finding the closed form” is the process of eliminating the
recursive definition. So far, we’ve seen three methods to do so:
1. Apply Master Theorem
• Pro: Plug and chug convenience
• Con: only works for recurrences of a certain format

2. Unrolling
• Pro: Least complicated setup
• Con: requires intuitive pattern matching

3. Tree Method
• Pro: Plug and chug
• Con: Complex setup

23CSE 373 20 SP – CHAMPION & CHUN

𝑇 𝑛 = P 𝑑 𝑤ℎ𝑒𝑛 𝑛 ≤ 1
2𝑇 𝑛 − 1 + 𝑐 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑇 𝑛 = $
𝑑 if 𝑛 is at most some constant
𝑎𝑇

𝑛
𝑏
+ 𝑓 𝑛 otherwise

Master Theorem

T(1) = d
T(2) = 2T(2-1) + c = 2(d) + c
T(3) = 2T(3-1) + c = 2(2(d) + c) + c = 4d + 3c
T(4) = 2T(4-1) + c = 2(4d + 3c) + c = 8d + 7c
T(5) = 2T(5-1) + c = 2(8d + 7c) + c = 16d +25c

f(
4)

f(
3)

f(
3)

f(
2)

f(
2)

f(
2)

f(
2)

f(
1)

f(
1)

f(
1)

f(
1)

f(
1)

f(
1)

f(
1)

f(
1)

How much work is done at each layer?
64 for this example -> n work at each
layer
Work is variable per layer, but across the
entire layer work is constant - always n

How many layers are in our function call
tree?
Hint: how many levels of recursive calls
does it take binary search to get to the
base case?
Height = log2n
It takes log2n divisions by 2 for n to be
reduced to the base case 1
log264 = 6 -> 6 levels of this tree

24

f(n=64)
work = 64

f(n=32)
w=32

f(n=32)
w=32

f(n=16)
w=16

f(n=16)
w=16

f(n=16)
w=16

f(n=16)
w=16

f(n=8)
w=8

f(n=8)
w=8

f(n=8)
w=8

f(n=8)
w=8

f(n=8)
w=8

f(n=8)
w=8

f(n=8)
w=8

f(n=8)
w=8

1 if n<= 1
2T(n/2) + n otherwiseT(n) =

… and so on…

CSE 373 20 WI – HANNAH TANG

Tree Method
Draw out call stack, what is the input to each call? How much work is done by each call?

Merge Sort

Tree Method
input = n
work = n

i = !"
w = !"

… … … … … … … …… … …… … … … …

How many
nodes at each

level?

How much
work across
each level?

1 n

2

4

8

n

n

n

n

n

𝑇 𝑛 =
1 𝑤ℎ𝑒𝑛 𝑛 ≤ 1
2𝑇

𝑛
2
+ 𝑛 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒a

How much
work done by
each node?

n

𝒏
𝟐

𝒏
𝟒

𝒏
𝟖

𝟏

i = !
"

w = !
"

i = !
#

w = !
#

i = !#
w = !#

i = !#
w = !

#

i = !#
w = !

#

i = !
$

w = !
$

i = !
$

w = !
$

i = !$
w = !$

i = !
$

w = !
$

i = !$
w = !$

i = !$
w = !$

i = !$
w = !$

i = !
$

w = !
$

i = 1
w = 1

i = 1
w = 1

i = 1
w = 1

i = 1
w = 1

i = 1
w = 1

i = 1
w = 1

i = 1
w = 1

i = 1
w = 1

i = 1
w = 1

i = 1
w = 1

i = 1
w = 1

i = 1
w = 1

i = 1
w = 1

Recursive level

0

1

2

3

logn

Tree Method Practice

26

Level (i) Number of
Nodes

Work per
Node

Work per
Level

0 1 𝑛 𝑛

1 2
𝑛
2

𝑛

2 4
𝑛
4

𝑛

3 8
𝑛
8

𝑛

log2n 𝑛 1

1. What is the size of the input on level 𝑖?

2. What is the work done by each node on the 𝑖23
recursive level?

3. What is the number of nodes at level 𝑖?

4. What is the total work done at the 𝑖45recursive
level?

5. What value of 𝑖 does the last level occur?

6. What is the total work across the base case
level?

𝑛
2+

(
𝑛
2+
)

Combining it all together…

2+

𝑛𝑢𝑚𝑁𝑜𝑑𝑒𝑠 ∗ 𝑤𝑜𝑟𝑘𝑃𝑒𝑟𝑁𝑜𝑑𝑒 = 2+
𝑛
2+

= 𝑛

𝑇 𝑛 = U
+,6

#$%# 7 .(

𝑛
7
8$
= 1à 𝑛 = 2+à 𝑖 = log8 𝑛

power of a log

𝑥#$%! 9 = 𝑦#$%! :

𝑇 𝑛 =
1 𝑤ℎ𝑒𝑛 𝑛 ≤ 1
2𝑇

𝑛
2
+ 𝑛 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒a

𝑛𝑢𝑚𝑁𝑜𝑑𝑒𝑠 ∗ 𝑤𝑜𝑟𝑘𝑃𝑒𝑟𝑁𝑜𝑑𝑒 = 2;<=!7 1 = 𝑛

+ 𝑛 = 𝑛𝑙𝑜𝑔2𝑛 + 𝑛 = Θ(nlogn)

Summation of a
constant

"
'()

*+,

𝑐 = 𝑐𝑛

Recurrence to Big-Theta: Our Toolbox

2

Master
Theorem

TIGHT
BIG-OH

BIG-THETA

TIGHT
BIG-OMEGA

2

Unrolling the
Recurrence

2

Tree MethodRECURRENCE

𝑇 𝑛 = 0
𝑑 if 𝑛 is at most some constant
𝑎𝑇

𝑛
𝑏
+ 𝑓 𝑛 otherwise

MASTER THEOREM T(1) = d
T(2) = 2T(2-1) + c = 2(d) + c
T(3) = 2T(3-1) + c = 2(2(d) + c) + c = 4d + 3c

PROS: Convenient to plug ‘n’ chug
CONS: Only works for certain format
of recurrences

PROS: Least complicated setup
CONS: Requires intuitive pattern
matching, no formal technique

PROS: Convenient to plug ‘n’ chug
CONS: Complicated to set up for a
given recurrence

f(n=64)
work: 64

f(n=32)
work: 32

f(n=32)
work: 32

(followed by
Asymptotic Analysis)

Questions

28CSE 373 20 SP – CHAMPION & CHUN

Summations

CSE 373 SP 18 - KASEY CHAMPION 29

Modeling Complex Loops

for (int i = 0; i < n; i++) {
for (int j = 0; j < i; j++) {

System.out.println(“Hello!”);
}

}

30

+1 nn f(n) = n2

Keep an eye on loop bounds!

Write a mathematical model of the following code

CSE 373 19 WI - KASEY CHAMPION

Modeling Complex Loops
for (int i = 0; i < n; i++) {

for (int j = 0; j < i; j++) {
System.out.print(“Hello! ”);

}
Sysem.out.println();

}

31

+1 0 + 1 + 2 + 3 +…+ i-1 n

Summations!
1 + 2 + 3 + 4 +… + n =U

+,(

7

𝑖 = f(a) + f(a + 1) + f(a + 2) + … + f(b-2) + f(b-1) + f(b)

Definition: Summation

U
+,&

"

𝑓(𝑖)

T(n) = U
+,6

7.(

U
>,6

+.(

1

T(n) = (0 + 1 + 2 + 3 +…+ i-1)

How do we
model this part?

What is the Big O?

CSE 373 19 WI - KASEY CHAMPION

Simplifying Summations

CSE 373 19 SP – KASEY CHAMPION (THANKS TO MICHAEL LEE) 32

𝑇 𝑛 = U
+,6

7.(

U
>,6

+.(

1

= U
+,6

7.(

1・𝑖 = 1U
+,6

7.(

𝑖 =
𝑛 𝑛 − 1

2

Summation of a
constant

U
+,6

7.(

𝑐 = 𝑐𝑛

Factoring out a
constant
U
+,&

"

𝑐𝑓 𝑖 = 𝑐U
+,&

"

𝑓(𝑖)

Gauss’s
Identity
U
+,6

7.(

𝑖 =
𝑛 𝑛 − 1

2

=
1
2
𝑛8 −

1
2
𝑛

for (int i = 0; i < n; i++) {
for (int j = 0; j < i; j++) {

System.out.println(“Hello!”);
}

}

Find closed form using
summation identities

(given on exams)

closed form simplified
tight big O

𝑇 𝑛 = U
+,6

7.(

U
>,6

+.(

1 = 𝑶(𝒏𝟐)

https://courses.cs.washington.edu/courses/cse373/19sp/resources/math/summation/

Questions

33CSE 373 20 SP – CHAMPION & CHUN

34

Appendix

CSE 373 20 SP – CHAMPION & CHUN

𝑇
𝑛
4
+ 𝑇

𝑛
4
+ 𝑇

𝑛
4
+ 𝑛8𝑇 𝑛

𝑇
𝑛
16

+ 𝑇
𝑛
16

+ 𝑇
𝑛
16

+
𝑛
4

"
𝑇
𝑛
4 𝑇

𝑛
4

𝑇
𝑛
4

𝑇
𝑛
16

+ 𝑇
𝑛
16

+ 𝑇
𝑛
16

+
𝑛
4

"
𝑇

𝑛
16 + 𝑇

𝑛
16 + 𝑇

𝑛
16 +

𝑛
4

"

Tree Method Practice

35

𝑇 𝑛 =
4 𝑤ℎ𝑒𝑛 𝑛 ≤ 1

3𝑇
𝑛
4 + 𝑛8 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

n8

n
4

8

… …

n
4

8 n
4

8

𝑇
𝑛
16 𝑇

𝑛
16

𝑇
𝑛
16 𝑇

𝑛
16 𝑇

𝑛
16

𝑇
𝑛
16 𝑇

𝑛
16 𝑇

𝑛
16

𝑇
𝑛
16

… … …… … …… … …… … …… … …… … …… … …… … ……

4 4

Answer the following
questions:
1. What is the size of the

input on level 𝑖?
2. What is the work

done by each node
on the 𝑖23 recursive
level

3. What is the number
of nodes at level 𝑖?

4. What is the total work
done at the i^th
recursive level?

5. What value of 𝑖 does
the last level occur?

6. What is the total work
across the base case
level?

EXAMPLE MODIFIED FROM PROVIDED BY CS 161 – JESSICA SU
HTTPS://WEB.STANFORD.EDU/CLASS/ARCHIVE/CS/CS161/CS161.1168/LECTURE3.PDF

𝑛
16

8 𝑛
16

8 𝑛
16

8 𝑛
16

8 𝑛
16

8 𝑛
16

8 𝑛
16

8 𝑛
16

8 𝑛
16

8

https://web.stanford.edu/class/archive/cs/cs161/cs161.1168/lecture3.pdf

Tree Method Practice

CSE 373 SP 18 - KASEY CHAMPION 36

Level (i) Number of
Nodes

Work per
Node

Work per
Level

0 1 𝑛2 𝑛2

1 3 𝑛
4

! 3
4!
𝑛!

2 9 𝑛
4!

! 3!

4"
𝑛!

base 3#$%!& 4 4 ∗ 3#$%!&

1. What is the size of the input on level 𝑖?

2. What is the work done by each node on the 𝑖23
recursive level?

3. What is the number of nodes at level 𝑖?

4. What is the total work done at the 𝑖45recursive
level?

5. What value of 𝑖 does the last level occur?

6. What is the total work across the base case
level?

𝑛
4+

𝑛
4+

8

𝑇 𝑛 =
4 𝑤ℎ𝑒𝑛 𝑛 ≤ 1

3𝑇
𝑛
4 + 𝑛8 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Combining it all together…

3+

3+
𝑛
4+

8
=

3
16

+
𝑛8

𝑇 𝑛 = U
+,6

#$%" 7 .(3
16

+
𝑛8 + 4𝑛#$%#?

7
'$
= 1à 𝑛 = 4+à 𝑖 = log' 𝑛

power of a log

𝑥#$%! 9 = 𝑦#$%! :
4 ⋅ 𝑛#$%" ?

5 Minutes

3#$%" 7 ⋅ 4

Tree Method Practice

CSE 373 SP 18 - KASEY CHAMPION 37

𝑇 𝑛 = U
+,6

#$%" 7 .(3
16

+

𝑛8 + 4𝑛#$%#?

𝑇 𝑛 = 𝑛8
3
16

#$%" 7
− 1

3
16 − 1

+ 4𝑛#$%#?

𝑇 𝑛 ∈ Θ(𝑛8)

U
+,&

"

𝑐𝑓(𝑖) = 𝑐U
+,&

"

𝑓(𝑖)

factoring out a
constant

𝑇 𝑛 = 𝑛8 U
+,6

#$%" 7 .(3
16

+
+ 4𝑛#$%#?

U
+,6

7.(

𝑥+ =
𝑥7 − 1
𝑥 − 1

finite geometric series

So what’s the big-Θ…

𝑇 𝑛 = 𝑛8 −
16
13

3
16

#$%" 7
+

16
13 𝑛8 + 4𝑛#$%#?

Closed form:

𝑇 𝑛 = 𝑛8 −
16
13 𝑛 #$%"

?
() +

16
13 𝑛8 + 4𝑛#$%#?

Identities are on the webpage.
You don’t need to memorize them.

https://courses.cs.washington.edu/courses/cse373/19su/resources/

More Tree Method

𝑇 𝑛 = $6𝑇
𝑛
2
+ 2𝑛 if 𝑛 > 8

3 otherwise

Tree Method Practice 𝑇 𝑛 = $6𝑇
𝑛
2
+ 2𝑛 if 𝑛 > 8

3 otherwise

Answer the following
questions:
1. What is the size of the

input on level 𝑖?
2. What is the work

done by each node
on the 𝑖23 recursive
level

3. What is the number
of nodes at level 𝑖?

4. What is the total work
done at the i^th
recursive level?

5. What value of 𝑖 does
the last level occur?

6. What is the total work
across the base case
level?

Tree Method Practice

CSE 373 SP 18 - KASEY CHAMPION 40

Level (i) Number of
Nodes

Work per
Node

Work per
Level

0 1 2𝑛 2𝑛

1 2
2𝑛
8

&
!

2 4 2
𝑛
8!

𝑛
8

base 2#$%!&'(3
3
2
𝑛(/*

1. What is the size of the input on level 𝑖?

2. What is the work done by each node on the 𝑖23
recursive level?

3. What is the number of nodes at level 𝑖?

4. What is the total work done at the 𝑖45recursive
level?

5. What value of 𝑖 does the last level occur?

6. What is the total work across the base case
level?

𝑛
2+

2
𝑛
2+

Combining it all together…

6+

6+ 2
𝑛
2+

= 2 ⋅ 3+ ⋅ 𝑛

𝑇 𝑛 = U
+,6

#$%#(7) .8

2 ⋅ 3+𝑛 +
1
2𝑛

#$%#)

7
8$
= 2à 𝑛 = 2+B(à 𝑖 = log8(𝑛) − 1

power of a log

𝑥#$%! 9 = 𝑦#$%! :
3 ⋅ 6#$%# 7

6 =
1
2 ⋅ 𝑛

#$%#) =
1
2 ⋅ 𝑛

#$%#)

5 Minutes

6#$%#(7) .(⋅ 3

𝑇 𝑛 = $6𝑇
𝑛
2
+ 2𝑛 if 𝑛 > 2

3 otherwise

𝑇 𝑛 = U
+,6

#$%#(7) .8

2 ⋅ 3+𝑛 +
1
2𝑛

#$%#)

= 2𝑛 U
+,6

#$%#(7).8

3+ +
1
2𝑛

#$%#)

= 2𝑛
3#$%# 7 .(

3 − 1
+
1
2
𝑛#$%#)

= 𝑛 ⋅
𝑛#$%# ?

3 +
1
2𝑛

#$%#)

=
𝑛#$%# ? B(

3 +
1
2𝑛

#$%#)

=
𝑛#$%#)

3 +
1
2𝑛

#$%#) =
5
6𝑛

#$%#)

U
+,6

7.(

𝑥+ =
𝑥7 − 1
𝑥 − 1

finite geometric series

power of a log

𝑥#$%! 9 = 𝑦#$%! :

1 = log8 2

logC 𝑏 + logD 𝑐 = logD(𝑏𝑐)

Summation Practice
public static void primesUpToN(int n) {

System.out.print("1 2 ");
for (int i = 3; i <= n; i++) {

for (int j = 2; j < i; j++){
if (j != i && j % i == 0) {

System.out.print(i + " ");
break;

}
}
System.out.println();

}

CSE 373 SP 19 - KASEY CHAMPION 42

𝑇 𝑛 = 1 + ∑'(E* ∑F("'+, 5 = 1 + ∑'()*+E∑F()'+E 5 = 1 + ∑'()*+E5(𝑖 − 2) = 1 + 5(∑'()*+E 𝑖 −∑'()*+E2) − =1 + 5((*+") *+E" - (n-2)(2))

+1

+1

+1
+4

U
>,8

+.(

5 U
+,?

7

U
>,8

+.(

5

Adjusting
summation

bounds

Summation
of a

constant

Factoring
out a

constant

Gauss’s
identity

