
Lecture 2: Abstract
Data Types

CSE 373: Data Structures and
Algorithms

1

Please fill out the Poll at- pollev.com/21sp373

2

Agenda
-Dust off data structure cobwebs
-Meet the ADT
-List Case Study

CSE 373 21 SP –CHAMPION

Announcements
Things are live!
- course website – one stop for all things 373
- Discord – connect with students + office hours
- Ed board – get your course content questions answered
- Gradescope

Proj 0 Assigned – Due Wednesday April 7th
- 143 review
- solo assignment

Find a partner in time for Proj 1 next Wednesday

CSE 373 SP 18 - KASEY CHAMPION 3

Textbook
Data Structures and Algorithm Analysis in Java
by Mark Allen Weiss

Completely optional
- Nothing assigned out of the textbook
- No readings

Advice: only purchase if you learn best with a
textbook, otherwise not recommended

CSE 373 SP 20 - KASEY CHAMPION 4

Questions?

5

Clarification on syllabus, General complaining/moaning

What is this class about?
CSE 143 – OBJECT ORIENTED PROGRAMMING

6

-Classes and Interfaces
-Methods, variables and conditionals
-Loops and recursion
-Linked lists and binary trees
-Sorting and Searching
-O(n) analysis
-Generics

CSE 373 – DATA STRUCTURES AND ALGORITHMS

-Design decisions
-Design analysis
-Implementations of data structures
-Debugging and testing
-Abstract Data Types
-Code Modeling
-Complexity Analysis
-Software Engineering Practices

CSE 373 19 WI - KASEY CHAMPION

Why 373?

CSE 373 AU 20 – HUNTER SCHAFER 7

1. Build a strong foundation of data structures and
algorithms that will let you tackle the biggest
problems in computing

Fake News: A Survey of Research, Detection Methods, and Opportunities (Xinyi Zhou, Reza Zafarani/arXiv:1812.00315)

373 Data Structures
& Algorithms

Why 373?

CSE 373 AU 20 – HUNTER SCHAFER 8

2. Pick up the vocabulary, skills, and practice needed to make design decisions. Learn
to evaluate the tools in your CS toolbox

• Differences between technical
implementations
• Evaluation can mean many

different things!

SO
RT

IN
G

AL
GORIT

HM
S

BINARY TREES

Data Structures and Algorithms

9

What are they anyway?

Basic Definitions
Data Structure
-A way of organizing and storing data
-Examples from CSE 14X: arrays, linked lists, stacks, queues, trees

Algorithm
-A series of precise instructions to produce to a specific outcome
-Examples from CSE 14X: binary search, merge sort, recursive backtracking

10CSE 373 20 SP – CHUN & CHAMPION

Review: Clients vs Objects
CLIENT CLASSES

CSE 143 WI 18 – WHITAKER BRAND 11

A class that is executable, in Java this
means it contains a Main method
public static void main(String[] args)

OBJECT CLASSES

A coded structure that contains data and
behavior
Start with the data you want to hold,
organize the things you want to enable
users to do with that data

Abstract Data Types (ADT)
Abstract Data Types
- An abstract definition for expected operations and behavior
- Defines the input and outputs, not the implementations

12

- each element is accessible by a 0-based index
- a list has a size (number of elements that have been

added)
- elements can be added to the front, back, or elsewhere
- in Java, a list can be represented as an ArrayList object

Review: List - a collection storing an ordered sequence of elements

CSE 373 20 SP – CHUN & CHAMPION

Review: Interfaces
interface: A construct in Java that defines a set of
methods that a class promises to implement
- Interfaces give you an is-a relationship without code sharing.

- A Rectangle object can be treated as a Shape but inherits no code.

- Analogous to non-programming idea of roles or certifications:
- "I'm certified as a CPA accountant.

This assures you I know how to do taxes, audits, and consulting."
- "I'm 'certified' as a Shape, because I implement the Shape interface.

This assures you I know how to compute my area and perimeter."

public interface name {
public type name(type name, ..., type name);
public type name(type name, ..., type name);
...
public type name(type name, ..., type name);

}

13

Example

// Describes features common to all
// shapes.
public interface Shape {

public double area();
public double perimeter();

}

CSE 373 20 SP – CHUN & CHAMPION

Review: Java Collections
Java provides some implementations of ADTs for you!

Lists List<Integer> a = new ArrayList<Integer>();

Stacks Stack<Character> c = new Stack<Character>();

Queues Queue<String> b = new LinkedList<String>();

Maps Map<String, String> d = new TreeMap<String, String>();

But some data structures you made from scratch… why?
Linked Lists - LinkedIntList was a collection of ListNode
Binary Search Trees – SearchTree was a collection of SearchTreeNodes

14CSE 373 20 SP – CHUN & CHAMPION

ADTs Data Structures

Full Definitions
Abstract Data Type (ADT)
-A definition for expected operations and behavior
-A mathematical description of a collection with a set of supported operations and how
they should behave when called upon

-Describes what a collection does, not how it does it
-Can be expressed as an interface
-Examples: List, Map, Set

Data Structure
-A way of organizing and storing related data points
-An object that implements the functionality of a specified ADT
-Describes exactly how the collection will perform the required operations
-Examples: LinkedIntList, ArrayIntList

15CSE 373 19 WI - KASEY CHAMPION

ADTs we’ll discuss this quarter
-List
-Set
-Map
-Stack
-Queue
-Priority Queue
-Graph
-Disjoint Set

16CSE 373 19 SP - KASEY CHAMPION

Learning to Bake in a CSE Class
Think of what you’ll learn this quarter as a cookbook
- ADTs are the chapters/category: Soups, Salads, Cookies, Cakes, etc

- High-level descriptions of a category of functionality
- You don’t serve a soup when guests expect a cookie!

- Data structures are the recipes: chocolate chip cookies, snickerdoodles, etc
- Step-by-step, concrete descriptions of an item with specific characteristics
- Understand your tradeoffs before replacing carrot cake with a wedding cake

When you go out into the world …
- Figure out which category is required
- Choose the specific recipe that best fit the situation

CSE 373 AU 20 – HUNTER SCHAFER 17

Case Study: The List ADT

CSE 373 SP 18 - KASEY CHAMPION 18

list: a collection storing an ordered sequence of elements.
-Each item is accessible by an index.
-A list has a size defined as the number of elements in the list

List<String> names = new ArrayList<>();
names.add("Anish");
names.add("Amanda");
names.add(0, "Brian");

Case Study: The List ADT
list: a collection storing an ordered sequence of
elements.
-Each item is accessible by an index.
-A list has a size defined as the number of elements in the list

19

Expected Behavior:
- get(index): returns the item at the given index
- set(value, index): sets the item at the given
index to the given value

- append(value): adds the given item to the
end of the list

- insert(value, index): insert the given item at
the given index maintaining order

- delete(index): removes the item at the given
index maintaining order

- size(): returns the number of elements in the
list

CSE 373 20 SP – CHUN & CHAMPION

Case Study: List Implementations

20CSE 373 19 WI - KASEY CHAMPION

List ADT

get(index) return item at index
set(item, index) replace item at index
append(item) add item to end of list
insert(item, index) add item at index
delete(index) delete item at index
size() count of items

state

behavior

Set of ordered items
Count of items

ArrayList<E>

get return data[index]
set data[index] = value
append data[size] =
value, if out of space
grow data
insert shift values to
make hole at index,
data[index] = value, if
out of space grow data
delete shift following
values forward
size return size

state

behavior

data[]
size

LinkedList<E>

get loop until index,
return node’s value
set loop until index,
update node’s value
append create new node,
update next of last node
insert create new node,
loop until index, update
next fields
delete loop until index,
skip node
size return size

state

behavior

Node front
size

ArrayList
uses an Array as underlying storage

LinkedList
uses nodes as underlying storage

0 1 2 3 4

88.6 26.1 94.4 0 0
88.6 26.1 94.4

list free space

Implementing ArrayList

CSE 373 SP 18 - KASEY CHAMPION 21

ArrayList<E>

get return data[index]
set data[index] = value
append data[size] =
value, if out of space
grow data
insert shift values to
make hole at index,
data[index] = value, if
out of space grow data
delete shift following
values forward
size return size

state

behavior

data[]
size

0 1 2 3

insert(10, 0) 3 4 5

numberOfItems = 3

insert(element, index) with shifting

0 1 2 3

3 4 5

numberOfItems = 43

delete(index) with shifting

54310

4

delete(0) 10 3 4 5

0 1 2 3 4 5 6 7

Implementing ArrayList

CSE 373 SP 18 - KASEY CHAMPION 22

ArrayList<E>

get return data[index]
set data[index] = value
append data[size] =
value, if out of space
grow data
insert shift values to
make hole at index,
data[index] = value, if
out of space grow data
delete shift following
values forward
size return size

state

behavior

data[]
size

0 1 2 3

append(2) 3 5

numberOfItems =

append(element) with growth

410

4

2

5

Design Decisions
For every ADT there are lots of different ways to implement them
Based on your situation you should consider:
- Memory vs Speed
- Generic/Reusability vs Specific/Specialized
- One Function vs Another
- Robustness vs Performance

This class is all about implementing ADTs based on making the right design tradeoffs!
> A common topic in interview questions

CSE 373 19 WI - KASEY CHAMPION 23

