QuickCheck 05: A hashing good time with K-D trees

Due: 8:00 am on Thursday, Feb 06, 2020

QuickChecks must be scanned and submitted online via Gradescope. If you have a smartphone, you can follow these steps to scan using an app: https://www.gradescope.com/help#help-center-item-student-scanning. Otherwise, there are scanners located at various libraries on campus which can be found here: https://finance.uw.edu/c2/printing-copying/dawg-prints-copy-locations. Make sure that the gray border around the edge of this page is visible in your scanned document.

1. Separate Chaining

For parts (a) and (b), consider a hash table of size 10 using separate chaining with a hash function of \(h(x) = x \). Assume that each bucket is a linked list where new elements are added to the front of the list.

(a) Insert 5, 13, and 101 into the hash table. A following call of insert(3) will be placed at index: []

(b) Insert 7, 17, and 27 into the hash table. Give the size of the bucket at index 7: []

(c) True or False: We are guaranteed \(\Theta(1) \) runtime with a hash table's find()

○ True ○ False

(d) Give the worst case \(\Theta(\cdot) \) run bound for contains() with a hash table of size \(n \). []

2. K-D Trees

For this question, use the following 2-D tree, where \(A \) corresponds to the left child of node \((5, 4)\) and \(B \) the right child. Similarly, \(C \) and \(D \) correspond to the left and right children of node \((9, 6)\) respectively.

[Diagram of K-D tree]

(a) Suppose we insert the point \((8, 1)\) into our tree. At what position will it be added?

○ A ○ B ○ C ○ D

(b) Suppose we insert the point \((4, 7)\) into our tree. At what position will it be added?

○ A ○ B ○ C ○ D