
Lecture 6: Case Analysis CSE 373: Data Structures and
Algorithms

1

Please fill out the Poll at- pollev.com/21sp373

Warm Up!
Which of the following is in
O(n2)? Ω(n2)? Θ(n2)?

2

𝑓(𝑛) ∈ 𝑂(𝑔 𝑛) if there exist positive
constants 𝑐, 𝑛! such that for all 𝑛 ≥ 𝑛!,

𝑓 𝑛 ≤ 𝑐 ⋅ 𝑔 𝑛

Big-O

𝑓(𝑛) ∈ Ω(𝑔 𝑛) if there exist positive
constants 𝑐, 𝑛! such that for all 𝑛 ≥ 𝑛!,

𝑓 𝑛 ≥ 𝑐 ⋅ 𝑔 𝑛

Big-Omega

𝑓(𝑛) ∈ Θ(𝑔 𝑛) if
𝑓 𝑛 is 𝑂(𝑔 𝑛) and 𝑓 𝑛 is Ω(𝑔 𝑛).

Big-Theta

𝑓 𝑛 = 42

𝑓 𝑛 = 5𝑛 + 100

𝑓 𝑛 = 4𝑛" − 2𝑛 + 10

𝑓 𝑛 = 2#

𝑓 𝑛 = 𝑛𝑙𝑜𝑔2(3𝑛)

a.

b.

c.

d.

e.

f(n) ∈ O(n2)

f(n) ∈ O(n2)

f(n) ∈ O(n2)

f(n) ∈ O(n2) f(n) ∈ Ω(n2)

f(n) ∈ Ω(n2)

f(n) ∈ Θ(n2)

CSE 373 SP 20 – CHUN & CHAMPION

Please fill out the Poll at- pollev.com/21sp373

Simplified, tight big-O
In this course, we’ll essentially use:
- Polynomials (𝑛$ where 𝑐 is a constant: e.g. 𝑛, 𝑛%, 𝑛, 1)
- Logarithms log 𝑛
- Exponents (𝑐# where 𝑐 is a constant: e.g. 2#, 3#)
- Combinations of these (e.g. log log 𝑛 , 𝑛 log 𝑛 , log n ")

For this course:
-A “tight big-O” is the slowest growing function among those listed.
-A “tight big-Ω” is the fastest growing function among those listed.
-(A Θ is always tight, because it’s an “equal to” statement)
-A “simplified” big-O (or Omega or Theta)

-Does not have any dominated terms.
-Does not have any constant factors – just the combinations of those functions.

CSE 332 SU 18 - ROBBIE WEBER 3

Announcements
Proj 1 Due Wednesday April 14th
- Partner Project!
- Due Wednesday April 14th

Partners
- Yes, 3 person groups are allowed
- Default is working alone
- Define your own partnerships and groups via Gradescope
- We can assign you a random partner – respond by today

Kasey OH posted
- Wednesdays 11-1
- Thursdays 4-5:30
- Calendly for 1:1s

- Wednesdays 4-5:30
- Fridays 2-4

Lecture Questions Doc

4CSE 373 20 SP – CHAMPION & CHUN

https://forms.gle/TU3Dv3E8WhZZu85t9
http://calendly.com/kasey-champion
https://docs.google.com/document/d/1QKpxbMOASTJsTga_x8eKW4RaGopkTiAhlFnYW2i9Bzw/edit?usp=sharing

P1 Deques

CSE 373 SP 18 - KASEY CHAMPION 5

P1: Deques
Deque ADT: a double-ended queue
- Add/remove from both ends, get in middle

This project builds on ADTs vs. Data Structure
Implementations, Queues, and a little bit of
Asymptotic Analysis
- Practice the techniques and analysis covered in LEC 02 & LEC

03!

3 components:
- Debug ArrayDeque implementation
- Implement LinkedDeque
- Run experiments

DEQUEUE ADT

State
Collection of ordered items
Count of items

Behavior
addFirst(item) add to front
addLast(item) add to end
removeFirst() remove from front
removeLast() remove from end
size() count of items
isEmpty() count is 0?
get(index) get 0-indexed element

ArrayDeque
LinkedDeque

P1: Sentinel Nodes

Reduce code complexity & bugs
Tradeoff: a tiny amount of extra
storage space for more reliable,
easier-to-develop code

Tired of running into these?
Find yourself writing case after case
in your linked node code?

Client View:

Implementation:

[3, 9]Introducing

Sentinel Nodes

P1: Gradescope & Testing
From this project onward, we’ll have some Gradescope-only tests
- Run & give feedback when you submit, but only give a general name!

The practice of reasoning about your code and writing your own tests is crucial
- Use Gradescope tests as a double-check that your tests are thorough
- To debug Gradescope failures, your first step should be writing your own test case

You can submit as many times as you want on Gradescope (we’ll only grade the last
active submission)
- If you’re submitting a lot (more than ~6 times/hr) it will ask you to wait a bit
- Intention is not to get in your way: to give server a break, and guess/check is not usually an effective

way to learn the concepts in these assignments

1. Write
Implementation

2. Think about edge
cases, Write your own

tests
3. Run your own tests

4. Run Gradescope
tests as a double-

check

P1: Working with a Partner
P1 Instructions talk about collaborating with your partner
- Adding each other to your GitLab repos

Recommendations for partner work:
- Pair programming! Talk through and write the code together

- Two heads are better than one, especially when spotting edge cases J

- Meet in real-time! Consider screen-sharing via Zoom
- Be kind! Collaborating in our online quarter can be especially difficult, so please be patient and understanding

– partner projects are usually an awesome experience if we’re all respectful

We expect you to understand the full projects, not just half
- Please don’t just split the projects in half and only do part
- Please don’t come to OH and say “my partner wrote this code, I don’t understand it, can you help me debug

it?”

Questions?

CSE 373 SP 18 - KASEY CHAMPION 10

Big O

CSE 373 19 SU - ROBBIE WEBER

Definition: Big-O
We wanted to find an upper bound on our algorithm’s
running time, but
- We don’t want to care about constant factors.
- We only care about what happens as 𝑛 gets large.

12

𝑓(𝑛) is 𝑂(𝑔 𝑛) if there exist positive
constants 𝑐, 𝑛> such that for all 𝑛 ≥ 𝑛>,

𝑓 𝑛 ≤ 𝑐 ⋅ 𝑔 𝑛

Big-O

We also say that 𝑔 𝑛 “dominates” 𝑓(𝑛)

CSE 332 SU 18 - ROBBIE WEBER

Why 𝑛!?

Why 𝑐?

Note: Big-O definition is just an upper-bound,
not always an exact bound
True or False: 10𝑛" + 15𝑛 is 𝑂(𝑛#)
It’s true – it fits the definition

CSE 332 SU 18 - ROBBIE WEBER 13

10𝑛2 ≤ 𝑐・𝑛3𝑤ℎ𝑒𝑛 𝑐 = 10 𝑓𝑜𝑟 𝑛 ≥ 1
15𝑛 ≤ 𝑐・𝑛3𝑤ℎ𝑒𝑛 𝑐 = 15 𝑓𝑜𝑟 𝑛 ≥ 1
10𝑛2+ 15𝑛 ≤ 10𝑛3+ 15𝑛3 ≤ 25𝑛3 𝑓𝑜𝑟 𝑛 ≥ 1
10𝑛" + 15𝑛 is 𝑂(𝑛%) because 10𝑛" + 15𝑛 ≤ 25𝑛3 𝑓𝑜𝑟 𝑛 ≥ 1

Big-O is just an upper bound that may be loose and not describe the function fully.
For example, all of the following are true:

10𝑛C + 15𝑛 is 𝑂(𝑛D)
10𝑛C + 15𝑛 is 𝑂 𝑛E
10𝑛C + 15𝑛 is 𝑂 𝑛F
10𝑛C + 15𝑛 is 𝑂(𝑛G)
10𝑛C + 15𝑛 is 𝑂(𝑛!) … and so on

This is a big idea!

Note: Big-O definition is just an upper-bound,
not always an exact bound (plots)
What do we want to look for on a plot to determine if one function is in the big-O of the
other?
You can sanity check that your g(n) function (the dominating one) overtakes or is equal to
your f(n) function after some point and continues that greater-than-or-equal-to trend
towards infinity

CSE 373 SP 18 - KASEY CHAMPION 14

10𝑛" + 15𝑛 is 𝑂(𝑛%)
10𝑛" + 15𝑛 is 𝑂 𝑛&
10𝑛" + 15𝑛 is 𝑂 𝑛'

… and so on …

𝑇 𝑛

𝑛

n3

n5

n4

10n2 + 15n

The visual representation
of big-O and

asymptotic analysis is a
big idea!

Tight Big-O Definition Plots
If we want the most-informative upper bound, we’ll ask you for a simplified, tight big-O bound.

𝑂 𝑛! is the tight bound for the function f(n) = 10n2+15n. See the graph below – the tight big-O
bound is the smallest upperbound within the definition of big-O.

Computer scientists It is almost always technically correct to say your code runs in time 𝑂(𝑛!).
(Warning: don’t try this trick in an interview or exam)

If you zoom out a bunch,
the your tight bound and your function will
be overlapping compared to other
complexity classes.

CSE 373 SP 18 - KASEY CHAMPION 15

𝑇 𝑛

𝑛

n2

10n2 + 15n

Uncharted Waters: a different type of code
model
Find a model 𝑓 𝑛 for the running time of this code on input 𝑛. What’s the Big-O?
boolean isPrime(int n){

int toTest = 2;
while(toTest < n){

if(toTest % n == 0) {
return true;

} else {
toTest++;

}
}
return false;

}

Operations per iteration: let’s just call it 1 to keep all the future slides simpler.

Number of iterations?
- Smallest divisor of 𝑛

CSE 332 SU 18 - ROBBIE WEBER 16

Remember, 𝑓(𝑛) = the
number of basic operations
performed on the input 𝑛.

Prime Checking Runtime

CSE 332 SU 18 - ROBBIE WEBER 17

Is the running time of
the code 𝑂 1 or 𝑂 𝑛 ?

More than half the time
we need 3 or fewer
iterations. Is it 𝑂(1)?

But there’s still always
another number where
the code takes 𝑛
iterations. So 𝑂 𝑛 ?

This is why we have definitions!

𝑓(𝑛)

Big-O isn’t everything
Our prime finding code is 𝑂(𝑛). But so is, for example, printing all the elements of a list.

CSE 332 SU 18 - ROBBIE WEBER 18

Your experience running these two pieces of code is going to be very different.
It’s disappointing that the 𝑂() are the same – that’s not very precise.
Could we have some way of pointing out the list code always takes AT LEAST 𝑛 operations?

𝑂(𝑛) 𝑂(𝑛)

Big-Ω [Omega]

CSE 332 SU 18 - ROBBIE WEBER 19

𝑓(𝑛) is Ω(𝑔 𝑛) if there exist positive
constants 𝑐, 𝑛! such that for all 𝑛 ≥ 𝑛>,

𝑓 𝑛 ≥ 𝑐 ⋅ 𝑔 𝑛

Big-Omega

𝑂(𝑛)

Ω(1)

The formal definition of Big-Omega is the
flipped version of Big-Oh.

When we make Big-Oh statements about a
function and say f(n) is O(g(n)) we’re saying
that f(n) grows at most as fast as g(n).

But with Big-Omega statements like f(n) is
Ω(g(n)), we’re saying that f(n) will grows at
least as fast as g(n).

Visually: what is the lower limit of this function?
What is bounded on the bottom by?

Big-Omega definition Plots
2𝑛& is Ω(1)
2𝑛& is Ω(n)
2𝑛& is Ω(𝑛')
2𝑛& is Ω(𝑛&)

2𝑛& is lowerbounded by all the complexity classes listed above (1, n, 𝑛', 𝑛&)

CSE 373 SP 18 - KASEY CHAMPION 20

𝑇 𝑛

𝑛

2n3

n2

n

1

n3

O, and Omega, and Theta [oh my?]
Big-O is an upper bound
-My code takes at most this long to run

Big-Omega is a lower bound
-My code takes at least this long to run

Big Theta is “equal to”
- My code takes “exactly”* this long to run
- *Except for constant factors and lower order terms

CSE 332 SU 18 - ROBBIE WEBER 21

𝑓(𝑛) is Ω(𝑔 𝑛) if there exist positive constants
𝑐, 𝑛" such that for all 𝑛 ≥ 𝑛",

𝑓 𝑛 ≥ 𝑐 ⋅ 𝑔 𝑛

Big-Omega

𝑓(𝑛) is Θ(𝑔 𝑛) if
𝑓 𝑛 is 𝑂(𝑔 𝑛) and 𝑓 𝑛 is Ω(𝑔 𝑛).
(in	other	words:	there exist positive constants 𝑐1, c2, 𝑛#
such that for all 𝑛 ≥ 𝑛#)

c1 ⋅ 𝑔 𝑛 ≤ 𝑓 𝑛 ≤ c2 ⋅ 𝑔 𝑛

Big-Theta

𝑓(𝑛) is 𝑂(𝑔 𝑛) if there exist positive
constants 𝑐, 𝑛" such that for all 𝑛 ≥ 𝑛",

𝑓 𝑛 ≤ 𝑐 ⋅ 𝑔 𝑛

Big-O

O, and Omega, and Theta [oh my?]
Big Theta is “equal to”
- My code takes “exactly”* this long to run
- *Except for constant factors and lower order terms

CSE 332 SU 18 - ROBBIE WEBER 22

𝑓(𝑛) is Θ(𝑔 𝑛) if
𝑓 𝑛 is 𝑂(𝑔 𝑛) and 𝑓 𝑛 is Ω(𝑔 𝑛).
(in	other	words:	there exist positive constants 𝑐1, c2, 𝑛#
such that for all 𝑛 ≥ 𝑛#)

c1 ⋅ 𝑔 𝑛 ≤ 𝑓 𝑛 ≤ c2 ⋅ 𝑔 𝑛

Big-Theta

𝑂(𝑛) Ω(n) Θ(𝑛)

f(n) = n

To define a big-Theta, you expect the
tight big-Oh and tight big-Omega
bounds to be touching on the graph
(meaning they’re the same complexity
class)

Examples
4n2 ∈ Ω(1)

true
4n2 ∈ Ω(n)
true
4n2 ∈ Ω(n2)

true
4n2 ∈ Ω(n3)
false
4n2 ∈ Ω(n4)

false

CSE 332 SU 18 - ROBBIE WEBER 23

4n2 ∈ O(1)

false
4n2 ∈ O(n)
false
4n2 ∈ O(n2)

true
4n2 ∈ O(n3)
true
4n2 ∈ O(n4)

true

𝑓(𝑛) ∈ 𝑂(𝑔 𝑛) if there exist positive
constants 𝑐, 𝑛! such that for all 𝑛 ≥ 𝑛!,

𝑓 𝑛 ≤ 𝑐 ⋅ 𝑔 𝑛

Big-O

𝑓(𝑛) ∈ Ω(𝑔 𝑛) if there exist positive
constants 𝑐, 𝑛! such that for all 𝑛 ≥ 𝑛!,

𝑓 𝑛 ≥ 𝑐 ⋅ 𝑔 𝑛

Big-Omega

𝑓(𝑛) ∈ Θ(𝑔 𝑛) if
𝑓 𝑛 is 𝑂(𝑔 𝑛) and 𝑓 𝑛 is Ω(𝑔 𝑛).

Big-Theta

Our Upgraded Tool: Asymptotic Analysis

TIGHT

BIG-OH

RUNTIME

FUNCTION
Asymptotic
Analysis

2 O(n2)

TIGHT

BIG-OMEGA Ω(n2)

BIG-THETA Θ(n2)

f(n) = 10n2 + 13n + 2

We’ve upgraded our Asymptotic Analysis tool to convey more useful information! Having 3 different types of bounds
means we can still characterize the function in simple terms, but describe it more thoroughly than just Big-Oh.

Our Upgraded Tool: Asymptotic Analysis

TIGHT

BIG-OH

RUNTIME

FUNCTION
Asymptotic
Analysis

2 O(n)

𝑓(𝑛)
TIGHT

BIG-OMEGA Ω(1)

BIG-THETA
Does not exist for
this function

isPrime()
Big-Theta doesn’t always exist for every function! But the information that Big-
Theta doesn’t exist can itself be a useful characterization of the function.

Algorithmic Analysis Roadmap

CODE Code Modeling
RUNTIME

FUNCTION

1

for (i = 0; i < n; i++) {
a[i] = 1;
b[i] = 2;

}

f(n) = 2n

TIGHT

BIG-OH

Asymptotic
Analysis

2

TIGHT

BIG-OMEGA

BIG-THETA

O(n)

Ω(n)

Θ(n)

We just finished building this tool to
characterize a function in terms of some
useful bounds!

Now, let’s look at this tool in more
depth. How exactly are we coming
up with that function?

Case Analysis

CSE 373 SP 18 - KASEY CHAMPION 27

Case Study: Linear Search

int linearSearch(int[] arr, int toFind) {
for (int i = 0; i < arr.length; i++) {
if (arr[i] == toFind) {

return i;
}

}
return -1;

}

2 3 9 4 5arr

toFind 2

2 3 9 4 5arr

toFind 8

i

i

The number of operations doesn’t depend just on 𝑛.
Even once you fix 𝑛 (the size of the array) there are still a
number of cases to consider.

If toFind is in arr[0], we’ll only need one iteration,
𝑓 𝑛 = 4.
If toFind is not in arr, we’ll need 𝑛 iterations. 𝑓 𝑛 =
3𝑛 + 1.
And there are a bunch of cases in-between.

Best Case Worst Case
On Lucky Earth On Unlucky Earth (where it’s 2020 every year)

2 3 9 4 5arr

toFind 2

i
2 3 9 4 5arr

toFind 8

i

f(n) = 3n + 1f(n) = 2

O(1) Ω(1)Θ(1) O(n) Ω(n)Θ(n)
After asymptotic analysis:After asymptotic analysis:

Case Analysis
Case: a description of inputs/state for an algorithm that is specific enough to build
a code model (runtime function) whose only parameter is the input size
- Case Analysis is our tool for reasoning about all variation other than n!
- Occurs during the code à function step instead of function à O/Ω/Θ step!

• (Best Case: fastest/Worst Case: slowest) that our
code could finish on input of size n.

• Importantly, any position of toFind in arr could be
its own case!
• For this simple example, probably don’t care

(they all still have bound O(n))
• But intermediate cases will be important later

Worst

Best

Other Cases

Caution! !

Keep separate the ideas of best/worse case and 𝑂,Ω, Θ.

Big-𝑂 is an upper bound, regardless of whether we’re doing worst or best-case
analysis.

Worst case vs. best case is a question once we’ve fixed 𝒏 to choose the state of our
data that decides how the code will evolve.

What is the exact state of our data structure, which value did we choose to insert?
𝑂,Ω, Θ are choices of how to summarize the information in the model.

CSE 373 19 SU - ROBBIE WEBER

Big-O Big-Omega Big-Theta
Worst Case No matter what, as 𝑛

gets bigger, the code
takes at most this much
time

Under certain
circumstances, as 𝑛
gets bigger, the code
takes at least this
much time

On the worst input, as 𝑛
gets bigger, the code
takes precisely this
much time (up to
constants).

Best Case Under certain
circumstances, even as 𝑛
gets bigger, the code
takes at most this much
time.

No matter what, even
as 𝑛 gets bigger, the
code takes at least this
much time.

On the best input, even
as 𝑛 gets bigger, the
code takes precisely this
much time (up to
constants)

“worst input”: input that causes the code to run slowest.
CSE 373 19 SU - ROBBIE WEBER

Other cases
“Assume X won’t happen case”
-Assume our array won’t need to resize is the most common.
“Average case”
-Assume your input is random
-Need to specify what the possible inputs are and how likely they are.
-𝑓(𝑛) is now the average number of steps on a random input of size 𝑛.
“In-practice case”
-This isn’t a real term. (I just made it up)
- Make some reasonable assumptions about how the real-world is probably going to work

-We’ll tell you the assumptions, and won’t ask you to come up with these assumptions on
your own.

-Then do worst-case analysis under those assumptions.

All of these can be combined with any of 𝑂, Ω, and Θ!

CSE 373 19 SU - ROBBIE WEBER

How to do case analysis
1. Look at the code, understand how thing could change depending on the input.
- How can you exit loops early?
- Can you return (exit the method) early?
- Are some if/else branches much slower than others?

2. Figure out what inputs can cause you to hit the (best/worst) parts of the code.
3. Now do the analysis like normal!

CSE 373 19 SU - ROBBIE WEBER

Algorithmic Analysis Roadmap

CODE

BEST CASE

FUNCTION

for (i = 0; i < n; i++) {
if (arr[i] == toFind) {

return i;
}

}
return -1;

f(n) = 2

TIGHT

BIG-OH2

TIGHT

BIG-OMEGA

BIG-THETA

O(n)

Ω(n)

Θ(n)

1

Asymptotic
Analysis

WORST CASE

FUNCTION

OTHER CASE

FUNCTION

Case
Analysis

f(n) = 3n+1

