
Lecture 1: Welcome! CSE 373: Data Structures and 
Algorithms

1



2

Agenda
-Introductions
-Syllabus
-Dust off data structure cobwebs
-Meet the ADT
-List Case Study

CSE 373 21 SP –CHAMPION



Welcome!
- The world is still BANANAS!

- You are not expected to be at your 
best this quarter and that is OK

- We are in this together

- Humans first, students second

- Patience, vulnerability, compassion

3

“We acknowledge that we are on the traditional land of the first people of Seattle, the Duwamish 
People past and present and honor with gratitude the land itself and the Duwamish Tribe.” 

https://www.realrentduwamish.org/ CSE 373 21 SP –CHAMPION

https://www.realrentduwamish.org/


Waitlist/ Overloads
-I have told CSE the more the merrier, but technically I have no 
control over these things :/

-Email cse373@cs.washington.edu for all registration questions 
-Many students move around, likely a spot will open
-Keep coming to lecture!

4CSE 373 21 SP –CHAMPION

mailto:cse373@cs.washington.edu


I am Kasey Champion
Software Engineer @ Karat
Kasey has to go to her “real job” after this

High School Teacher @ Franklin High
champk@cs.washington.edu

Hello!

@techie4good
Iron Fist No Mercy
“Mercy” for short

mailto:champk@cs.washington.edu


Course Overview
Course Topics
- Data Structures and ADTs: lists, stacks, 
queues, sets, dictionaries, arrays, linked 
lists, trees, hash tables, priority queues, 
binary heaps and disjoint sets

- Algorithm analysis: Big O Notation, 
asymptotic analysis, P and NP complexity 

- Sorting algorithms: selection, insertion, 
merge, quick, more… 

- Graphs and graph algorithms: graph 
search, shortest path, minimum spanning
trees

6

Course Goals
- Design data structures and algorithms by 
implementing and maintaining invariants.

- Analyze the runtime and design values of 
data structures and algorithms.

- Critique the application of data structures 
and algorithms towards complex 
problems.

- Prepare for technical interviews

CSE 373 21 SP –CHAMPION



Course Components

Course Tools
- Class webpage

- Central location for all information
- Course canvas

- Gradebook
- Zoom

- Lectures
- Poll Everywhere

- Lecture participation
- Gradescope

- Exercise distribution and submission
- Discussion board

- Get help
- GitLab

- Project file distribution and submission
- Anonymous Feedback Tool

- Tell us how it’s going

7

Learning Components
- Lectures

- Recorded
- Please come hang out with us

- Lecture Participation Polls
- Graded on participation NOT correctness

- Exercises
- Sets of conceptual problems distributed via 

Gradescope
- Projects

- Programming assignments distributed via GitLab
- ”Exams”

- 2 this quarter
- “Test like questions” without time limit
- Groups, notes, internet searches allowed, but no 

staff help
- Office Hours

- Please come hang out with us!

CSE 373 21 SP –CHAMPION



A note about remote life
We are all figuring this out as we go!
Lecture
- Please be prepared to interact throughout the hour
- Poll Everywhere
- Zoom interactions
- Breakouts

Section
- Similar to lecture
- Please be prepared to work with other students
- Video
- Mic

A note about time zones
- We understand many of you are no longer in “PST”
- We will do our best to provide supplemental times

8

Discussion Board
- Please feel free to use this to meet and engage with 

one another

Office Hours
- Please be prepared to share your screen
- Turn on mic and video

Let us know what works!
- Share what you’ve seen elsewhere
- Use the anonymous feedback form
- Always happy to take suggestions / feedback J

CSE 373 21 SP –CHAMPION



Course Policies
Grade Breakdown
- Programming Projects (40%)
- Written Exercises (30%)
- Exam I (15%)
- Exam II (15%)
- Participation (EC round up to 0.05)

Academic Misconduct
- Don’t share your code
- Don’t look at others code
- Don’t ”step by step”
- DO talk to one another about concepts and approaches
- DO look things up on the internet
- No posting code on discussion board or ANYWHERE online
- We do run MOSS

Accommodations and Extenuating Circumstances 
- Make sure you get the support you are entitled to via DRS

- If you’re having issues with DRS system reach out to Kasey
- When in doubt, reach out!

9CSE 374 AU 20 - KASEY CHAMPION

Turn In Policies
- 7 late days per student 

- use for projects or exercises
- use up to 3 per assignment unless you speak to 

Kasey
- Assignments

- Solo or groups of 2
- Projects out/in on Wednesdays
- Exercises out/in on Fridays
- after all late days used up -5% for each 24-hour 

period turned in late
- Exams

- Solo or groups of 2
- Open note/open book, no staff help
- Will have 1 week to turn in

- No late exams accepted
- Participation Extra Credit

- Poll everywhere open at start of lecture
- Due before start of next lecture
- No late polls will be accepted

Grade to GPA Minimums
- 95% -> 3.5
- 85% -> 3.0
- 75% -> 2.5
- 65% -> 2.0
- 50% -> 0.7



Questions?

10

Clarification on syllabus, General complaining/moaning



What is this class about?
CSE 143 – OBJECT ORIENTED PROGRAMMING

11

-Classes and Interfaces
-Methods, variables and conditionals
-Loops and recursion
-Linked lists and binary trees
-Sorting and Searching
-O(n) analysis
-Generics

CSE 373 – DATA STRUCTURES AND ALGORITHMS

-Design decisions
-Design analysis
-Implementations of data structures
-Debugging and testing
-Abstract Data Types
-Code Modeling
-Complexity Analysis
-Software Engineering Practices

CSE 373 19 WI - KASEY CHAMPION



Data Structures and Algorithms

12

What are they anyway?



Basic Definitions
Data Structure
-A way of organizing and storing data
-Examples from CSE 14X: arrays, linked lists, stacks, queues, trees

Algorithm
-A series of precise instructions to produce to a specific outcome
-Examples from CSE 14X: binary search, merge sort, recursive backtracking

13CSE 373 20 SP – CHUN & CHAMPION



Review: Clients vs Objects
CLIENT CLASSES

CSE 143 WI 18 – WHITAKER BRAND 14

A class that is executable, in Java this 
means it contains a Main method
public static void main(String[] args)

OBJECT CLASSES

A coded structure that contains data and 
behavior
Start with the data you want to hold,
organize the things you want to enable 
users to do with that data



Abstract Data Types (ADT)
Abstract Data Types
- An abstract definition for expected operations and behavior
- Defines the input and outputs, not the implementations

15

- each element is accessible by a 0-based index
- a list has a size (number of elements that have been 

added)
- elements can be added to the front, back, or elsewhere
- in Java, a list can be represented as an ArrayList object

Review: List - a collection storing an ordered sequence of elements

CSE 373 20 SP – CHUN & CHAMPION



Review: Interfaces
interface: A construct in Java that defines a set of 
methods that a class promises to implement
- Interfaces give you an is-a relationship without code sharing.

- A Rectangle object can be treated as a Shape but inherits no code.

- Analogous to non-programming idea of roles or certifications:
- "I'm certified as a CPA accountant.

This assures you I know how to do taxes, audits, and consulting."
- "I'm 'certified' as a Shape, because I implement the Shape interface.

This assures you I know how to compute my area and perimeter."

public interface name {
public type name(type name, ..., type name);
public type name(type name, ..., type name);
...
public type name(type name, ..., type name);

}

16

Example

// Describes features common to all 
// shapes.
public interface Shape {

public double area();
public double perimeter();

}

CSE 373 20 SP – CHUN & CHAMPION



Review: Java Collections
Java provides some implementations of ADTs for you!

Lists List<Integer> a = new ArrayList<Integer>();

Stacks Stack<Character> c = new Stack<Character>();

Queues Queue<String> b = new LinkedList<String>();

Maps Map<String, String> d = new TreeMap<String, String>();

But some data structures you made from scratch… why?
Linked Lists - LinkedIntList was a collection of ListNode
Binary Search Trees – SearchTree was a collection of SearchTreeNodes

17CSE 373 20 SP – CHUN & CHAMPION

ADTs Data Structures



Full Definitions
Abstract Data Type (ADT)
-A definition for expected operations and behavior
-A mathematical description of a collection with a set of supported operations and how 
they should behave when called upon

-Describes what a collection does, not how it does it
-Can be expressed as an interface
-Examples: List, Map, Set

Data Structure
-A way of organizing and storing related data points
-An object that implements the functionality of a specified ADT
-Describes exactly how the collection will perform the required operations
-Examples: LinkedIntList, ArrayIntList

18CSE 373 19 WI - KASEY CHAMPION



ADTs we’ll discuss this quarter
-List
-Set
-Map
-Stack
-Queue
-Priority Queue
-Graph
-Disjoint Set

19CSE 373 19 SP - KASEY CHAMPION



Case Study: The List ADT

CSE 373 SP 18 - KASEY CHAMPION 20

list: a collection storing an ordered sequence of elements.
-Each item is accessible by an index.
-A list has a size defined as the number of elements in the list

List<String> names = new ArrayList<>();
names.add("Anish");
names.add("Amanda");
names.add(0, "Brian");



Case Study: The List ADT
list: a collection storing an ordered sequence of 
elements.
-Each item is accessible by an index.
-A list has a size defined as the number of elements in the list

21

Expected Behavior:
- get(index): returns the item at the given index
- set(value, index): sets the item at the given 
index to the given value

- append(value): adds the given item to the 
end of the list

- insert(value, index): insert the given item at 
the given index maintaining order

- delete(index): removes the item at the given 
index maintaining order

- size(): returns the number of elements in the 
list

CSE 373 20 SP – CHUN & CHAMPION



Case Study: List Implementations

22CSE 373 19 WI - KASEY CHAMPION

List ADT

get(index) return item at index
set(item, index) replace item at index
append(item) add item to end of list
insert(item, index) add item at index
delete(index) delete item at index
size() count of items

state

behavior

Set of ordered items
Count of items

ArrayList<E>

get return data[index]
set data[index] = value
append data[size] = 
value, if out of space 
grow data
insert shift values to 
make hole at index, 
data[index] = value, if 
out of space grow data
delete shift following 
values forward
size return size 

state

behavior

data[]
size

LinkedList<E>

get loop until index, 
return node’s value
set loop until index, 
update node’s value
append create new node, 
update next of last node
insert create new node, 
loop until index, update 
next fields
delete loop until index, 
skip node
size return size 

state

behavior

Node front
size

ArrayList
uses an Array as underlying storage

LinkedList
uses nodes as underlying storage

0 1 2 3 4

88.6 26.1 94.4 0 0
88.6 26.1 94.4

list free space



Implementing ArrayList

CSE 373 SP 18 - KASEY CHAMPION 23

ArrayList<E>

get return data[index]
set data[index] = value
append data[size] = 
value, if out of space 
grow data
insert shift values to 
make hole at index, 
data[index] = value, if 
out of space grow data
delete shift following 
values forward
size return size 

state

behavior

data[]
size

0 1 2 3

insert(10, 0) 3 4 5

numberOfItems = 3

insert(element, index) with shifting

0 1 2 3

3 4 5

numberOfItems = 43

delete(index) with shifting

54310

4

delete(0) 10 3 4 5



0 1 2 3 4 5 6 7

Implementing ArrayList

CSE 373 SP 18 - KASEY CHAMPION 24

ArrayList<E>

get return data[index]
set data[index] = value
append data[size] = 
value, if out of space 
grow data
insert shift values to 
make hole at index, 
data[index] = value, if 
out of space grow data
delete shift following 
values forward
size return size 

state

behavior

data[]
size

0 1 2 3

append(2) 3 5

numberOfItems = 

append(element) with growth

410

4

2

5



Design Decisions
For every ADT there are lots of different ways to implement them
Based on your situation you should consider:
- Memory vs Speed
- Generic/Reusability vs Specific/Specialized
- One Function vs Another
- Robustness vs Performance

This class is all about implementing ADTs based on making the right design tradeoffs!
> A common topic in interview questions

CSE 373 19 WI - KASEY CHAMPION 25


