Lecture 7: Modeling | . .somen
COmpleX COde Algorithms

Wa 'm U p Please fill out the Poll at- pollev.com/21sp373

Which of the following statements are true?

Select all options that apply.
A Big-Theta bound will exist for every function.
One possible Best Case for adding to ArrayDeque is when it is empty.
We only use Big-Omega for Worst Case analysis

If a function is 0(n?) it can't also be Q(n?).

All false!

Announcements

Exercise 1— Algorithm Analysis — Due Friday April 16t
Project 1— Deques — Due Wednesday April 14t

Questions

review Algorithmic Analysis Roadmarg

TIGHT
2 BIG-OH

BEST CASE

FUNCTION BIG-THETA

WORST CASE TIGHT
FUNCTION BIG-OMEGA

n n+1

for (i = 0; i < n; i++) {
if (arr[i] == toFind) { OTHER CASE
return i; FUNCTION

}
}

return -1;

review Oh, and Omega, and Theta, oh my

Big-Oh
f(n)is 0(g(n)) if there exist positive

Big-Oh is an upper bound

-My code takes at most this long to run Fads el &0 Sl e o= oy

fn) <c-gn)

Big-Omega is a lower bound

Big-Omega
-My code takes at least this long to run

f(n)is Q(g(n)) if there exist positive constants
c,ng such that for all n > n,,

f(n) =zc-gn)

Big Theta is “equal to"

- My code takes “exactly”* this long to run Big-Theta
- *Except for constant factors and lower order
terms f(n)is O(g(n)) if
-Only exists when Big-Oh == Big-Omegal f(n)is 0(g(n)) and f(n) is Q(gn)).

(in other words: there exist positive constants c1, c2, ng
such that for all n = ng)

cirgn) < f(n)<c,-gn)

review When to do Case Analysis?

Imagine a 3-dimensional plot
- Which case we're considering is one dimension

- Choosing a case lets us take a “slice” of the other dimensions: n and f(n)
- We do asymptotic analysis on each slice in step 2

f(n)

At front

(Best Case)
Not present

(Worst Case) toFind position

— @ Modeling Recursive Code

Recursive Patterns

Modeling and analyzing recursive code is all about finding patterns in how the input
changes between calls and how much work is done within each call

Let's explore some of the more common recursive patterns
Pattern #1: Halving the Input
Pattern #2: Constant size input and doing work

Pattern #3: Doubling the Input

Binary Search

public int binarySearch(int[] arr, int toFind, int lo, int hi) {
if(hi < lo) {
return -1;
} 1if (hi == 1lo) {
if (arr[hi] == toFind) {
return hi;

}

return -1;
}
int mid = (lo+hi) / 2;
if (arr[mid] == toFind) {
return mid;
} else if(arr[mid] < toFind) {
return binarySearch (arr, toFind, mid+1, hi);
} else {
return binarySearch (arr, toFind, lo, mid-1);

Binary Search Runtime

binary search: Locates a target value in a sorted array or list by successively eliminating half
of the array from consideration.
Example: Searching the array below for the value 42:

value |FS4EE2EZASETON ISR 20822 025 1301 | 36 | 42 | 50 |FS6N(N68 N85 NO25 1035

T T T

min mid max

How many elements will be examined?

What is the best case? , ..
element found at index 8, 1item examined, O(1) Take 1 min to respond to activity

i ?
Whatls the worst case . www.pollev.conm/cse373activity
element not found, 72 elements examined, then %2 of that... Take a guess! What is the tight Big-O

Pattern #1 — Halving the input of worst case binary search?

http://www.pollev.conm/cse373activity

Binary search runtime

Logarithm — inverse of exponentials

For an array of size N, it eliminates V2 until 1 y = logp x is equal to b”Y = x
element remains.

N, N/2, N/4, N/8, ..., 4, 2,1 Examples:

How many divisions does it take? 22 — 4 = 2 = log, 4

2 f— p—
Think of it from the other direction: F=U=a=lgt

How many times do | have to multiply by 2 to reach N?
1,2,4,8, ... N/4,N/2, N
Call this number of multiplications "x".

Log(n)

2 =N :
X = log, N 3

Blinary search is in the logarithmic complexity
class. 0

1 3 5 7 91113151719212325272931333537394143454749

Moving Forward

While this analysis is correct it relied on our ability to think through the pattern intuitively

This works for binary search, but most recursive code is too complex to rely on our
Intuition.

We need more powerful tools to form a proper code model.

Found in the
middle

Some constant
number of
operations

Logarithmic

Model

Let's %tart by just getting a model. Let F(n) be our model for the worst-case running time of binary
search.

public int binarySearch(int[] arr, int toFind, int lo, int hi) {
if(hi < lo) { 2
return -1;
} 1if(hi == lo) {
if(arr[hi] == toFind) {
return hi; 4
}
return -1;
}
int mid = (lo+hi) / 2; 6
if (arr[mid] == toFind) { How do you model
return mid; recursive calls?
} else if(arr[mid] < toFind) { 2 +77? . .
return binarySearch (arr, toFind, mid+1, hi); With a recursive

} else { math function!

return binarySearch (arr, toFind, lo, mid-1);

Meet the Recurrence

A recurrence relation is an equation that defines a sequence based on a rule that
gives the next term as a function of the previous term(s)

It's a lot like recursive code:
At least one base case and at least one recursive case

Each case should include the values for n to which it corresponds

The recursive case should reduce the input size in a way that eventually triggers
the base case

The cases of your recurrence usually correspond exactly to the cases of the code

(5 ifn <3

\ZT (g) + 10 otherwise

T(n) = «

Write a Recurrence

public int recursiveFunction (int n) {

if(n < 3) { |

return 3; =— | Base Case 2

} —

for(int int 1=0; 1 < n; 1++) {+n

Recursive Case

System.out.println(1i); —— | Non-recursive work n+2
Recursive work 2*T(n/3)

}

int vall = recursiveFunction (n/3);
2 ifn <3

ZT(g

int val2 = recursvieFunction(n/3); T(n) =
) + n otherwise

return vall * val?2?;

Recurrence to Big-0

2T (—) + n otherwise

2 ifn<3
T(n) = n
3

It's still really hard to tell what the big-O is just by looking at it.

But fancy mathematicians have a formula for us to use!

Master Theorem

if n is at most some constant

d
T(n) = { aT (%) + f(n) otherwise

Where f(n) is ©(n°)

If log,ba<c then T(n)e€oOMn)

If logya=c then T(n)€ O0(nlogn)
If logya>c then T(n)e€ 0(n'°8r4)

a=2b=3and c=1

y = logy x is equal to bY = x
logz2=x=3"=2=x =0.63
log;2 <1
We're in case 1
T(n) € ©(n)

Understanding Master Theorem

Master Theorem
d if n is at most some constant
— n
T'(n) = aT (E) + f(n) otherwise

Where f(n) is ©(n°)

If logpba<c then T(n)e O

If logya=c then T(n)€ O(nlogn)
If log,a>c then T(n)e 0(n'°8r4)

A measures how many recursive calls are
triggered by each method instance

B measures the rate of change for input

C measures the dominating term of the non
recursive work within the recursive method
D measures the work done in the base case

The log, a < ¢ case

Recursive case does a lot of non recursive work in
comparison to how quickly it divides the input size

Most work happens in beginning of call stack

Non recursive work in recursive case dominates growth, n¢
term

The log, a = ¢ case

Recursive case evenly splits work between non recursive
work and passing along inputs to subsequent recursive
calls

Work is distributed across call stack

logy,a > c
The case

Recursive case breaks inEuts apart quickly and doesn’t do
much non recursive wor

Most work happens near bottom of call stack

Questions

CSE 373 20 SP — CHAMPION & CHUN 19

Recursive Patterns

Pattern #1: Halving the Input
Binary Search O(logn)

Pattern #2: Constant size input and doing work
Merge Sort

Pattern #3: Doubling the Input

Merge Sort

Divide
91 22 57 10 6 7 4
8 91 22 57 10 4
Conquer
Combine
2 22 57 91 4 10
4 6 7 10 22 57 91

Merge Sort

mergeSort (input) {
if (input.length == 1)
return
else
smallerHalf = mergeSort (new [0, .., mid])
largerHalf = mergeSort(new [mid + 1, ...])
return merge(smallerHalf, largerHalf)

T(n) = 1lifn<=1
- 2T(n/2) + n otherwise

Pattern #2 — Constant size input and doing work

Take 1 min to respond to activity

www.pollev.conm/cse373activity
Take a guess! What is the Big-O
of worst case merge sort?

57 91 22
57 91 22
57 91 22
91 22
\/
22 91
/
22 57 91
\/
22 57 91

http://www.pollev.conm/cse373activity

Merge Sort Recurrence to Big-©

T(n) {1 if n<=1
2T(n/2) + n otherwise

Master Theorem

if n is at most some constant

d
T(n) = { aT (%) + f(n) otherwise

Where f(n) is ©(n°)

If logyba<c then T(n)e O

If logya=c then T(n)€ O(nlogn)
If logya>c then T(n)€ O(n!8 %)

a=2b=2and c=1

y = logy, x is equal to bY = x
log,2=x=>2*=2=x=1
log, 2 =1
We're in case 2
T(n) € O(nlogn)

Questions

CSE 373 20 SP — CHAMPION & CHUN 24

Recursive Patterns

Pattern #1: Halving the Input
Binary Search O(logn)

Pattern #2: Constant size input and doing work
Merge Sort ©O(nlogn)

Pattern #3: Doubling the Input
Calculating Fibonacci

Calculating Fibonacci

public int fib(int n) {
if (n <= 1) {
return 1;

}
return fib(n-1) + fib(n-1);

* Each call creates 2 more calls

e Each new call has a copy of the
input, almost

* Almost doubling the input at
each call

Uy
Pattern #3 — Doubling the Input | 2S¢

CSE 373 20 WI = HANNAH TANG 26

Calculating Fibonacci Recurrence to Big-0

public int f(int n) { Can we use master theorem?

it (n <= 1) { Master Theorem

return 1; d .
d if n is at most some constant

} T(n) = { aT (g) + f(n) otherwise

return f£(n-1) + £(n-1); 2T(n-1) + ¢
} Uh oh, our model doesn’t match that format...

Can we intuit a pattern?
T(n) = d whenn <1 T(1) =d
W Z12T(n = 1) + ¢ otherwise T(2) =2T(2-1) + ¢ = 2(d) +

T(3) = 2T(3-1) + ¢ = 2(2(d) + ¢) + ¢ = 4d + 3¢
T(4) = 2T(4-1) + c = 2(4d + 3c) + c = 8d + 7c

T(5)-21(5-1) +c = 2(83 + 70+ C - 16d 425¢
Looks like something’s happening but it’s tough

www.pollev.conm/cse373activity Maybe geometry can help!
Finish the recurrence, what is the
model for the recursive case?

http://www.pollev.conm/cse373activity

Calculating Fibonacci Recurrence to Big-0

How many layers in the function call tree?

dwhenn <1

- T(n) = { .
How many layers will it take to transform 2T(n—1) + c otherwise

“n" to the base case of “1” by subtracting 1

For our example, 4 -> Height = n ()

How many function calls per layer?

f(3) f(3)
Layer Function How many function calls on layer k?
calls 9k-1
1 1
» > How many function calls TOTAL f(2) f(2) f(2) f(2)
for a tree of k layers?
3 4
1+2+3+4+..+2k!
: i i) lf 70 [f) J§ fo) B o f o [l o

CSE 373 20 WI = HANNAH TANG 28

Calculating Fibonacci Recurrence to Big-0

Patterns found:

How many layers in the function call tree? n
How many function calls on layer k? 2k1

How many function calls TOTAL for a tree of k layers?
1+2+4+8+...+2K1
Total runtime = (total function calls) x (runtime of each function call)

Total runtime = (1+2 +4 + 8 + ... + 2¥1) x (constant work)

k—1 " Summation Identity
1+2+4+8+ . +2kl= Z 20— 2" -1 — 2k _1q Finite Geometric Series
_ 2—1 k—1 ”
=1 Z ;oxt =1
X =
_ x—1
i=1

T(n) =2"—1 € O(2")

Recursive Patterns

Pattern #1: Halving the Input
Binary Search O(logn)

Pattern #2: Constant size input and doing work

Merge Sort ©O(nlogn)

Pattern #3: Doubling the Input
Calculating Fibonacci O(2")

Runtime Comparison
35
30
25
20
15

logn nlogn 2"n

1200

1000

800

600

400

200

1.2E+15

1E+15

8E+14

6E+14

4E+14

2E+14

0

Runtime Comparison

—|ogn —n|ogn —) N\

Runtime Comparison

1 3 5 7 9 1113151719 21 23 2527 29 31 33 3537 39 41 43 45 47 49

—|ogn —n|ogn —) N\

CSE 373 20 WI = HANNAH TANG 30

