
Lecture 5: Asymptotic
Analysis II

CSE 373: Data Structures and
Algorithms

1

Please fill out the Poll at- pollev.com/21sp373

Warm Up

2CSE 373 20 SP – CHAMPION & CHUN

public void mystery2(ArrayList<String> list) {

for (int i = 0; i < list.size(); i++) {

for (int j = 0; j < list.size(); j++) {

System.out.println(list.get(0));

}

}

}

+2
n(2)

Possible answer
T(n) = 4n2

n(n(2))

Construct a mathematical function modeling the runtime for
the following functions

Approach
-> start with basic operations, work inside
out for control structures
- Each basic operation = +1
- Conditionals = test operations +

appropriate branch
- Loop = iterations (loop body)

Please fill out the Poll at-
pollev.com/21sp373

Announcements
Proj 0 – 143 Review Project Due Tonight 11:59pm PST
Proj 1 Releases Tonight
- Partner Project!
- Due Wednesday April 14th

Partners
- Yes, 3 person groups are allowed
- Default is working alone
- Define your own partnerships and groups via Gradescope
- We can assign you a random partner

Kasey OH posted
- Wednesdays 11-1
- Thursdays 4-5:30
- Calendly for 1:1s

- Wednesdays 4-5:30
- Fridays 2-4

Lecture Questions Doc

3CSE 373 20 SP – CHAMPION & CHUN

https://forms.gle/TU3Dv3E8WhZZu85t9
http://calendly.com/kasey-champion
https://docs.google.com/document/d/1QKpxbMOASTJsTga_x8eKW4RaGopkTiAhlFnYW2i9Bzw/edit?usp=sharing

Questions?

CSE 373 SP 18 - KASEY CHAMPION 4

Iterators

CSE 373 SU 19 - ROBBIE WEBER 5

Traversing Data
We could get through the data much more efficiently in the Linked List class itself.

Node curr = this.front;

while(curr!=null){
System.out.println(curr.data);
curr = curr.next;

}

What if the client wants to do something other than just print?
We should provide giving each element in order as a service to client classes.

for (T item : list) {

System.out.println(item);

}

CSE 373 SU 19 - ROBBIE WEBER 6

Iterator!

Review: Iterators
iterator: a Java interface that dictates how a collection of data should be traversed. Can only
move in the forward direction and in a single pass.

7

Iterator Interface

hasNext() – true if elements
remain
next() – returns next element

behavior

supported operations:
hasNext() – returns true if the iteration has more elements yet to be
examined
next() – returns the next element in the iteration and moves the
iterator forward to next item

ArrayList<Integer> list = new ArrayList<Integer>();
//fill up list

Iterator itr = list.iterator();
while (itr.hasNext()) {

int item = itr.next();
}

ArrayList<Integer> list = new ArrayList<Integer>();
//fill up list

for (int i : list) {
int item = i;

}

CSE 373 SU 19 - ROBBIE WEBER

Implementing an Iterator

8CSE 373 SU 19 - ROBBIE WEBER

Usually: you’ll have a private class for the iterator object.
That iterator class will have a class variable to remember where you are.
hasNext() – check if there’s something left by examining the class variable.
next() – return the current thing and update the class variable.

You have a choice:
- Variable might point to the thing you just processed
- Or the next thing that would be returned.

Both will work, one might be easier to think about/code up in some instances than others.
Punchline: Iterators make your client’s code more efficient (which is what they care about)

Big O

CSE 373 19 SU - ROBBIE WEBER

Code to Big-Oh

10CSE 373 20 AU – SCHAFER

143 general patterns: “O(1) constant is no loops, O(n) is one loop, O(n2) is nested loops”
- This is still useful!
- But in 373 we’ll go much more in depth: we can explain more about why, and how to handle more complex

cases when they arise (which they will!)

CODE BIG-OH

for (i = 0; i < n; i++) {
a[i] = 1;
b[i] = 2;

}

O(n)

Meet Algorithmic Analysis

11CSE 373 20 AU – SCHAFER

COMPLEXITY

CLASSCODE Code Modeling
RUNTIME

FUNCTION Asymptotic Analysis

Algorithmic Analysis: The overall process of characterizing code with a complexity class,
consisting of:
- Code Modeling: Code à Function describing code’s runtime
- Asymptotic Analysis: Function à Complexity class describing asymptotic behavior

1 2

for (i = 0; i < n; i++) {
a[i] = 1;
b[i] = 2;

}

O(n)f(n) = 2n

Code Modeling Example 2

12CSE 373 20 AU – SCHAFER

public void method2(int n) {
int sum = 0;
int i = 0;
while (i < n) {

int j = 0;
while (j < n) {

if (j % 2 == 0) {
// do nothing

}
sum = sum + (i * 3) + j;
j = j + 1;

}
i = i + 1;

} return sum;
}

+1
+1

+1

+2

+1

+9 *n

This inner loop
runs n times

f(n) = (9n+4)n + 3

+1
+1

+2

+2

+4

9n + 4 *n

This outer loop
runs n times

Where are we?

13CSE 373 20 AU – SCHAFER

We just turned a piece of code into a function!
- We’ll look at better alternatives for code modeling later

Now to focus on step 2, asymptotic analysis

COMPLEXITY
CLASSCODE Code Modeling

RUNTIME

FUNCTION Asymptotic Analysis

1 2

for (i = 0; i < n; i++) {
a[i] = 1;
b[i] = 2;

}

O(n)f(n) = 2n

Finding a Big Oh

14CSE 373 20 AU – SCHAFER

We have an expression for 𝑓(𝑛). How do we get the
𝑂() that we’ve been talking about?

1. Find the “dominating term” and delete all others.
- The “dominating” term is the one that is largest as 𝑛 gets bigger.

In this class, often the largest power of 𝑛.

2. Remove any constant factors.
= 9n2 + 3n + 3

≈ 9n2

≈ n2

f(n) is O(n2)

f(n) = (9n+3)n + 3

COMPLEXITY
CLASS

RUNTIME

FUNCTION Asymptotic Analysis

2

Can we really throw away all that info?

15CSE 373 20 SP – CHAMPION & CHUN

Big-Oh is like the “significant digits” of computer science
Asymptotic Analysis: Analysis of function behavior as its input approaches infinity
- We only care about what happens when n approaches infinity
- For small inputs, doesn’t really matter: all code is “fast enough”
- Since we’re dealing with infinity, constants and lower-order terms don’t meaningfully add to the final

result. The highest-order term is what drives growth!

Simple
We don’t care about tiny differences in
implementation, want the big picture result

Decisive
Produce a clear comparison indicating
which code takes “longer”

Remember our goals:

Function growth

CSE 332 SU 18 - ROBBIE WEBER16

…but since both are linear
eventually look similar at large
input sizes

whereas h(n) has a distinctly
different growth rate

The growth rate for f(n) and
g(n) looks very different for
small numbers of input

But for very small input values
h(n) actually has a slower growth
rate than either f(n) or g(n)

Imagine you have three possible algorithms to choose between.
Each has already been reduced to its mathematical model 𝑓 𝑛 = 𝑛 𝑔 𝑛 = 4𝑛 ℎ 𝑛 = 𝑛!

𝑇 𝑛

𝑛

𝑇 𝑛

𝑛

𝑇 𝑛

𝑛

Definition: Big-O
We wanted to find an upper bound on our algorithm’s
running time, but
- We don’t want to care about constant factors.
- We only care about what happens as 𝑛 gets large.

17

𝑓(𝑛) is 𝑂(𝑔 𝑛) if there exist positive
constants 𝑐, 𝑛(such that for all 𝑛 ≥ 𝑛(,

𝑓 𝑛 ≤ 𝑐 ⋅ 𝑔 𝑛

Big-O

We also say that 𝑔 𝑛 “dominates” 𝑓(𝑛)

CSE 332 SU 18 - ROBBIE WEBER

Why 𝑛!?

Why 𝑐?

Applying Big O Definition

CSE 332 SU 18 - ROBBIE WEBER 18

𝑓 𝑛 = 10𝑛 + 15 𝑂 𝑛Show that is

𝑓(𝑛) is 𝑂(𝑔 𝑛) if there exist positive
constants 𝑐, 𝑛" such that for all 𝑛 ≥ 𝑛",

𝑓 𝑛 ≤ 𝑐 ⋅ 𝑔 𝑛

Big-O

Apply definition term by term

10𝑛 ≤ 𝑐・𝑛 when 𝑐 = 10 for all values of 𝑛

15 ≤ 𝑐・𝑛 when 𝑐 = 15 𝑓𝑜𝑟 𝑛 ≥ 1

Add up all your truths

10𝑛 + 15 ≤ 10𝑛 + 15𝑛 = 25𝑛 for 𝑛 ≥ 1

Select values for 𝑐 and 𝑛" and prove they fit the definition
Take 𝒄 = 𝟐𝟓 and 𝒏𝟎 = 𝟏
10𝑛 ≤ 10𝑛 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑛
15 ≤ 15𝑛 𝑓𝑜𝑟 𝑛 ≥ 1
So 10𝑛 + 15 ≤ 25𝑛 for all 𝑛 ≥ 1, as required.
because a 𝑐 and 𝑛" exist, 𝑓(𝑛) is 𝑂(𝑛)

Exercise: Proving Big O
Demonstrate that 5𝑛2 + 3𝑛 + 6 is dominated by 𝑛2
(i.e. that 5𝑛" + 3𝑛 + 6 is 𝑂 𝑛" , by finding a 𝑐 and 𝑛0
that satisfy the definition of domination

5n2 + 3n + 6 ≤ 5n2 + 3n2 + 6n2 when n ≥ 1
5n2 + 3n2 + 6n2 = 14n2

5n2 + 3n + 6 ≤ 14n2 for n ≥ 1
14n2 ≤ c*n2 for c = ? n >= ?
𝒄 = 14 & 𝒏𝟎 = 1

CSE 332 SU 18 - ROBBIE WEBER 19

𝑓(𝑛) is 𝑂(𝑔 𝑛) if there exist positive
constants 𝑐, 𝑛" such that for all 𝑛 ≥ 𝑛",

𝑓 𝑛 ≤ 𝑐 ⋅ 𝑔 𝑛

Big-O

Writing Big-O proofs.
Steps to a big-O proof, to show 𝑓 𝑛 is 𝑂 𝑔 𝑛 .
1. Find a 𝑐, 𝑛# that fit the definition for each of the terms of 𝑓.
- Each of these is a mini, easier big-O proof.

2. Add up all your 𝑐, take the max of your 𝑛#.
3. Add up all your inequalities to get the final inequality you want.
4. Clearly tell us what your 𝑐 and 𝑛# are!
For any big-O proof, there are many 𝑐 and 𝑛# that work.
You might be tempted to find the smallest possible 𝑐 and 𝑛# that work.
You might be tempted to just choose 𝑐 = 1,000,000,000 and 𝑛# = 73,000,000 for all the proofs.
Don’t do either of those things.
A proof is designed to convince your reader that something is true. They should be able to easily
verify every statement you make. – We don’t care about the best 𝑐, just an easy-to-understand one.
We have to be able to see your logic at every step.

CSE 332 SU 18 - ROBBIE WEBER 20

Edge Cases
True or False: 10𝑛" + 15𝑛 is 𝑂(𝑛$)
It’s true – it fits the definition

CSE 332 SU 18 - ROBBIE WEBER 21

10𝑛2 ≤ 𝑐・𝑛3𝑤ℎ𝑒𝑛 𝑐 = 10 𝑓𝑜𝑟 𝑛 ≥ 1
15𝑛 ≤ 𝑐・𝑛3𝑤ℎ𝑒𝑛 𝑐 = 15 𝑓𝑜𝑟 𝑛 ≥ 1
10𝑛2+ 15𝑛 ≤ 10𝑛3+ 15𝑛3 ≤ 25𝑛3 𝑓𝑜𝑟 𝑛 ≥ 1
10𝑛! + 15𝑛 is 𝑂(𝑛$) because 10𝑛! + 15𝑛 ≤ 25𝑛3 𝑓𝑜𝑟 𝑛 ≥ 1

Big-O is just an upper bound. It doesn’t have to be a good upper bound

If we want the best upper bound, we’ll ask you for a simplified, tight big-O bound.
𝑂 𝑛! is the tight bound for this example.
It is (almost always) technically correct to say your code runs in time 𝑂(𝑛!).
DO NOT TRY TO PULL THIS TRICK IN AN INTERVIEW (or exam).

Note: Big-O definition is just an upper-bound,
not always an exact bound
True or False: 10𝑛" + 15𝑛 is 𝑂(𝑛$)
It’s true – it fits the definition

CSE 332 SU 18 - ROBBIE WEBER 22

10𝑛2 ≤ 𝑐・𝑛3𝑤ℎ𝑒𝑛 𝑐 = 10 𝑓𝑜𝑟 𝑛 ≥ 1
15𝑛 ≤ 𝑐・𝑛3𝑤ℎ𝑒𝑛 𝑐 = 15 𝑓𝑜𝑟 𝑛 ≥ 1
10𝑛2+ 15𝑛 ≤ 10𝑛3+ 15𝑛3 ≤ 25𝑛3 𝑓𝑜𝑟 𝑛 ≥ 1
10𝑛! + 15𝑛 is 𝑂(𝑛$) because 10𝑛! + 15𝑛 ≤ 25𝑛3 𝑓𝑜𝑟 𝑛 ≥ 1

Big-O is just an upper bound that may be loose and not describe the function fully.
For example, all of the following are true:

10𝑛Q + 15𝑛 is 𝑂(𝑛R)
10𝑛Q + 15𝑛 is 𝑂 𝑛S
10𝑛Q + 15𝑛 is 𝑂 𝑛T
10𝑛Q + 15𝑛 is 𝑂(𝑛U)
10𝑛Q + 15𝑛 is 𝑂(𝑛!) … and so on

This is a big idea!

Note: Big-O definition is just an upper-bound,
not always an exact bound (plots)
What do we want to look for on a plot to determine if one function is in the big-O of the
other?
You can sanity check that your g(n) function (the dominating one) overtakes or is equal to
your f(n) function after some point and continues that greater-than-or-equal-to trend
towards infinity

CSE 373 SP 18 - KASEY CHAMPION 23

10𝑛! + 15𝑛 is 𝑂(𝑛$)
10𝑛! + 15𝑛 is 𝑂 𝑛%
10𝑛! + 15𝑛 is 𝑂 𝑛&

… and so on …

𝑇 𝑛

𝑛

n3

n5

n4

10n2 + 15n

The visual representation
of big-O and

asymptotic analysis is a
big idea!

Tight Big-O Definition Plots
If we want the most-informative upper bound, we’ll ask you for a simplified, tight big-O bound.

𝑂 𝑛$ is the tight bound for the function f(n) = 10n2+15n. See the graph below – the tight big-O
bound is the smallest upperbound within the definition of big-O.

Computer scientists It is almost always technically correct to say your code runs in time 𝑂(𝑛!).
(Warning: don’t try this trick in an interview or exam)

If you zoom out a bunch,
the your tight bound and your function will
be overlapping compared to other
complexity classes.

CSE 373 SP 18 - KASEY CHAMPION 24

𝑇 𝑛

𝑛

n2

10n2 + 15n

Questions?

CSE 373 SP 18 - KASEY CHAMPION 25

Uncharted Waters: a different type of code
model
Find a model 𝑓 𝑛 for the running time of this code on input 𝑛. What’s the Big-O?
boolean isPrime(int n){

int toTest = 2;
while(toTest < n){

if(toTest % n == 0) {
return true;

} else {
toTest++;

}
}
return false;

}

Operations per iteration: let’s just call it 1 to keep all the future slides simpler.

Number of iterations?
- Smallest divisor of 𝑛

CSE 332 SU 18 - ROBBIE WEBER 26

Remember, 𝑓(𝑛) = the
number of basic operations
performed on the input 𝑛.

Prime Checking Runtime

CSE 332 SU 18 - ROBBIE WEBER 27

Is the running time of
the code 𝑂 1 or 𝑂 𝑛 ?

More than half the time
we need 3 or fewer
iterations. Is it 𝑂(1)?

But there’s still always
another number where
the code takes 𝑛
iterations. So 𝑂 𝑛 ?

This is why we have definitions!

𝑓(𝑛)

CSE 332 SU 18 - ROBBIE WEBER 28

𝑓(𝑛) is 𝑂(𝑔 𝑛) if there exist positive
constants 𝑐, 𝑛" such that for all 𝑛 ≥ 𝑛",

𝑓 𝑛 ≤ 𝑐 ⋅ 𝑔 𝑛

Big-O

Is the running time 𝑂(𝑛)?
Can you find constants 𝑐 and 𝑛#?

How about 𝑐 = 1 and 𝑛# = 5,
𝑓 𝑛 =smallest divisor of 𝑛 ≤ 1 ⋅ 𝑛 for 𝑛 ≥ 5

Is the running time 𝑂(1)?
Can you find constants 𝑐 and 𝑛#?

No! Choose your value of 𝑐. I can find a prime
number 𝑘 bigger than 𝑐.
And 𝑓 𝑘 = 𝑘 > 𝑐 ⋅ 1 so the definition isn’t met!

It’s 𝑂(𝑛) but not 𝑂 1

𝑓(𝑛)

Big-O isn’t everything
Our prime finding code is 𝑂(𝑛). But so is, for example, printing all the elements of a list.

CSE 332 SU 18 - ROBBIE WEBER 29

Your experience running these two pieces of code is going to be very different.
It’s disappointing that the 𝑂() are the same – that’s not very precise.
Could we have some way of pointing out the list code always takes AT LEAST 𝑛 operations?

𝑂(𝑛) 𝑂(𝑛)

Big-Ω [Omega]

CSE 332 SU 18 - ROBBIE WEBER 30

𝑓(𝑛) is Ω(𝑔 𝑛) if there exist positive
constants 𝑐, 𝑛! such that for all 𝑛 ≥ 𝑛(,

𝑓 𝑛 ≥ 𝑐 ⋅ 𝑔 𝑛

Big-Omega

𝑂(𝑛)

Ω(1)

The formal definition of Big-Omega is the
flipped version of Big-Oh.

When we make Big-Oh statements about a
function and say f(n) is O(g(n)) we’re saying
that f(n) grows at most as fast as g(n).

But with Big-Omega statements like f(n) is
Ω(g(n)), we’re saying that f(n) will grows at
least as fast as g(n).

Visually: what is the lower limit of this function?
What is bounded on the bottom by?

Big-Omega definition Plots
2𝑛6 is Ω(1)
2𝑛6 is Ω(n)
2𝑛6 is Ω(𝑛7)
2𝑛6 is Ω(𝑛6)

2𝑛6 is lowerbounded by all the complexity classes listed above (1, n, 𝑛7, 𝑛6)

CSE 373 SP 18 - KASEY CHAMPION 31

𝑇 𝑛

𝑛

2n3

n2

n

1

n3

Big-O and Big-Ω shown together

CSE 332 SU 18 - ROBBIE WEBER 32

Note: this right graph’s tight O bound is O(n) and its
tight Omega bound is Omega(n). This is what most
of the functions we’ll deal with will look like, but there
exists some code that would produce runtime
functions like on the left.

f(n) = n
prime runtime function

𝑂(𝑛) 𝑂(𝑛)

Ω(1) Ω(n)

O, and Omega, and Theta [oh my?]
Big-O is an upper bound
-My code takes at most this long to run

Big-Omega is a lower bound
-My code takes at least this long to run

Big Theta is “equal to”
- My code takes “exactly”* this long to run
- *Except for constant factors and lower order terms

CSE 332 SU 18 - ROBBIE WEBER 33

𝑓(𝑛) is Ω(𝑔 𝑛) if there exist positive constants
𝑐, 𝑛# such that for all 𝑛 ≥ 𝑛#,

𝑓 𝑛 ≥ 𝑐 ⋅ 𝑔 𝑛

Big-Omega

𝑓(𝑛) is Θ(𝑔 𝑛) if
𝑓 𝑛 is 𝑂(𝑔 𝑛) and 𝑓 𝑛 is Ω(𝑔 𝑛).
(in	other	words:	there exist positive constants 𝑐1, c2, 𝑛#
such that for all 𝑛 ≥ 𝑛#)

c1 ⋅ 𝑔 𝑛 ≤ 𝑓 𝑛 ≤ c2 ⋅ 𝑔 𝑛

Big-Theta

𝑓(𝑛) is 𝑂(𝑔 𝑛) if there exist positive
constants 𝑐, 𝑛# such that for all 𝑛 ≥ 𝑛#,

𝑓 𝑛 ≤ 𝑐 ⋅ 𝑔 𝑛

Big-O

O, and Omega, and Theta [oh my?]
Big Theta is “equal to”
- My code takes “exactly”* this long to run
- *Except for constant factors and lower order terms

CSE 332 SU 18 - ROBBIE WEBER 34

𝑓(𝑛) is Θ(𝑔 𝑛) if
𝑓 𝑛 is 𝑂(𝑔 𝑛) and 𝑓 𝑛 is Ω(𝑔 𝑛).
(in	other	words:	there exist positive constants 𝑐1, c2, 𝑛#
such that for all 𝑛 ≥ 𝑛#)

c1 ⋅ 𝑔 𝑛 ≤ 𝑓 𝑛 ≤ c2 ⋅ 𝑔 𝑛

Big-Theta

𝑂(𝑛) Ω(n) Θ(𝑛)

f(n) = n

To define a big-Theta, you expect the
tight big-Oh and tight big-Omega
bounds to be touching on the graph
(meaning they’re the same complexity
class)

Examples
4n2 ∈ Ω(1)

true
4n2 ∈ Ω(n)
true
4n2 ∈ Ω(n2)

true
4n2 ∈ Ω(n3)
false
4n2 ∈ Ω(n4)

false

CSE 332 SU 18 - ROBBIE WEBER 35

4n2 ∈ O(1)

false
4n2 ∈ O(n)
false
4n2 ∈ O(n2)

true
4n2 ∈ O(n3)
true
4n2 ∈ O(n4)

true

𝑓(𝑛) ∈ 𝑂(𝑔 𝑛) if there exist positive
constants 𝑐, 𝑛" such that for all 𝑛 ≥ 𝑛",

𝑓 𝑛 ≤ 𝑐 ⋅ 𝑔 𝑛

Big-O

𝑓(𝑛) ∈ Ω(𝑔 𝑛) if there exist positive
constants 𝑐, 𝑛" such that for all 𝑛 ≥ 𝑛",

𝑓 𝑛 ≥ 𝑐 ⋅ 𝑔 𝑛

Big-Omega

𝑓(𝑛) ∈ Θ(𝑔 𝑛) if
𝑓 𝑛 is 𝑂(𝑔 𝑛) and 𝑓 𝑛 is Ω(𝑔 𝑛).

Big-Theta

