
Lecture 4: Asymptotic
Analysis

CSE 373: Data Structures and
Algorithms

1

Please fill out the Poll at- pollev.com/21sp373

Announcements
HW 0 – 143 Review Project
- Live on website
- Due Wednesday April 7th

Find a partner by Wednesday April 7th
- Groups of 3 are ok

2CSE 373 20 SP – CHAMPION & CHUN

Questions?

CSE 373 SP 18 - KASEY CHAMPION 3

Queues

CSE 373 19 SU - ROBBIE WEBER

Review: What is a Queue?
queue: Retrieves elements in the order they were
added.
- First-In, First-Out ("FIFO")
- Elements are stored in order of insertion but don't have indexes.
- Client can only add to the end of the queue, and can only

examine/remove the front of the queue.

CSE 143 SP 17 – ZORA FUNG 5

front back
1 2 3

addremove, peekQueue ADT

add(item) add item to back
remove() remove and return
item at front
peek() return item at front
size() count of items
isEmpty() count of items is 0?

state

behavior

Set of ordered items
Number of items

supported operations:
- add(item): aka “enqueue” add an element to the back.
- remove(): aka “dequeue” Remove the front element and return.
- peek(): Examine the front element without removing it.
- size(): how many items are stored in the queue?
- isEmpty(): if 1 or more items in the queue returns true, false otherwise

Implementing a Queue with an Array

0 1 2 3 4

6

add(5)
add(8)
add(9)
remove()

numberOfItems = 0

5 8 9

123

ArrayQueue<E>

add – data[size] = value, if
out of room grow data
remove – return data[size -
1], size-1
peek – return data[size - 1]
size – return size
isEmpty – return size == 0

state

behavior

data[]
Size
front index
back index

Queue ADT

add(item) add item to back
remove() remove and return
item at front
peek() return item at front
size() count of items
isEmpty() count of items is 0?

state

behavior

Set of ordered items
Number of items

front = 0
back = 0

Big O Analysis
remove()

peek()

size()

isEmpty()

add() O(N) linear if you have to resize
O(1) otherwise

O(1) Constant
O(1) Constant

O(1) Constant

O(1) Constant

12
1

CSE 373 19 WI - KASEY CHAMPION

Take 1 min to respond to activity

www.pollev.com/cse373activity
What do you think the worst possible
runtime of the “add()” operation will be?

Implementing a Queue with an Array

CSE 373 SP 18 - KASEY CHAMPION 7

0 1 2 3 4

numberOfItems = 3

front back

5 9 2 74

add(7)
add(4)
add(1)

45

0 1 2 3 4 5 6 7 8 9

5 9 2 7 4

front back

1

> Wrapping Around

Implementing a Queue with Nodes

8

add(5)
add(8)
remove()

LinkedQueue<E>

add – add node to back
remove – return and remove
node at front
peek – return node at front
size – return size
isEmpty – return size == 0

state

behavior

Node front
Node back
size

Queue ADT

add(item) add item to back
remove() remove and return
item at front
peek() return item at front
size() count of items
isEmpty() count of items is 0?

state

behavior

Set of ordered items
Number of items

Big O Analysis
remove()

peek()

size()

isEmpty()

add() O(1) Constant

O(1) Constant
O(1) Constant

O(1) Constant

O(1) Constant

CSE 373 19 WI - KASEY CHAMPION

numberOfItems = 012

85front

back

Take 1 min to respond to activity

www.pollev.com/cse373activity
What do you think the worst case
runtime of the “add()” operation will be?

Questions?

CSE 373 SP 18 - KASEY CHAMPION 9

Dictionaries

CSE 373 19 SU - ROBBIE WEBER

Dictionaries (aka Maps)
Every Programmer’s Best Friend
You’ll probably use one in almost every programming project.
-Because it’s hard to make a big project without needing one sooner or later.

CSE 373 19 SU - ROBBIE WEBER

// two types of Map implementations supposedly covered in CSE 143
Map<String, Integer> map1 = new HashMap<>();
Map<String, String> map2 = new TreeMap<>();

Review: Maps
map: Holds a set of distinct keys and a collection of
values, where each key is associated with one value.
- a.k.a. "dictionary"

CSE 373 19 SU - ROBBIE WEBER

key value

“you" 22

key value

“in" 37

key value

“the" 56

key value

“at" 43

map.get("the") 56

Dictionary ADT

put(key, item) add item to
collection indexed with key
get(key) return item
associated with key
containsKey(key) return if key
already in use
remove(key) remove item
and associated key
size() return count of items

state

behavior

Set of items & keys
Count of items

supported operations:
- put(key, value): Adds a given item into

collection with associated key,
- if the map previously had a mapping

for the given key, old value is replaced.
- get(key): Retrieves the value mapped to

the key
- containsKey(key): returns true if key is

already associated with value in map,
false otherwise

- remove(key): Removes the given key and
its mapped value

Implementing a Dictionary with an Array
ArrayDictionary<K, V>

put find key, overwrite value if there.
Otherwise create new pair, add to next
available spot, grow array if necessary
get scan all pairs looking for given
key, return associated item if found
containsKey scan all pairs, return if
key is found
remove scan all pairs, replace pair to
be removed with last pair in collection
size return count of items in
dictionary

state

behavior

Pair<K, V>[] data

Big O Analysis – (if key is the last one looked
at / not in the dictionary)
put()

get()

containsKey()

remove()

size() O(1) constant

O(N) linear
O(N) linear

O(N) linear

O(N) linear

0 1 2 3
containsKey(‘c’)
get(‘d’)
put(‘b’, 97)
put(‘e’, 20)

(‘a’, 1) (‘b’, 2)

Dictionary ADT

put(key, item) add item to
collection indexed with key
get(key) return item
associated with key
containsKey(key) return if key
already in use
remove(key) remove item
and associated key
size() return count of items

state

behavior

Set of items & keys
Count of items

(‘c’, 3)97) (‘d’, 4)
CSE 373 19 SU - ROBBIE WEBER

2 Minutes

Big O Analysis – (if the key is the first one
looked at)
put()

get()

containsKey()

remove()

size() O(1) constant

O(1) constant
O(1) constant

O(1) constant

O(1) constant
4

(‘e’, 20)

Implementing a Dictionary with Nodes
LinkedDictionary<K, V>

put if key is unused, create new with
pair, add to front of list, else
replace with new value
get scan all pairs looking for given
key, return associated item if found
containsKey scan all pairs, return if
key is found
remove scan all pairs, skip pair to be
removed
size return count of items in
dictionary

state

behavior

front
size

containsKey(‘c’)
get(‘d’)
put(‘b’, 20)

Dictionary ADT

put(key, item) add item to
collection indexed with key
get(key) return item
associated with key
containsKey(key) return if key
already in use
remove(key) remove item
and associated key
size() return count of items

state

behavior

Set of items & keys
Count of items

front

‘c’ 9‘b’ 7 ‘d’ 4‘a’ 1 20

CSE 373 19 SU - ROBBIE WEBER

2 Minutes

Big O Analysis – (if key is the last one looked
at / not in the dictionary)
put()

get()

containsKey()

remove()

size() O(1) constant

O(N) linear
O(N) linear

O(N) linear

O(N) linear

Big O Analysis – (if the key is the first one
looked at)
put()

get()

containsKey()

remove()

size()
O(1) constant

O(1) constant
O(1) constant

O(1) constant

O(1) constant

Big O

CSE 373 19 SU - ROBBIE WEBER

Review: Complexity Class

16

complexity class: A category of algorithm efficiency based on the algorithm's
relationship to the input size N.

Complexity
Class

Big-O Runtime if you
double N

Example Algorithm

constant O(1) unchanged Accessing an index of
an array

logarithmic O(log2 N) increases slightly Binary search

linear O(N) doubles Looping over an array

log-linear O(N log2 N) slightly more than
doubles

Merge sort algorithm

quadratic O(N2) quadruples Nested loops!

...

exponential O(2N) multiplies drastically Fibonacci with recursion

CSE 373 19 WI - KASEY CHAMPION

Note: You don’t have to understand all of this
right now – we’ll dive into it soon.

Code to Big-Oh

17CSE 373 20 AU – SCHAFER

143 general patterns: “O(1) constant is no loops, O(n) is one loop, O(n2) is nested loops”
- This is still useful!
- But in 373 we’ll go much more in depth: we can explain more about why, and how to handle more complex cases

when they arise (which they will!)

CODE BIG-OH

for (i = 0; i < n; i++) {
a[i] = 1;
b[i] = 2;

}

O(n)

Meet Algorithmic Analysis

18CSE 373 20 AU – SCHAFER

COMPLEXITY

CLASSCODE Code Modeling
RUNTIME

FUNCTION Asymptotic Analysis

Algorithmic Analysis: The overall process of characterizing code with a complexity class,
consisting of:
- Code Modeling: Code à Function describing code’s runtime
- Asymptotic Analysis: Function à Complexity class describing asymptotic behavior

1 2

for (i = 0; i < n; i++) {
a[i] = 1;
b[i] = 2;

}

O(n)f(n) = 2n

Code Modeling

19CSE 373 20 AU – SCHAFER

Code Modeling – the process of mathematically representing how many operations a
piece of code will run in relation to the input size n.
- Convert from code to a function representing its runtime

CODE Code Modeling
RUNTIME

FUNCTION

1

What Counts?

20CSE 373 20 AU – SCHAFER

We don’t know exact runtime of every operation, but for now let’s try simplifying
assumption: all basic operations take the same time

• Basics:
- +, -, /, *, %, ==
- Assignment
- Returning
- Variable/array access

• Function Calls
- Total runtime in body
- Remember: new calls a function

(constructor)
• Conditionals

- Test + time for the followed branch
- Learn how to reason about branch later

• Loops
- Number of iterations * total runtime in

condition and body

Code Modeling Example 1

21CSE 373 20 AU – SCHAFER

public void method1(int n) {
int sum = 0;
int i = 0;
while (i < n) {

sum = sum + (i * 3);
i = i + 1;

}
return sum;

}

+1
+1

+1
+3

+2

+1

+6 *n

Loop runs n times

f(n) = 6n + 3

Code Modeling Example 2

22CSE 373 20 AU – SCHAFER

public void method2(int n) {
int sum = 0;
int i = 0;
while (i < n) {

int j = 0;
while (j < n) {

if (j % 2 == 0) {
// do nothing

}
sum = sum + (i * 3) + j;
j = j + 1;

}
i = i + 1;

} return sum;
}

+1
+1

+1

+2

+1

+9 *n

This inner loop
runs n times

f(n) = (9n+4)n + 3

+1
+1

+2

+2

+4

9n + 4 *n

This outer loop
runs n times

Where are we?

23CSE 373 20 AU – SCHAFER

We just turned a piece of code into a function!
- We’ll look at better alternatives for code modeling later

Now to focus on step 2, asymptotic analysis

COMPLEXITY
CLASSCODE Code Modeling

RUNTIME

FUNCTION Asymptotic Analysis

1 2

for (i = 0; i < n; i++) {
a[i] = 1;
b[i] = 2;

}

O(n)f(n) = 2n

Finding a Big Oh

24CSE 373 20 AU – SCHAFER

We have an expression for 𝑓(𝑛). How do we get the
𝑂() that we’ve been talking about?

1. Find the “dominating term” and delete all others.
- The “dominating” term is the one that is largest as 𝑛 gets bigger.

In this class, often the largest power of 𝑛.

2. Remove any constant factors.
= 9n2 + 3n + 3

≈ 9n2

≈ n2

f(n) is O(n2)

f(n) = (9n+3)n + 3

COMPLEXITY
CLASS

RUNTIME

FUNCTION Asymptotic Analysis

2

Can we really throw away all that info?

25CSE 373 20 SP – CHAMPION & CHUN

Big-Oh is like the “significant digits” of computer science
Asymptotic Analysis: Analysis of function behavior as its input approaches infinity
- We only care about what happens when n approaches infinity
- For small inputs, doesn’t really matter: all code is “fast enough”
- Since we’re dealing with infinity, constants and lower-order terms don’t meaningfully add to the final

result. The highest-order term is what drives growth!

Simple
We don’t care about tiny differences in
implementation, want the big picture result

Decisive
Produce a clear comparison indicating
which code takes “longer”

Remember our goals:

Function growth

CSE 332 SU 18 - ROBBIE WEBER26

…but since both are linear
eventually look similar at large
input sizes

whereas h(n) has a distinctly
different growth rate

The growth rate for f(n) and
g(n) looks very different for
small numbers of input

But for very small input values
h(n) actually has a slower growth
rate than either f(n) or g(n)

Imagine you have three possible algorithms to choose between.
Each has already been reduced to its mathematical model 𝑓 𝑛 = 𝑛 𝑔 𝑛 = 4𝑛 ℎ 𝑛 = 𝑛!

𝑇 𝑛

𝑛

𝑇 𝑛

𝑛

𝑇 𝑛

𝑛

Definition: Big-O
We wanted to find an upper bound on our algorithm’s
running time, but
- We don’t want to care about constant factors.
- We only care about what happens as 𝑛 gets large.

27

𝑓(𝑛) is 𝑂(𝑔 𝑛) if there exist positive
constants 𝑐, 𝑛(such that for all 𝑛 ≥ 𝑛(,

𝑓 𝑛 ≤ 𝑐 ⋅ 𝑔 𝑛

Big-O

We also say that 𝑔 𝑛 “dominates” 𝑓(𝑛)

CSE 332 SU 18 - ROBBIE WEBER

Why 𝑛!?

Why 𝑐?

Applying Big O Definition

CSE 332 SU 18 - ROBBIE WEBER 28

𝑓 𝑛 = 10𝑛 + 15 𝑂 𝑛Show that is

𝑓(𝑛) is 𝑂(𝑔 𝑛) if there exist positive
constants 𝑐, 𝑛" such that for all 𝑛 ≥ 𝑛",

𝑓 𝑛 ≤ 𝑐 ⋅ 𝑔 𝑛

Big-O

Apply definition term by term

10𝑛 ≤ 𝑐・𝑛 when 𝑐 = 10 for all values of 𝑛

15 ≤ 𝑐・𝑛 when 𝑐 = 15 𝑓𝑜𝑟 𝑛 ≥ 1

Add up all your truths

10𝑛 + 15 ≤ 10𝑛 + 15𝑛 = 25𝑛 for 𝑛 ≥ 1

Select values for 𝑐 and 𝑛" and prove they fit the definition
Take 𝒄 = 𝟐𝟓 and 𝒏𝟎 = 𝟏
10𝑛 ≤ 10𝑛 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑛
15 ≤ 15𝑛 𝑓𝑜𝑟 𝑛 ≥ 1
So 10𝑛 + 15 ≤ 25𝑛 for all 𝑛 ≥ 1, as required.
because a 𝑐 and 𝑛" exist, 𝑓(𝑛) is 𝑂(𝑛)

