
Lecture 4: Asymptotic 
Analysis

CSE 373: Data Structures and 
Algorithms
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Please fill out the Poll at- pollev.com/21sp373  



Announcements
HW 0 – 143 Review Project 
- Live on website
- Due Wednesday April 7th

Find a partner by Wednesday April 7th
- Groups of 3 are ok
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Questions?
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Queues
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Review: What is a Queue?
queue: Retrieves elements in the order they were 
added.
- First-In, First-Out ("FIFO")
- Elements are stored in order of insertion but don't have indexes.
- Client can only add to the end of the queue, and can only 

examine/remove the front of the queue.
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front back
1 2 3

addremove, peekQueue ADT

add(item) add item to back 
remove() remove and return 
item at front
peek() return item at front
size() count of items
isEmpty() count of items is 0?

state

behavior

Set of ordered items
Number of items

supported operations:
- add(item): aka “enqueue” add an element to the back.
- remove(): aka “dequeue” Remove the front element and return.
- peek(): Examine the front element without removing it.
- size(): how many items are stored in the queue?
- isEmpty(): if 1 or more items in the queue returns true, false otherwise



Implementing a Queue with an Array

0 1 2 3 4

6

add(5)
add(8)
add(9)
remove()

numberOfItems = 0

5 8 9

123

ArrayQueue<E>

add – data[size] = value, if 
out of room grow data
remove – return data[size -
1], size-1
peek – return data[size - 1]
size – return size
isEmpty – return size == 0

state

behavior

data[]
Size
front index
back index

Queue ADT

add(item) add item to back 
remove() remove and return 
item at front
peek() return item at front
size() count of items
isEmpty() count of items is 0?

state

behavior

Set of ordered items
Number of items

front = 0
back = 0

Big O Analysis
remove()

peek()

size()

isEmpty()

add() O(N) linear if you have to resize
O(1) otherwise

O(1) Constant
O(1) Constant

O(1) Constant

O(1) Constant

12
1
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Take 1 min to respond to activity 

www.pollev.com/cse373activity
What do you think the worst possible 
runtime of the “add()” operation will be? 



Implementing a Queue with an Array
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0 1 2 3 4

numberOfItems = 3

front back

5 9 2 74

add(7)
add(4)
add(1)

45

0 1 2 3 4 5 6 7 8 9

5 9 2 7 4

front back

1

> Wrapping Around



Implementing a Queue with Nodes

8

add(5)
add(8)
remove()

LinkedQueue<E>

add – add node to back
remove – return and remove 
node at front
peek – return node at front
size – return size
isEmpty – return size == 0

state

behavior

Node front
Node back
size

Queue ADT

add(item) add item to back 
remove() remove and return 
item at front
peek() return item at front
size() count of items
isEmpty() count of items is 0?

state

behavior

Set of ordered items
Number of items

Big O Analysis
remove()

peek()

size()

isEmpty()

add() O(1) Constant

O(1) Constant
O(1) Constant

O(1) Constant

O(1) Constant
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numberOfItems = 012

85front

back

Take 1 min to respond to activity 

www.pollev.com/cse373activity
What do you think the worst case 
runtime of the “add()” operation will be? 



Questions?
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Dictionaries
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Dictionaries (aka Maps)
Every Programmer’s Best Friend
You’ll probably use one in almost every programming project.
-Because it’s hard to make a big project without needing one sooner or later.
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// two types of Map implementations supposedly covered in CSE 143 
Map<String, Integer> map1 = new HashMap<>();
Map<String, String> map2 =  new TreeMap<>();



Review: Maps 
map: Holds a set of distinct keys and a collection of 
values, where each key is associated with one value.
- a.k.a. "dictionary"
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key value

“you" 22

key value

“in" 37

key value

“the" 56

key value

“at" 43

map.get("the") 56

Dictionary ADT

put(key, item) add item to 
collection indexed with key
get(key) return item 
associated with key
containsKey(key) return if key 
already in use
remove(key) remove item 
and associated key
size() return count of items

state

behavior

Set of items & keys
Count of items

supported operations:
- put(key, value): Adds a given item into 

collection with associated key, 
- if the map previously had a mapping 

for the given key, old value is replaced.  
- get(key): Retrieves the value mapped to 

the key
- containsKey(key): returns true if key is 

already associated with value in map, 
false otherwise

- remove(key): Removes the given key and 
its mapped value



Implementing a Dictionary with an Array
ArrayDictionary<K, V>

put find key, overwrite value if there. 
Otherwise create new pair, add to next 
available spot, grow array if necessary
get scan all pairs looking for given 
key, return associated item if found
containsKey scan all pairs, return if 
key is found
remove scan all pairs, replace pair to 
be removed with last pair in collection
size return count of items in 
dictionary

state

behavior

Pair<K, V>[] data

Big O Analysis – (if key is the last one looked 
at / not in the dictionary) 
put()

get()

containsKey()

remove()

size() O(1) constant

O(N) linear
O(N) linear

O(N) linear

O(N) linear

0 1 2 3
containsKey(‘c’)
get(‘d’)
put(‘b’, 97)
put(‘e’, 20)

(‘a’, 1) (‘b’, 2)

Dictionary ADT

put(key, item) add item to 
collection indexed with key
get(key) return item 
associated with key
containsKey(key) return if key 
already in use
remove(key) remove item 
and associated key
size() return count of items

state

behavior

Set of items & keys
Count of items

(‘c’, 3)97) (‘d’, 4)
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2 Minutes

Big O Analysis – (if the key is the first one 
looked at)
put()

get()

containsKey()

remove()

size() O(1) constant

O(1) constant
O(1) constant

O(1) constant

O(1) constant
4

(‘e’, 20)



Implementing a Dictionary with Nodes
LinkedDictionary<K, V>

put if key is unused, create new with 
pair, add to front of list, else 
replace with new value
get scan all pairs looking for given 
key, return associated item if found
containsKey scan all pairs, return if 
key is found
remove scan all pairs, skip pair to be 
removed 
size return count of items in 
dictionary

state

behavior

front
size

containsKey(‘c’)
get(‘d’)
put(‘b’, 20)

Dictionary ADT

put(key, item) add item to 
collection indexed with key
get(key) return item 
associated with key
containsKey(key) return if key 
already in use
remove(key) remove item 
and associated key
size() return count of items

state

behavior

Set of items & keys
Count of items

front

‘c’ 9‘b’ 7 ‘d’ 4‘a’ 1 20
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2 Minutes

Big O Analysis – (if key is the last one looked 
at / not in the dictionary) 
put()

get()

containsKey()

remove()

size() O(1) constant

O(N) linear
O(N) linear

O(N) linear

O(N) linear

Big O Analysis – (if the key is the first one 
looked at)
put()

get()

containsKey()

remove()

size()
O(1) constant

O(1) constant
O(1) constant

O(1) constant

O(1) constant



Big O
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Review: Complexity Class 
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complexity class: A category of algorithm efficiency based on the algorithm's 
relationship to the input size N.

Complexity 
Class

Big-O Runtime if you 
double N

Example Algorithm

constant O(1) unchanged Accessing an index of 
an array

logarithmic O(log2 N) increases slightly Binary search

linear O(N) doubles Looping over an array

log-linear O(N log2 N) slightly more than 
doubles

Merge sort algorithm

quadratic O(N2) quadruples Nested loops!

... ... ... ...

exponential O(2N) multiplies drastically Fibonacci with recursion
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Note: You don’t have to understand all of this 
right now – we’ll dive into it soon.



Code to Big-Oh
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143 general patterns: “O(1) constant is no loops, O(n) is one loop, O(n2) is nested loops”
- This is still useful!
- But in 373 we’ll go much more in depth: we can explain more about why, and how to handle more complex cases 

when they arise (which they will!)

CODE BIG-OH

for (i = 0; i < n; i++) {
a[i] = 1;
b[i] = 2;

}

O(n)



Meet Algorithmic Analysis
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COMPLEXITY

CLASSCODE Code Modeling
RUNTIME

FUNCTION Asymptotic Analysis

Algorithmic Analysis: The overall process of characterizing code with a complexity class, 
consisting of:
- Code Modeling: Code à Function describing code’s runtime
- Asymptotic Analysis: Function à Complexity class describing asymptotic behavior

1 2

for (i = 0; i < n; i++) {
a[i] = 1;
b[i] = 2;

}

O(n)f(n) = 2n



Code Modeling
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Code Modeling – the process of mathematically representing how many operations a 
piece of code will run in relation to the input size n.
- Convert from code to a function representing its runtime

CODE Code Modeling
RUNTIME

FUNCTION

1



What Counts?
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We don’t know exact runtime of every operation, but for now let’s try simplifying 
assumption: all basic operations take the same time

• Basics:
- +, -, /, *, %, ==
- Assignment
- Returning
- Variable/array access

• Function Calls
- Total runtime in body
- Remember: new calls a function 

(constructor)
• Conditionals

- Test + time for the followed branch
- Learn how to reason about branch later

• Loops
- Number of iterations * total runtime in 

condition and body



Code Modeling Example 1
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public void method1(int n) {
int sum = 0;
int i = 0;
while (i < n) {

sum = sum + (i * 3);
i = i + 1;

}
return sum;

}

+1
+1

+1
+3

+2

+1

+6 *n

Loop runs n times

f(n) = 6n + 3



Code Modeling Example 2
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public void method2(int n) {
int sum = 0;
int i = 0;
while (i < n) {

int j = 0;    
while (j < n) {

if (j % 2 == 0) {
// do nothing

}
sum = sum + (i * 3) + j;
j = j + 1;

}
i = i + 1;

} return sum;
}

+1
+1

+1

+2

+1

+9 *n

This inner loop 
runs n times

f(n) = (9n+4)n + 3

+1
+1

+2

+2

+4

9n + 4 *n

This outer loop
runs n times



Where are we?
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We just turned a piece of code into a function!
- We’ll look at better alternatives for code modeling later

Now to focus on step 2, asymptotic analysis

COMPLEXITY
CLASSCODE Code Modeling

RUNTIME

FUNCTION Asymptotic Analysis

1 2

for (i = 0; i < n; i++) {
a[i] = 1;
b[i] = 2;

}

O(n)f(n) = 2n



Finding a Big Oh
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We have an expression for 𝑓(𝑛). How do we get the 
𝑂() that we’ve been talking about?

1. Find the “dominating term” and delete all others. 
- The “dominating” term is the one that is largest as 𝑛 gets bigger. 

In this class, often the largest power of 𝑛.

2. Remove any constant factors.
= 9n2 + 3n + 3

≈ 9n2

≈ n2

f(n) is O(n2)

f(n) = (9n+3)n + 3

COMPLEXITY
CLASS

RUNTIME

FUNCTION Asymptotic Analysis

2



Can we really throw away all that info?
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Big-Oh is like the “significant digits” of computer science
Asymptotic Analysis: Analysis of function behavior as its input approaches infinity
- We only care about what happens when n approaches infinity
- For small inputs, doesn’t really matter: all code is “fast enough”
- Since we’re dealing with infinity, constants and lower-order terms don’t meaningfully add to the final 

result. The highest-order term is what drives growth!

Simple
We don’t care about tiny differences in 
implementation, want the big picture result

Decisive
Produce a clear comparison indicating 
which code takes “longer”

Remember our goals:



Function growth
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…but since both are linear 
eventually look similar at large 
input sizes

whereas h(n) has a distinctly 
different growth rate

The growth rate for f(n) and 
g(n) looks very different for 
small numbers of input

But for very small input values 
h(n) actually has a slower growth 
rate than either f(n) or g(n)

Imagine you have three possible algorithms to choose between. 
Each has already been reduced to its mathematical model 𝑓 𝑛 = 𝑛 𝑔 𝑛 = 4𝑛 ℎ 𝑛 = 𝑛!

𝑇 𝑛

𝑛

𝑇 𝑛

𝑛

𝑇 𝑛

𝑛



Definition: Big-O
We wanted to find an upper bound on our algorithm’s 
running time, but
- We don’t want to care about constant factors.
- We only care about what happens as 𝑛 gets large.

27

𝑓(𝑛) is 𝑂(𝑔 𝑛 ) if there exist positive 
constants 𝑐, 𝑛( such that for all 𝑛 ≥ 𝑛(, 

𝑓 𝑛 ≤ 𝑐 ⋅ 𝑔 𝑛

Big-O

We also say that 𝑔 𝑛 “dominates” 𝑓(𝑛)
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Why 𝑛!?

Why 𝑐?



Applying Big O Definition
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𝑓 𝑛 = 10𝑛 + 15 𝑂 𝑛Show that is

𝑓(𝑛) is 𝑂(𝑔 𝑛 ) if there exist positive 
constants 𝑐, 𝑛" such that for all 𝑛 ≥ 𝑛", 

𝑓 𝑛 ≤ 𝑐 ⋅ 𝑔 𝑛

Big-O

Apply definition term by term

10𝑛 ≤ 𝑐・𝑛 when 𝑐 = 10 for all values of 𝑛

15 ≤ 𝑐・𝑛 when 𝑐 = 15 𝑓𝑜𝑟 𝑛 ≥ 1

Add up all your truths

10𝑛 + 15 ≤ 10𝑛 + 15𝑛 = 25𝑛 for 𝑛 ≥ 1

Select values for 𝑐 and 𝑛" and prove they fit the definition
Take 𝒄 = 𝟐𝟓 and 𝒏𝟎 = 𝟏
10𝑛 ≤ 10𝑛 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑛
15 ≤ 15𝑛 𝑓𝑜𝑟 𝑛 ≥ 1
So 10𝑛 + 15 ≤ 25𝑛 for all 𝑛 ≥ 1, as required.
because a 𝑐 and 𝑛" exist, 𝑓(𝑛) is 𝑂(𝑛)


