
Section 02: Solutions

Section Problems

1. Comparing growth rates

(a) Order each of the following functions from largest to smallest in terms of order of growth. (By “largest”, we
mean which function increases the most rapidly as n increases.)

• log4(n) + log2(n)
•

n

2
+ 4

• 2n + 3
• 750, 000, 000
• 8n+ 4n2

Solution:

• 2n + 3
• 8n+ 4n2

•
n

2
+ 4

• log4(n) + log2(n)
• 750, 000, 000

(b) For each of the above expressions, state the simplified tight O bound in terms of n.

Solution:

• O(log(n))

• O(n)

• O(2n)

• O(1)

• O(n2)

(c) Order each of these more esoteric functions from largest to smallest in terms of order of growth. (By “largest”,
we mean which function increases the most rapidly as n increases.) Also state a simplified tight O bound for
each.

• 2n/2

• 3n

• 2n

Solution:

• 3n, which is in O (3n)
• 2n, which is in O (2n)

• 2n/2, which is in O
(√

2
n
) (

or O
(
2n/2

))
.

Constant multipliers don’t matter in big-O notation,
but a constant factor in the exponent does matter,
since it corresponds to multiplying by some constant
to the nth power. Saying 2n/2 is in O (2n) would be
true, but it would not be a tight bound.

1



2. True or false?

(a) In the worst case, sorting the elements in an array using selection sort is O
(
n2

)
.

(b) In the worst case, sorting the elements in an array using selection sort is Ω(n).

Solution:

(a) True

(b) True

As a reminder, we can think aboutO informally as an upper bound. If a function f(n) is inO (g(n)), then g(n) is
a function that dominates f(n), and this domination can be really overshooting the mark. Every (correct) piece

of code we write in this class will have a running time that is O
(
n!n!

n!
)
. Conversely, we can think about Ω

informally as a lower bound. If a function f(n) is in Ω(g(n)), then f(n) is a function that dominates g(n), and
this domination can be really overshooting the mark also. The running time of any piece of code is always in
Ω(1). And finally, Θ is a much stricter definition. f(n) is in Θ(g(n)) (if and only if) f(n) is in O (g(n)) and in
Ω(g(n)). Usually when people say O, they mean Θ.

For questions a and b: note that binary search takes log(n) time to complete. log(n) is upper-bounded by n, so
log(n) ∈ O (n). However, log(n) is not lower-bounded by n, which means log(n) ∈ Ω(n) is false.

2



3. Finding bounds

For each of the following code blocks, give a tight big-O bound of your model.

(a) int x = 0;

for (int i = 0; i < n; i++) {

for (int j = 0; j < n * n / 3; j++) {

x += j;

}

}

Solution:

The inner loop performs approximately n2

3 iterations; the outer loop repeats that n times, and each inner
iteration does a constant amount of work.

So the tight worst-case runtime is O
(
n3

)
.

The exact constant you get doesn’t matter here, since we’ll ignore the constant when we put it into O
notation anyway. For example, saying we do 3 operations per inner-loop iteration (checking the loop
condition, updating j, and updating x) and getting n3 instead of n3/3 is also completely reasonable.

(b) int x = 0;

for (int i = n; i >= 0; i -= 1) {

if (i % 3 == 0) {

break;

} else {

x += n;

}

}

Solution:

The tightest possible big-O bound is O (1) because exactly one of n, n − 1, or n − 2 will be divisible by
three for all possible values of n. So, the loop runs at most 3 times.

3



(c) int x = 0;

for (int i = 0; i < n; i++) {

if (i % 5 == 0) {

for (int j = 0; j < n; j++) {

if (i == j) {

x += i * j;

}

}

}

}

Solution:

While the inner-most if statement executes only once per loop, we must check if i == j is true once per
each iteration. This will take some non-zero constant amount of time, so the inner-most loop will perform
approximately n work (setting the constant factors equal to 1, is conventional, since constant factors can
depend on things like system architecture, what else the computer is doing, the temperature of the room,
etc.).

The outer-most loop and if statement will perform n work during only 1/5th of the iterations and will
perform a constant amount of work the remaining 4/5ths of the time. So, the total amount work done is

approximately
n

5
·n+

4n

5
· 1. If we simplify, this means we can ultimately model the runtime as a function

of approximately T (n) =
n2

5
+

4n

5
.

Therefore, the tightest worst-case asymptotic runtime will be O
(
n2

)
.

(d) int x = 0;

for (int i = 0; i < n; i++) {

if (n < 100000) {

for (int j = 0; j < n; j++) {

x += 1;

}

} else {

x += 1;

}

}

Solution:

Recall that when computing the asymptotic complexity, we only care about the behavior for large inputs.
Once n is large enough, we will only execute the second branch of the if statement, meaning the loop will
run n times. So, the tightest worst-case runtime is O (n).

4



(e) int x = 0;

if (n % 2 == 0) {

for (int i = 0; i < n * n * n * n; i++) {

x++;

}

} else {

for (int i = 0; i < n * n * n; i++) {

x++;

}

}

Solution:

We can model the runtime of this function in the general case as:

Tg(n) =

{
n4 when n is even
n3 when n is odd

However, the prompt was asking you to prove a model for the worst possible case – that is, when n is
even. If we assume n is even, we can produce the following model:

Tw(n) = n4

The tightest worst-case asymptotic runtime is then O
(
n4

)
in this case.

Something interesting to note is that the general model has differing tight big-O and big-Ω bounds and
so therefore has no big-Θ bound.

That is, the best big-O bound we can give for Tg(n) is Tg(n) ∈ O
(
n4

)
; the best big-Ω bound we can give

is Tg(n) ∈ Ω
(
n3

)
. These two bounds (n4 and n3) are different so there is no big-Θ for Tg. Importantly

however, there is a big-Θ for our simpler model, Tw. That is, Tw(n) ∈ Θ
(
n4

)
.

5



4. Deques

The most recent homework introduces the concept of a Deque, which you will be working with in this section to
solve the problems. Some information about deques is copied below from the homework description.

Deque (usually pronounced like “deck”) is an irregular acronym of double-ended queue. Double-ended queues are
sequence containers with dynamic sizes that can be expanded or contracted on both ends (either its front or its
back). Deques can do everything that both stacks and queues can do.

Specifically, any deque implementation must have exactly the following operations.

• public void addFirst(T item): Adds an item of type T to the front of the deque.

• public void addLast(T item): Adds an item of type T to the back of the deque.

• public boolean isEmpty(): Returns true if deque is empty, false otherwise.

• public int size(): Returns the number of items in the deque.

• public void printDeque(): Prints the items in the deque from first to last, separated by a space. Once all
the items have been printed, print out a new line.

• public T removeFirst(): Removes and returns the item at the front of the deque. If no such item exists,
returns null.

• public T removeLast(): Removes and returns the item at the back of the deque. If no such item exists,
returns null.

• public T get(int index): Gets the item at the given index, where 0 is the front, 1 is the next item, and so
forth. If no such item exists, returns null. Must not alter the deque!

You will see two deque implementations in the homework: a deque implemented with a circular array and a deque
implemented with linked nodes.

(a) Write a method removeRandom that accepts a Deque<Integer> as a parameter and chooses at random to
remove and return the first or last element in the given deque. It should be equally likely to remove and
return the first or last element. You should use Math.random() to help you randomly select the first or last
element. Math.random() randomly returns a real number in the range [0, 1) (greater than or equal to 0.0 and
less than 1.0).

Assume that the given deque contains at least one element.

Solution:

public static void removeRandom(Deque<Integer> deque) {

if (Math.random() < 0.5) {

return deque.removeFirst();

}

return deque.removeLast();

}

6



(b) Write a method evenOdd that accepts a List<Integer> as a parameter and returns a Deque<Integer> where
all even numbers in the given list appear before the odd numbers in the given list.

For example, if you are given the list [1, 2, 3, 4, 5, 6] then evenOdd should return the deque [6, 4, 2, 1, 3, 5].

Solution:

public static Deque<Integer> evenOdd(List<Integer> list) {

Deque<Integer> deque = new LinkedDeque<>(); // ArrayDeque also works

for (int n : list) {

if (n % 2 == 0) {

deque.addFirst(n);

} else {

deque.addLast(n);

}

}

return deque;

}

(c) Write a method isReverse that accepts two Deque<String> as parameters and returns true if the second
deque is exactly the reverse of the first deque, false otherwise.

For example, if the first deque stores [”a”, ”b”, ”c”, ”d”] and the second deque stores [”d”, ”c”, ”b”, ”a”],
then isReverse should return true because the second deque is exactly the first deque reversed.

You may modify the given deques to solve this problem. You may not use the Deque get method to solve
this problem.

Solution:

One possible solution appears below:

public static boolean isReverse(Deque<String> deque1, Deque<String> deque2) {

if (deque1.size() != deque2.size()) {

return false;

}

while (!deque1.isEmpty()) {

if (!deque1.removeFirst().equals(deque2.removeLast())) {

return false;

}

}

return true;

}

7



(d) Implement isReverse without modifying the input deques. That is to say, if the first deque stores
[”a”, ”b”, ”c”, ”d”], then after a call to isReverse, deque1 should remain in the state [”a”, ”b”, ”c”, ”d”].

You may not use the Deque get method to solve this problem.

Solution:

One possible solution appears below. Note, in particular, that we cannot return false within the loop
because we need the input deques to be in the same state that they were in originally.

public static boolean isReverse(Deque<String> deque1, Deque<String> deque2) {

if (deque1.size() != deque2.size()) {

return false;

}

boolean isReverse = true;

for (int i = 0; i < deque1.size(); i++) {

String elt1 = deque1.removeFirst();

String elt2 = deque2.removeLast();

if (!elt1.equals(elt2)) {

isReverse = false;

}

// Preserve inputs by adding elt1 and elt2 back to their respective deques.

deque1.addLast(elt1);

deque2.addFirst(elt2);

}

return isReverse;

}

(e) Questions (c) and (d) restricted your use of the getmethod. Why might we want to restrict usage of a method
like get for a generic deque?

Solution:

Deques can be implemented using a circular array or linked nodes. When working with linked nodes,
there isn’t an easy way to access data in the middle since we need to continuously follow references to
access a node in the middle of a long chain (think about a linked list – there isn’t an easy way to know
what the third element in a linked list is. You would need to start at the beginning and hop through each
node’s next pointer). For a linked node implementation, we would expect O (n) runtime for get if n is the
size of the deque.

A deque implemented with a circular array, on the other hand, does not have this same problem since we
can easily access an element in an array given an index. We would expect O (1) runtime for get for the
array implementation.

When writing these methods, we don’t know what implementation of a deque the client chose, so it would
be best to avoid calls to get to avoid the potential runtime addition from continuously calling this method.

8


