
Lecture 7: Modeling
Complex Code

CSE 373: Data Structures and
Algorithms

1

Warm Up
Which of the following statements are true?

Select all options that apply.

- A Big-Theta bound will exist for every function.

- One possible Best Case for adding to ArrayDeque is when it is empty.

- We only use Big-Omega for Worst Case analysis

- If a function is 𝑂 𝑛! it can’t also be Ω 𝑛! .

2CSE 373 20 SP – CHAMPION & CHUN

All false!

Please fill out the Poll at- pollev.com/21sp373

Announcements
Exercise 1 – Algorithm Analysis – Due Friday April 16th

Project 1 – Deques – Due Wednesday April 14th

3CSE 373 20 SP – CHAMPION & CHUN

Questions

4CSE 373 20 SP – CHAMPION & CHUN

Review Algorithmic Analysis Roadmap

CODE

BEST CASE
FUNCTION

for (i = 0; i < n; i++) {
if (arr[i] == toFind) {

return i;
}

}
return -1;

f(n) = 2

TIGHT
BIG-OH2

TIGHT
BIG-OMEGA

BIG-THETA

O(1)

𝛺(1)

Θ(1)
1 Asymptotic

Analysis

WORST CASE
FUNCTION

OTHER CASE
FUNCTION

Case
Analysis

f(n) = 3n+1

Review Oh, and Omega, and Theta, oh my
Big-Oh is an upper bound
-My code takes at most this long to run

Big-Omega is a lower bound
-My code takes at least this long to run

Big Theta is “equal to”
- My code takes “exactly”* this long to run
- *Except for constant factors and lower order
terms

- Only exists when Big-Oh == Big-Omega!

𝑓(𝑛) is Ω(𝑔 𝑛) if there exist positive constants
𝑐, 𝑛! such that for all 𝑛 ≥ 𝑛!,

𝑓 𝑛 ≥ 𝑐 ⋅ 𝑔 𝑛

Big-Omega

𝑓(𝑛) is Θ(𝑔 𝑛) if
𝑓 𝑛 is 𝑂(𝑔 𝑛) and 𝑓 𝑛 is Ω(𝑔 𝑛).
(in	other	words:	there exist positive constants 𝑐1, c2, 𝑛!
such that for all 𝑛 ≥ 𝑛!)

c1 ⋅ 𝑔 𝑛 ≤ 𝑓 𝑛 ≤ c2 ⋅ 𝑔 𝑛

Big-Theta

𝑓(𝑛) is 𝑂(𝑔 𝑛) if there exist positive
constants 𝑐, 𝑛! such that for all 𝑛 ≥ 𝑛!,

𝑓 𝑛 ≤ 𝑐 ⋅ 𝑔 𝑛

Big-Oh

Review When to do Case Analysis?
Imagine a 3-dimensional plot
- Which case we’re considering is one dimension
- Choosing a case lets us take a “slice” of the other dimensions: n and f(n)
- We do asymptotic analysis on each slice in step 2

f(n) n

toFind position

At front
(Best Case)

Not present
(Worst Case)

8

Modeling Recursive Code

CSE 373 20 SP – CHAMPION & CHUN

Recursive Patterns
Modeling and analyzing recursive code is all about finding patterns in how the input
changes between calls and how much work is done within each call
Let’s explore some of the more common recursive patterns
Pattern #1: Halving the Input
Pattern #2: Constant size input and doing work
Pattern #3: Doubling the Input

9CSE 373 20 SP – CHAMPION & CHUN

Binary Search
public int binarySearch(int[] arr, int toFind, int lo, int hi) {

if(hi < lo) {
return -1;

} if(hi == lo) {
if(arr[hi] == toFind) {

return hi;
}
return -1;

}
int mid = (lo+hi) / 2;
if(arr[mid] == toFind) {

return mid;
} else if(arr[mid] < toFind) {

return binarySearch(arr, toFind, mid+1, hi);
} else {

return binarySearch(arr, toFind, lo, mid-1);
}

}

ROBBIE WEBBER - CSE 373 SU 19

Binary Search Runtime
binary search: Locates a target value in a sorted array or list by successively eliminating half
of the array from consideration.
- Example: Searching the array below for the value 42:

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value -4 2 7 10 15 20 22 25 30 36 42 50 56 68 85 92 103

min mid max

How many elements will be examined?
- What is the best case?

- What is the worst case?
element found at index 8, 1 item examined, O(1)

element not found, ½ elements examined, then ½ of that…

11CSE 373 20 SP – CHAMPION & CHUN

Pattern #1 – Halving the input

Take 1 min to respond to activity

www.pollev.conm/cse373activity
Take a guess! What is the tight Big-O
of worst case binary search?

http://www.pollev.conm/cse373activity

Binary search runtime
For an array of size N, it eliminates ½ until 1
element remains.

N, N/2, N/4, N/8, ..., 4, 2, 1

- How many divisions does it take?

Think of it from the other direction:
- How many times do I have to multiply by 2 to reach N?

1, 2, 4, 8, ..., N/4, N/2, N
- Call this number of multiplications "x".

2x = N
x = log2 N

Binary search is in the logarithmic complexity
class.

Logarithm – inverse of exponentials

Examples:
26 = 4 ⇒ 2 = log6 4

36 = 9 ⇒ 2 = log7 9

0

1

2

3

4

5

6

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Log(n)

CSE 373 SP 20 – CHUN & CHAMPION

𝑦 = log" 𝑥 𝑖𝑠 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝑏# = 𝑥

Moving Forward
While this analysis is correct it relied on our ability to think through the pattern intuitively
This works for binary search, but most recursive code is too complex to rely on our
intuition.
We need more powerful tools to form a proper code model.

intuit
patterns

Binary
search
code

Some constant
number of
operations

O(1)

Ω(1)

Θ(1)

Found in the
middle

Not found Logarithmic

O(logn)

Ω(logn)

Θ(logn)

case
analysis

asymptotic
analysis

CSE 373 SP 20 – CHUN & CHAMPION

Model
Let’s start by just getting a model. Let 𝐹(𝑛) be our model for the worst-case running time of binary
search.
public int binarySearch(int[] arr, int toFind, int lo, int hi) {

if(hi < lo) {
return -1;

} if(hi == lo) {
if(arr[hi] == toFind) {

return hi;
}
return -1;

}
int mid = (lo+hi) / 2;
if(arr[mid] == toFind) {

return mid;
} else if(arr[mid] < toFind) {

return binarySearch(arr, toFind, mid+1, hi);
} else {

return binarySearch(arr, toFind, lo, mid-1);
}

}

14

2

4

6

2 + ??

How do you model
recursive calls?

With a recursive
math function!

CSE 373 SP 20 – CHUN & CHAMPION

Meet the Recurrence
A recurrence relation is an equation that defines a sequence based on a rule that
gives the next term as a function of the previous term(s)
It’s a lot like recursive code:
-At least one base case and at least one recursive case
-Each case should include the values for n to which it corresponds
-The recursive case should reduce the input size in a way that eventually triggers
the base case

-The cases of your recurrence usually correspond exactly to the cases of the code

CSE 373 SP 20 – CHUN & CHAMPION

𝑇 𝑛 = /
5 if 𝑛 < 3

2𝑇
𝑛
2
+ 10 otherwise

Write a Recurrence
public int recursiveFunction(int n){

if(n < 3) {

return 3;

}

for(int int i=0; i < n; i++) {

System.out.println(i);

}

int val1 = recursiveFunction(n/3);

int val2 = recursvieFunction(n/3);

return val1 * val2;

}

𝑇 𝑛 = >
2 if 𝑛 < 3

2𝑇
𝑛
3
+ 𝑛 otherwise

Base Case

Recursive Case
Non-recursive work
Recursive work

2

+n

n+2
2*T(n/3)

CSE 373 SP 20 – CHUN & CHAMPION

Recurrence to Big-Θ

It’s still really hard to tell what the big-O is just by looking at it.

But fancy mathematicians have a formula for us to use!

𝑇 𝑛 = &
2 if 𝑛 < 3

2𝑇
𝑛
3
+ 𝑛 otherwise

𝑇 𝑛 = &
𝑑 if 𝑛 is at most some constant
𝑎𝑇

𝑛
𝑏 + 𝑓 𝑛 otherwise

Where 𝑓 𝑛 is Θ 𝑛"

𝑇 𝑛 ∈ Θ 𝑛"log# 𝑎 < 𝑐
log# 𝑎 = 𝑐 𝑇 𝑛 ∈ Θ 𝑛" log 𝑛
log# 𝑎 > 𝑐 𝑇 𝑛 ∈ Θ 𝑛$%&! '

If

If
If

then

then
then

Master Theorem
a=2	b=3	and	c=1	

logB 2 = 𝑥 ⇒ 3C = 2 ⇒ 𝑥 ≅ 0.63
logB 2 < 1
We’re	in	case	1
𝑇 𝑛 ∈ Θ(𝑛)

𝑦 = log" 𝑥 𝑖𝑠 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝑏# = 𝑥

CSE 373 SP 20 – CHUN & CHAMPION

Understanding Master Theorem
The case
- Recursive case does a lot of non recursive work in

comparison to how quickly it divides the input size
- Most work happens in beginning of call stack
- Non recursive work in recursive case dominates growth, nc

term

The case
- Recursive case evenly splits work between non recursive

work and passing along inputs to subsequent recursive
calls

- Work is distributed across call stack

The case
- Recursive case breaks inputs apart quickly and doesn’t do

much non recursive work
- Most work happens near bottom of call stack

18

log" 𝑎 < 𝑐

log" 𝑎 = 𝑐

log" 𝑎 > 𝑐

𝑇 𝑛 = &
𝑑 if 𝑛 is at most some constant
𝑎𝑇

𝑛
𝑏 + 𝑓 𝑛 otherwise

Where 𝑓 𝑛 is Θ 𝑛"

𝑇 𝑛 ∈ Θ 𝑛"log# 𝑎 < 𝑐
log# 𝑎 = 𝑐 𝑇 𝑛 ∈ Θ 𝑛" log 𝑛
log# 𝑎 > 𝑐 𝑇 𝑛 ∈ Θ 𝑛$%&! '

If

If
If

then

then
then

Master Theorem

§ A measures how many recursive calls are
triggered by each method instance

§ B measures the rate of change for input
§ C measures the dominating term of the non

recursive work within the recursive method
§ D measures the work done in the base case

CSE 373 SP 20 – CHUN & CHAMPION

Questions

19CSE 373 20 SP – CHAMPION & CHUN

Recursive Patterns
Pattern #1: Halving the Input

Pattern #2: Constant size input and doing work

Pattern #3: Doubling the Input

20CSE 373 20 WI – HANNAH TANG

Binary Search Θ(logn)

Merge Sort

Merge Sort

CSE 373 SP 18 - KASEY CHAMPION 21

0 1 2 3 4 5 6 7 8 9

8 2 91 22 57 1 10 6 7 4

Divide

0 1 2 3 4

8 2 91 22 57

5 6 7 8 9

1 10 6 7 4

Conquer
0

8

0

8

0 1 2 3 4

2 8 22 57 91

5 6 7 8 9

1 4 6 7 10

0 1 2 3 4 5 6 7 8 9

1 2 4 6 7 8 10 22 57 91

Combine

Merge Sort

CSE 373 SP 18 - KASEY CHAMPION 22

mergeSort(input) {
if (input.length == 1)

return
else

smallerHalf = mergeSort(new [0, ..., mid])
largerHalf = mergeSort(new [mid + 1, ...])
return merge(smallerHalf, largerHalf)

}

0 1 2 3 4

8 2 57 91 22

0 1

8 2

0 1 2

57 91 22

0

8

0

2

0

57

0 1

91 22

0

91

0

22

0 1

22 91

0 1 2

22 57 91

0 1

2 8

0 1 2 3 4

2 8 22 57 91

1 if n<= 1
2T(n/2) + n otherwiseT(n) =

Pattern #2 – Constant size input and doing work

Take 1 min to respond to activity

www.pollev.conm/cse373activity
Take a guess! What is the Big-O
of worst case merge sort?

http://www.pollev.conm/cse373activity

Merge Sort Recurrence to Big-Θ

𝑇 𝑛 = &
𝑑 if 𝑛 is at most some constant
𝑎𝑇

𝑛
𝑏 + 𝑓 𝑛 otherwise

Where 𝑓 𝑛 is Θ 𝑛"

𝑇 𝑛 ∈ Θ 𝑛"log# 𝑎 < 𝑐
log# 𝑎 = 𝑐 𝑇 𝑛 ∈ Θ 𝑛" log 𝑛
log# 𝑎 > 𝑐 𝑇 𝑛 ∈ Θ 𝑛$%&! '

If

If
If

then

then
then

Master Theorem a=2	b=2	and	c=1	

logD 2 = 𝑥 ⇒ 2C = 2 ⇒ 𝑥 = 1
logD 2 = 1
We’re	in	case	2
𝑇 𝑛 ∈ Θ(𝑛 log 𝑛)

𝑦 = log" 𝑥 𝑖𝑠 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝑏# = 𝑥

CSE 373 SP 20 – CHUN & CHAMPION

1 if n<= 1
2T(n/2) + n otherwise

T(n) =

Questions

24CSE 373 20 SP – CHAMPION & CHUN

Recursive Patterns
Pattern #1: Halving the Input

Pattern #2: Constant size input and doing work

Pattern #3: Doubling the Input

25CSE 373 20 WI – HANNAH TANG

Binary Search Θ(logn)

Merge Sort Θ(nlogn)

Calculating Fibonacci

Calculating Fibonacci
public int fib(int n) {

if (n <= 1) {

return 1;

}

return fib(n-1) + fib(n-1);

}

26CSE 373 20 WI – HANNAH TANG

Almost

f(4)

f(3) f(3)

f(2) f(2) f(2) f(2)

f(1) f(1)f(1) f(1)f(1) f(1)f(1) f(1)

• Each call creates 2 more calls
• Each new call has a copy of the

input, almost
• Almost doubling the input at

each call

Pattern #3 – Doubling the Input

Calculating Fibonacci Recurrence to Big-Θ
public int f(int n) {

if (n <= 1) {

return 1;

}

return f(n-1) + f(n-1);

}

27CSE 373 20 WI – HANNAH TANG

d

2T(n-1) + c

𝑇 𝑛 = M 𝑑 𝑤ℎ𝑒𝑛 𝑛 ≤ 1
2𝑇 𝑛 − 1 + 𝑐 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑇 𝑛 = $
𝑑 if 𝑛 is at most some constant
𝑎𝑇

𝑛
𝑏
+ 𝑓 𝑛 otherwise

Master Theorem

Can we use master theorem?

Uh oh, our model doesn’t match that format…

Maybe geometry can help!

Can we intuit a pattern?
T(1) = d
T(2) = 2T(2-1) + c = 2(d) + c
T(3) = 2T(3-1) + c = 2(2(d) + c) + c = 4d + 3c
T(4) = 2T(4-1) + c = 2(4d + 3c) + c = 8d + 7c
T(5) = 2T(5-1) + c = 2(8d + 7c) + c = 16d +25c
Looks like something’s happening but it’s tough

Take 1 min to respond to activity

www.pollev.conm/cse373activity
Finish the recurrence, what is the
model for the recursive case?

http://www.pollev.conm/cse373activity

Calculating Fibonacci Recurrence to Big-Θ

28CSE 373 20 WI – HANNAH TANG

f(4)

f(3) f(3)

f(2) f(2) f(2) f(2)

f(1) f(1)f(1) f(1)f(1) f(1)f(1) f(1)

𝑇 𝑛 = E 𝑑 𝑤ℎ𝑒𝑛 𝑛 ≤ 1
2𝑇 𝑛 − 1 + 𝑐 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

How many layers in the function call tree?

How many layers will it take to transform
“n” to the base case of “1” by subtracting 1
For our example, 4 -> Height = n

How many function calls per layer?
Layer Function

calls

1 1

2 2

3 4

4 8

How many function calls on layer k?

2k-1

How many function calls TOTAL
for a tree of k layers?

1 + 2 + 3 + 4 + … + 2k-1

Calculating Fibonacci Recurrence to Big-Θ
Patterns found:

29CSE 373 20 SP – CHAMPION & CHUN

How many function calls on layer k? 2k-1

How many function calls TOTAL for a tree of k layers?

1 + 2 + 4 + 8 + … + 2k-1

Total runtime = (total function calls) x (runtime of each function call)

Total runtime = (1 + 2 + 4 + 8 + … + 2k-1) x (constant work)

1 + 2 + 4 + 8 + … + 2k-1 = Q
()*

+,*

2(=
2+ − 1
2 − 1 = 2+ − 1

How many layers in the function call tree? n

𝑻 𝒏 = 𝟐𝒏 − 𝟏 ∈ 𝚯(𝟐𝒏)

Summation Identity
Finite Geometric Series

Q
()*

+,*

𝑥(=
𝑥+ − 1
𝑥 − 1

Recursive Patterns
Pattern #1: Halving the Input

Pattern #2: Constant size input and doing work

Pattern #3: Doubling the Input

30CSE 373 20 WI – HANNAH TANG

Binary Search Θ(logn)

Merge Sort Θ(nlogn)

Calculating Fibonacci Θ(2n)

0

5

10

15

20

25

30

35

1 2 3 4 5

Runtime Comparison

logn nlogn 2^n

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10

Runtime Comparison

logn nlogn 2^n

0

2E+14

4E+14

6E+14

8E+14

1E+15

1.2E+15

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Runtime Comparison

logn nlogn 2^n

