

Please fill out the Poll at- pollev.com/21sp373

Lecture 4: Asymptotic Analysis

CSE 373: Data Structures and Algorithms

Announcements

HW 0-143 Review Project

- Live on website

Due Wednesday April 7th
Find a partner by Wednesday April $7^{\text {th }}$
Groups of 3 are ok

Questions?

\mathcal{F} Queues

Review: What is a Queue?

queue: Retrieves elements in the order they were added.

- First-In, First-Out ("FIFO")

Elements are stored in order of insertion but don't have indexes.
Client can only add to the end of the queue, and can only examine/remove the front of the queue.

Queue ADT
state
Set of ordered items
Number of items
behavior
add(item) add item to back
remove() remove and return
item at front
peek() return item at front
size() count of items
isEmpty() count of items is 0 ?

supported operations:

add(item): aka "enqueue" add an element to the back.
remove(): aka "dequeue" Remove the front element and return.
peek(): Examine the front element without removing it.
size(): how many items are stored in the queue?

- isEmpty(): if 1 or more items in the queue returns true, false otherwise

Implementing a Queue with an Array

```
    Queue ADT
state
    Set of ordered items
    Number of items
behavior
    add(item) add item to back
    remove() remove and return
    item at front
    peek() return item at front
    size() count of items
    isEmpty() count of items is 0?
```

ArrayQueue<E>
```state data[] Size front index back index```
behavior   add - data[size] = value, if out of room grow data remove - return data[size 1], size-1   peek - return data[size - 1] size - return size   isEmpty - return size == 0


add (9)
remove()
add (5)
add (8)

Big O Analysis
remove () $\mathrm{O}(1)$ Constant
peek() O(1) Constant
size() O(1)Constant
isEmpty () O(1) Constant
add () $\quad \mathrm{O}(\mathrm{N})$ linear if you have to resize $O(1)$ otherwise

## Take 1 min to respond to activity

```
www.pollev.com/cse373activity
What do you think the worst possible
runtime of the "add()" operation will be?
```

Implementing a Queue with an Array > Wrapping Around
add(7) add(4) add(1)


## Implementing a Queue with Nodes

Queue ADT
state
Set of ordered items
Number of items
behavior
add(item) add item to back
remove() remove and return
item at front
peek() return item at front
size( count of items
isEmpty() count of items is $0 ?$

Queue ADT

Set of ordered items Number of items
behavior add(item) add item to back remove() remove and return item at front
peek() return item at front size() count of items
isEmpty() count of items is 0 ?
add (5)
add (8)
remove ()
LinkedQueue<E>

## state

Node front
Node back
size
behavior
add - add node to back
remove - return and remove
node at front
peek - return node at front
size - return size
isEmpty - return size $==0$

$$
\text { numberOfItems }=2
$$

Take 1 min to respond to activity

## www.pollev.com/cse373activity <br> What do you think the worst case runtime of the "add()" operation will be?



## Questions?

## Dictionaries

## Dictionaries (aka Maps)

Every Programmer's Best Friend

You'll probably use one in almost every programming project.
-Because it's hard to make a big project without needing one sooner or later.

```
// two types of Map implementations supposedly covered in CSE 143
Map<String, Integer> map1 = new HashMap<>();
Map<String, String> map2 = new TreeMap<>();
```


## Review: Maps

map: Holds a set of distinct keys and a collection of values, where each key is associated with one value. a.k.a. "dictionary"

## Dictionary ADT

state
Set of items \& keys
Count of items
behavior
put(key, item) add item to collection indexed with key get(key) return item associated with key containsKey(key) return if key already in use
remove(key) remove item and associated key size() return count of items

## supported operations:

put(key, value): Adds a given item into collection with associated key,

- if the map previously had a mapping for the given key, old value is replaced.
get(key): Retrieves the value mapped to the key
containsKey(key): returns true if key is already associated with value in map, false otherwise
remove(key): Removes the given key and its mapped value




# Implementing a Dictionary with an Array 

## Dictionary ADT

## state

Set of items \& keys Count of items

## behavior

put(key, item) add item to collection indexed with key get(key) return item associated with key containsKey(key) return if key already in use remove(key) remove item and associated key size() return count of items

## containsKey ('c')

get ('d')
put ('b', 97)
put ('e', 20)


Big O Analysis - (if key is the last one looked at / not in the dictionary)

$$
\begin{array}{ll}
\text { put () } & \mathrm{O}(\mathrm{~N}) \text { linear } \\
\text { get () } & \mathrm{O}(\mathrm{~N}) \text { linear } \\
\text { containsKey() } & \mathrm{O}(\mathrm{~N}) \text { linear } \\
\text { remove () } & \mathrm{O}(\mathrm{~N}) \text { linear } \\
\text { size() } & \mathrm{O}(1) \text { constant }
\end{array}
$$

Big O Analysis - (if the key is the first one looked at)

```
put()
get()
\(\mathrm{O}(1)\) constant
get()
\(\mathrm{O}(1)\) constant
containsKey() O(1) constant
remove (\(\quad \mathrm{O}(1)\) constant
size()
\(\mathrm{O}(1)\) constant
```


## Implementing a Dictionary with Nodes

Dictionary ADT
state
Set of items \& keys
Count of items
behavior
put(key, item) add item to
collection indexed with key
get(key) return item
associated with key
$\frac{\text { containsKey(key) return if key }}{\text { already in use }}$
$\frac{\text { remove(key) remove item }}{\text { and associated key }}$
size() return count of items

```
containsKey('c')
get('d')
put('b', 20)
```


## Dictionary ADT

## state

Set of items \& keys Count of items
behavior
put(key, item) add item to collection indexed with key get(key) return item associated with key already in use remove(key) remove item and associated key size() return count of items

LinkedDictionary<K, V>
state   front   size
behavior   put if key is unused, create new with pair, add to front of list, else replace with new value get scan all pairs looking for given key, return associated item if found containskey scan all pairs, return if key is found   remove scan all pairs, skip pair to be removed   size return count of items in dictionary



Big O Analysis - (if key is the last one looked at / not in the dictionary)
put()
$\mathrm{O}(\mathrm{N})$ linear
get()
$\mathrm{O}(\mathrm{N})$ linear
containsKey() $O(N)$ linear
remove () $\quad \mathrm{O}(\mathrm{N})$ linear
size()
O(1) constant
Big O Analysis - (if the key is the first one looked at)

put()	$\mathrm{O}(1)$ constant
get()	$\mathrm{O}(1)$ constant
containsKey ()	$\mathrm{O}(1)$ constant
remove()	$\mathrm{O}(1)$ constant
size()	$\mathrm{O}(1)$ constant

P-Big $O$

## Review: Complexity Class

Note: You don't have to understand all of this right now - we'll dive into it soon.
complexity class: A category of algorithm efficiency based on the algorithm's relationship to the input size N .

Complexity   Class	Big-0	Runtime if you   double $\mathbf{N}$	Example Algorithm
constant	$\mathrm{O}(1)$	unchanged	Accessing an index of   an array
logarithmic	$\mathrm{O}\left(\log _{2} \mathrm{~N}\right)$	increases slightly	Binary search
linear	$\mathrm{O}(\mathrm{N})$	doubles	Looping over an array
log-linear	$\mathrm{O}\left(\mathrm{N} \mathrm{\log }_{2} \mathrm{~N}\right)$	slightly more than   doubles	Merge sort algorithm
quadratic	$\mathrm{O}\left(\mathrm{N}^{2}\right)$	quadruples	Nested loops!
$\ldots$	$\cdots$	$\ldots$	$\ldots$
exponential	$\mathrm{O}\left(2^{\mathrm{N}}\right)$	multiplies drastically	Fibonacci with recursion



## Code to Big-Oh



143 general patterns: " $\mathrm{O}(1)$ constant is no loops, $\mathrm{O}(\mathrm{n})$ is one loop, $\mathrm{O}\left(\mathrm{n}^{2}\right)$ is nested loops"

- This is still useful!
- But in 373 we'll go much more in depth: we can explain more about why, and how to handle more complex cases when they arise (which they will!)


## Meet Algorithmic Analysis



Algorithmic Analysis: The overall process of characterizing code with a complexity class, consisting of:

- Code Modeling: Code $\rightarrow$ Function describing code's runtime
- Asymptotic Analysis: Function $\rightarrow$ Complexity class describing asymptotic behavior


## Code Modeling



Code Modeling - the process of mathematically representing how many operations a piece of code will run in relation to the input size $n$.
Convert from code to a function representing its runtime

## What Counts?

We don't know exact runtime of every operation, but for now let's try simplifying assumption: all basic operations take the same time

- Basics:
- +, -, /, *, \%, ==
- Assignment
- Returning
- Variable/array access


## - Function Calls

- Total runtime in body
- Remember: new calls a function (constructor)
- Conditionals
- Test + time for the followed branch
- Learn how to reason about branch later
- Loops
- Number of iterations * total runtime in condition and body


## Code Modeling Example 1

```
public void method1(int n) {
 int sum = 0; +1
 int i = 0; +1
 while (i < n) { +1 Loop runs ntimes
 sum = sum +(i * 3); +3
 }
 return sum; +1
}
```

$$
f(n)=6 n+3
$$

## Code Modeling Example 2

public void method2(int n) \{
int sum = 0; +1
int i = 0; +1
while (i < n) \{ +1
int $\mathrm{j}=0$; +1
while (j < n) \{ +1
if (j \% 2 == 0) \{ +2
// do nothing
\}
sum $=$ sum $+\left(\mathrm{i}^{*} 3\right)+\mathrm{j} ;+4$
$j=j+1 ;+2$
\}
i = i + 1; +2
\} return sum; +1
\}

## Where are we?



We just turned a piece of code into a function!
We'll look at better alternatives for code modeling later
Now to focus on step 2, asymptotic analysis

## Finding a Big Oh



## 2



We have an expression for $f(n)$. How do we get the $O()$ that we've been talking about?

1. Find the "dominating term" and delete all others.

The "dominating" term is the one that is largest as $n$ gets bigger. In this class, often the largest power of $n$.
2. Remove any constant factors.

$$
f(n)=(9 n+3) n+3
$$

$=9 n^{2}+3 n+3$
$\approx 9 n^{2}$
$\approx \mathrm{n}^{2}$
$\mathrm{f}(\mathrm{n})$ is $\mathrm{O}\left(\mathrm{n}^{2}\right)$

## Can we really throw away all that info?

Big-Oh is like the "significant digits" of computer science
Asymptotic Analysis: Analysis of function behavior as its input approaches infinity

- We only care about what happens when n approaches infinity

For small inputs, doesn't really matter: all code is "fast enough"
Since we're dealing with infinity, constants and lower-order terms don't meaningfully add to the final result. The highest-order term is what drives growth!

Remember our goals:

## Simple

We don't care about tiny differences in implementation, want the big picture result

## Decisive

Produce a clear comparison indicating which code takes "longer"

## Function growth

Imagine you have three possible algorithms to choose between.
Each has already been reduced to its mathematical model

$$
f(n)=n \quad \underline{g(n)=4 n} \quad h(n)=n^{2}
$$



The growth rate for $f(n)$ and $\mathrm{g}(\mathrm{n})$ looks very different for small numbers of input

...but since both are linear eventually look similar at large input sizes
whereas $h(n)$ has a distinctly different growth rate


But for very small input values $h(n)$ actually has a slower growth rate than either $f(n)$ or $g(n)$

## Definition: Big-O

We wanted to find an upper bound on our algorithm's running time, but

- We don't want to care about constant factors.
- We only care about what happens as $n$ gets large.


## Big-O

$f(n)$ is $O(g(n))$ if there exist positive constants $c, n_{0}$ such that for all $n \geq n_{0}$,

$$
f(n) \leq c \cdot g(n)
$$

We also say that $g(n)$ "dominates" $f(n)$

Why $n_{0}$ ?


Why $c$ ?


## Applying Big O Definition

Show that $f(n)=10 n+15$ is $O(n)$
Apply definition term by term

$$
\begin{aligned}
& 10 n \leq c \cdot n \text { when } c=10 \text { for all values of } n \\
& 15 \leq c \cdot n \text { when } c=15 \text { for } n \geq 1
\end{aligned}
$$

Add up all your truths

$$
10 n+15 \leq 10 n+15 n=25 n \text { for } n \geq 1
$$

Select values for $c$ and $n_{0}$ and prove they fit the definition Take $c=25$ and $n_{0}=1$
$10 n \leq 10 n$ for all values of $n$
$15 \leq 15 n$ for $n \geq 1$
So $10 n+15 \leq 25 n$ for all $n \geq 1$, as required.
because a $c$ and $n_{0}$ exist, $f(n)$ is $O(n)$

