
Section 08: Disjoint Sets, Topological Sort, and Tries

1. Disjoint sets

(a) Consider the following trees, which are a part of a disjoint set data-structure:

7

3

8

5

9

2

1

4

11 12

10 6

0

For these problems, use both the weighted quick union by size and path compression optimizations.

(i) Draw the resulting tree(s) after calling find(5) on the above. What value does the method return?

(ii) Draw the final result of calling union(2,6) on the result of part a.

(b) Consider the disjoint-set shown below

6

0

1

4

5

3

2 8

9 10 11

12

7

13

What would be the result of the following calls on union if we add the weighted quick union by size and
path compression optimizations.

(i) union(2, 13)

(ii) union(4, 12)

(iii) union(2, 8)

(c) Consider the disjoint-set shown below

6

0 4 3 1 5

8

9 10 11

12

What would be the result of the following calls on union if we add the weighted quick union by size and
path compression optimizations.

(i) union(10, 0)

1



2. Topological sort

(a) Give a valid topological sort of the graph below. For your reference, some orderings of the graph are provided
below the graph.

G A D E B C F

DFS preorder: ABCFDE (G)

DFS postorder: FCBEDA (G)

BFS: ABDCEF (G)

3. Tries

(a) Consider the trie shown below:

I

N

D

E

X

H O

FC

(i) What strings are stored in the trie?

(ii) Insert the strings indent, inches, and trie into the trie.

(b) How could you modify a trie so that you can efficiently determine the number of words with a specific prefix
in the trie?

2


	1 Disjoint sets
	2 Topological sort
	3 Tries

