Please fill out the Poll at- pollev.com/21sp373

Lecture 4: Asymptotic Analysis

CSE 373: Data Structures and Algorithms

Announcements

HW 0 – 143 Review Project

- Live on website

- Due Wednesday April 7th

Find a partner by Wednesday April 7th - Groups of 3 are ok

Questions?

Review: What is a Queue?

queue: Retrieves elements in the order they were added.

- First-In, First-Out ("FIFO")
- Elements are stored in order of insertion but don't have indexes.
- Client can only add to the end of the queue, and can only examine/remove the front of the queue.

state

Set of ordered items Number of items

Queue ADT

behavior

<u>add(item)</u> add item to back <u>remove()</u> remove and return item at front <u>peek()</u> return item at front <u>size()</u> count of items <u>isEmpty()</u> count of items is 0?

supported operations:

- add(item): aka "enqueue" add an element to the back.
- remove(): aka "dequeue" Remove the front element and return.
- peek(): Examine the front element without removing it.
- **size():** how many items are stored in the queue?
- isEmpty(): if 1 or more items in the queue returns true, false otherwise

Implementing a Queue with an Array

Queue ADT

state

Set of ordered items Number of items

behavior

<u>add(item)</u> add item to back <u>remove()</u> remove and return item at front <u>peek()</u> return item at front <u>size()</u> count of items <u>isEmpty()</u> count of items is 0?

add(5) add(8) add(9) remove()

ArrayQueue<E>

state

data[] Size front index back index

behavior

add - data[size] = value, if out of room grow data remove - return data[size -1], size-1 peek - return data[size - 1] size - return size isEmpty - return size == 0

Big O Analysis

remove()	O(1) Constant
peek()	O(1) Constant
size()	O(1) Constant
isEmpty()	O(1) Constant
add()	O(N) linear if you have to resize O(1) otherwise

Take 1 min to respond to activity

www.pollev.com/cse373activity What do you think the worst possible runtime of the "add()" operation will be?

Implementing a Queue with an Array > Wrapping Around

Implementing a Queue with Nodes

Queue ADT

state

Set of ordered items Number of items

behavior

add(5)

add(8)

remove()

<u>add(item)</u> add item to back <u>remove()</u> remove and return item at front <u>peek()</u> return item at front <u>size()</u> count of items <u>isEmpty()</u> count of items is 0?

LinkedQueue < E >

state

Node front Node back size

behavior

add - add node to back remove - return and remove node at front peek - return node at front size - return size isEmpty - return size == 0

numberOfItems = 2

front 5 8 back

Big O Analysis

remove()	O(1) Constant
peek()	O(1) Constant
size()	O(1) Constant
isEmpty()	O(1) Constant
add()	O(1) Constant

Take 1 min to respond to activity

www.pollev.com/cse373activity What do you think the worst case runtime of the "add()" operation will be?

Questions?

CSE 373 19 SU - ROBBIE WEBER

Dictionaries (aka Maps)

Every Programmer's Best Friend

You'll probably use one in almost every programming project. -Because it's hard to make a big project without needing one sooner or later.

// two types of Map implementations supposedly covered in CSE 143
Map<String, Integer> map1 = new HashMap<>();
Map<String, String> map2 = new TreeMap<>();

Review: Maps

map: Holds a set of distinct *keys* and a collection of *values*, where each key is associated with one value. - a.k.a. "dictionary"

Dictionary ADT

state

Set of items & keys Count of items

behavior

<u>put(key, item)</u> add item to collection indexed with key <u>get(key)</u> return item associated with key <u>containsKey(key)</u> return if key already in use <u>remove(key)</u> remove item and associated key <u>size()</u> return count of items

supported operations:

- put(key, value): Adds a given item into collection with associated key,
- if the map previously had a mapping for the given key, old value is replaced.
- get(key): Retrieves the value mapped to the key
- containsKey(key): returns true if key is already associated with value in map, false otherwise
- remove(key): Removes the given key and its mapped value

Implementing a Dictionary with an Array

Dictionary ADT

state

Set of items & keys Count of items

behavior

put(key, item) add item to collection indexed with key get(key) return item associated with key containsKey(key) return if key already in use remove(key) remove item and associated key size() return count of items

containsKey get('d') put('b', 97 put('e', 20

ArrayDictionary<K, V>

state

Pair<K, V>[] data

behavior

put find key, overwrite value if there. Otherwise create new pair, add to next available spot, grow array if necessary get scan all pairs looking for given key, return associated item if found containsKey scan all pairs, return if key is found

remove scan all pairs, replace pair to be removed with last pair in collection size return count of items in dictionary

)	('a', 1)	('b' 97)	('c', 3)	('d', 4)	('e', 20)	size()
(` C ')	0	1	2	3	4	contai

Big O Analysis – (if key is the last one looked at / not in the dictionary)

out()	O(N) linear
get()	O(N) linear
containsKey()	O(N) linear
cemove()	O(N) linear
size()	O(1) constant

Big O Analysis – (if the key is the first one looked at)

put() O(1) constant

qet()

O(1) constant

ontainsKey() O(1) constant

emove()

O(1) constant

O(1) constant

Implementing a Dictionary with Nodes

Dictionary ADT

state

Set of items & keys Count of items

behavior

<u>put(key, item)</u> add item to collection indexed with key <u>get(key)</u> return item associated with key <u>containsKey(key)</u> return if key already in use <u>remove(key)</u> remove item and associated key <u>size()</u> return count of items

containsKey(`c')
get(`d')
put(`b', 20)

<pre>state front size behavior put if key is unused, create new with pair, add to front of list, else replace with new value get scan all pairs looking for given key, return associated item if found containsKey scan all pairs, return if key is found</pre>
remove scan all pairs, skip pair to be removed size return count of items in

Big O Analysis – (if key is the last one looked at / not in the dictionary)

put()	O(N) linear
get()	O(N) linear
containsKey()	O(N) linear
remove()	O(N) linear
size()	O(1) constant

Big O Analysis – (if the key is the first one looked at)		
put()	O(1) constant	
get()	O(1) constant	
containsKey()	O(1) constant	
remove()	O(1) constant	
size()	O(1) constant	

Review: Complexity Class

Note: You don't have to understand all of this right now – we'll dive into it soon.

complexity class: A category of algorithm efficiency based on the algorithm's relationship to the input size N.

Complexity Class	Big-O	Runtime if you double N	Example Algorithm
constant	O(1)	unchanged	Accessing an index of an array
logarithmic	O(log ₂ N)	increases slightly	Binary search
linear	O(N)	doubles	Looping over an array
log-linear	O(N log ₂ N)	slightly more than doubles	Merge sort algorithm
quadratic	O(N ²)	quadruples	Nested loops!
exponential	O(2 ^N)	multiplies drastically	Fibonacci with recursion

Elements

143 general patterns: "O(1) constant is no loops, O(n) is one loop, O(n²) is nested loops"

- This is still useful!
- But in 373 we'll go much more in depth: we can explain more about *why*, and how to handle more complex cases when they arise (which they will!)

Meet Algorithmic Analysis

Algorithmic Analysis: The overall process of characterizing code with a complexity class, consisting of:

- Code Modeling: Code \rightarrow Function describing code's runtime
- Asymptotic Analysis: Function \rightarrow Complexity class describing asymptotic behavior

Code Modeling – the process of mathematically representing how many operations a piece of code will run in relation to the input size n. - Convert from code to a function representing its runtime

What Counts?

We don't know exact runtime of every operation, but for now let's try simplifying assumption: all basic operations take the same time

- Basics:
 - +, -, /, *, %, ==
 - Assignment
 - Returning
 - Variable/array access

- Function Calls
 - Total runtime in body
 - Remember: new calls a function (constructor)
- Conditionals
 - Test + time for the followed branch
 - Learn how to reason about branch later
- Loops
 - Number of iterations * total runtime in condition and body

Code Modeling Example 1

f(n) = 6n + 3

Where are we?

We just turned a piece of code into a function! - We'll look at better alternatives for code modeling later

Now to focus on step 2, asymptotic analysis

We have an expression for f(n). How do we get the O() that we've been talking about?

- 1. Find the "dominating term" and delete all others.
 - The "dominating" term is the one that is largest as n gets bigger. In this class, often the largest power of n.
- 2. Remove any constant factors.

f(n) = (9n+3)n + 3

= 9n² + 3n + 3≈ 9n² ≈ n²

f(n) is $O(n^2)$

Can we really throw away all that info?

Big-Oh is like the "significant digits" of computer science

Asymptotic Analysis: Analysis of function behavior as its input approaches infinity

- We only care about what happens when n approaches infinity
- For small inputs, doesn't really matter: all code is "fast enough"
- Since we're dealing with infinity, constants and lower-order terms don't meaningfully add to the final result. The highest-order term is what drives growth!

Remember our goals:

Simple

We don't care about tiny differences in implementation, want the big picture result

Decisive

Produce a clear comparison indicating which code takes "longer"

Function growth

Imagine you have three possible algorithms to choose between. Each has already been reduced to its mathematical model

$$f(n) = n \qquad g(n) = 4n \qquad h(n) = n^2$$

n)

The growth rate for f(n) and g(n) looks very different for small numbers of input

...but since both are linear eventually look similar at large input sizes

whereas h(n) has a distinctly different growth rate

But for very small input values h(n) actually has a slower growth rate than either f(n) or g(n)

Definition: Big-O

We wanted to find an upper bound on our algorithm's running time, but

-We don't want to care about constant factors.

- We only care about what happens as n gets large.

Big-O

f(n) is O(g(n)) if there exist positive constants c, n_0 such that for all $n \ge n_0$, $f(n) \le c \cdot g(n)$

We also say that g(n) "dominates" f(n)

CSE 332 SU 18 - ROBETE WEBER

Applying Big O Definition

Show that f(n) = 10n + 15 is O(n)

Apply definition term by term

 $10n \le c \cdot n$ when c = 10 for all values of n

 $15 \le c \cdot n$ when c = 15 for $n \ge 1$

Add up all your truths

 $10n + 15 \le 10n + 15n = 25n$ for $n \ge 1$

Select values for c and n_0 and prove they fit the definition Take c = 25 and $n_0 = 1$ $10n \le 10n$ for all values of n $15 \le 15n$ for $n \ge 1$ So $10n + 15 \le 25n$ for all $n \ge 1$, as required. because a c and n_0 exist, f(n) is O(n)

Big-O

f(n) is O(g(n)) if there exist positive constants c, n_0 such that for all $n \ge n_0$, $f(n) \le c \cdot g(n)$