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Announcements

❖ Final is cancelled, but HW8 is still due

▪ … and there’s no late days

❖ Please fill out your TA nominations!

▪ https://www.cs.washington.edu/students/ta/bandes

❖ Lecture eval: https://uw.iasystem.org/survey/219337
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Announcements

❖ Section Evals:

▪ AA: https://uw.iasystem.org/survey/221482

▪ AB: https://uw.iasystem.org/survey/221455

▪ AC: https://uw.iasystem.org/survey/221537

▪ AD: TBD

▪ AE: https://uw.iasystem.org/survey/221470

▪ AF: https://uw.iasystem.org/survey/221507

▪ AG: https://uw.iasystem.org/survey/221496

▪ AH: https://uw.iasystem.org/survey/221521
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Two Key Skills

❖ In Software Engineering, two important skills to have are:

▪ Identifying the requirements (ie, selecting an ADT)

▪ Making tradeoffs (ie, selecting the data structure for that ADT)

❖ So let’s review the ADTs’ functionality and the performance 
characteristics of each data structure
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Intuitively …

❖ Think of the ADTs and data structures you’ve learned this 
quarter as a cookbook

▪ ADTs are the chapters/category: Soups, Salads, Cookies, Cakes, etc

• High-level descriptions of a category of functionality

• You don’t serve a soup when guests expect a cookie!

▪ Data structures (and algorithms) are the recipes: chocolate chip 
cookies, snickerdoodles, etc

• Step-by-step, concrete descriptions of an item with specific characteristics

• Understand your tradeoffs before replacing carrot cake with a wedding cake

❖ When you go out into the world, your two key skills are:

▪ Figure out which category is required

▪ Choose the specific recipe within that category which best fits the 
situation
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Lecture Outline

❖ ADT and Data Structure Review

❖ Algorithms Review
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How to Review These Structures

❖ For each ADT:

▪ What behavior does the ADT actually allow?

▪ What is unique about this ADT?

❖ For each data structure:

▪ How easy is it to implement?

▪ What is the runtime for each of its core operations?

▪ What is its memory utilization?

8



CSE373, Winter 2020L27: Wrapup

List Functionality

❖ Possible Implementations:

▪ ArrayList

▪ LinkedList
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List ADT. A collection storing an 

ordered sequence of 

elements.

• Each element is accessible by a 

zero-based index.

• A list has a size defined as the 

number of elements in the list.

• Elements can be added to the 

front, back, or any index in the list.

• Optionally, elements can be 

removed from the front, back, or 

any index in the list.
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List Performance Tradeoffs
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ArrayList LinkedList

addFront linear constant

removeFront linear constant

addBack constant* linear

removeBack constant linear

get(idx) const linear

put(idx) linear linear

* constant for most invocations
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Stack and Queue Functionality

❖ Possible Implementations:

▪ ArrayStack, LinkedStack
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Queue ADT. A collection storing an 

ordered sequence of elements.

• A queue has a size defined as the 

number of elements in the 

queue.

• Elements can only be added to 

one end and removed from the 

other (“FIFO”)

Stack ADT. A collection storing an 

ordered sequence of elements.

• A stack has a size defined as the 

number of elements in the stack.

• Elements can only be added and 

removed from the top (“LIFO”)

❖ Possible Implementations:

▪ ArrayQueue, LinkedQueue
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Stack and Queue Performance Tradeoffs

❖ Stack (LIFO):

❖ Queue (FIFO):
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ArrayStack LinkedStack

push constant* constant

pop constant constant

* constant for most invocations

Array Queue (v2) LinkedQueue (v2)

enqueue constant* constant

dequeue constant constant

* constant for most invocations
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Deque Functionality

❖ Possible Implementations:

▪ ArrayDeque, LinkedDeque
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Deque ADT. A collection storing an 

ordered sequence of elements.

• Each element is accessible by a 

zero-based index.

• A deque has a size defined as the 

number of elements in the deque.

• Elements can be added to the 

front or back.

• Optionally, elements can be 

removed from the front or back.
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Deque Performance Tradeoffs
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CircularArrayDeque LinkedDeque

addFirst constant* constant

removeFirst constant constant

addLast constant* constant

removeLast constant constant

* constant for most invocations
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Set and Map Functionality

❖ Possible Implementations:

▪ Unbalanced BST

▪ LLRB Tree

▪ B-Tree (eg, 2-3 Tree)

▪ Hash Tables

▪ Tries
15

Set ADT. A collection of values.

• A set has a size defined as the 

number of elements in the set.

• You can add and remove values.

• Each value is accessible via a “get” 

or “contains” operation.

Map ADT. A collection of keys, each 

associated with a value.

• A map has a size defined as the 

number of elements in the map.

• You can add and remove (key, 

value) pairs.

• Each value is accessible by its key 

via a “get” or “contains” operation.
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Set and Map Performance Tradeoffs
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Find Add Remove

Resizing Separate 
Chaining Hash Table

(worst case)
Q ∈ Θ(N) Q ∈ Θ(N) Q ∈ Θ(N)

Resizing Separate 
Chaining Hash Table

(best/average cases) +

Θ(1) Θ(1)* Θ(1)*

LLRB Tree h ∈ Θ(log N) h ∈ Θ(log N) h ∈ Θ(log N)

B-Tree h ∈ Θ(log N) h ∈ Θ(log N) h ∈ Θ(log N)

BST h ∈ Θ(N) h ∈ Θ(N) h ∈ Θ(N)

LinkedList Θ(N) Θ(N) Θ(N)

Trie Θ(1)* Θ(1)* Θ(1)*
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Priority Queue Functionality

❖ Possible Implementations:

▪ Balanced BST with “max” pointer

▪ Binary Heap

▪ (and a ton of others we didn’t discuss)

❖ Don’t forget you also know Floyd’s 
buildHeap!
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Priority Queue ADT. A collection 

of values.

• A PQ has a size defined as the 

number of elements in the set.

• You can add values.

• You cannot access or remove 

arbitrary values, only the max 

value.



CSE373, Winter 2020L27: Wrapup

Priority Queue Performance Tradeoffs
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Balanced BST
(worst case)

Binary Heap
(worst case)

add O(log N) O(log N)**

max O(1)* O(1)

removeMax O(log N) O(log N)

* If we keep a pointer to the largest element in the BST
** Average case is constant
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Multidimensional Data

❖ Key Operations:

▪ Range Searching: What are all the objects inside this (rectangular) 
region?

▪ Nearest Neighbour: What is the closest object top a specific point 
(this is often the k-nearest in machine learning)

❖ Spatial Partitioning: Dividing space into non-overlapping 
subspaces, allowing us to prune the search space

▪ Uniform partitioning

▪ Quadtree

▪ k-d Tree
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Graph Functionality
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Graph ADT. A collection of vertices 

and the edges connecting them.

• We can query for vertices 

connected to, or edges leaving 

from, a vertex v

• Edges are specified as pairs of 

vertices

• We can add/remove edges from the 

graph

❖ Possible Implementations:

▪ Adjacency Matrix

▪ Edge Set

▪ Adjacency List
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Graph Performance Tradeoffs

getAllEdgesFrom(v) hasEdge(v, w) getAllEdges()

Adjacency 
Matrix

Θ(V) Θ(1) Θ(V2)

Edge Set Θ(E) Θ(E) Θ(E)

Adjacency List O(V) Θ(degree(v)) Θ(E + V)
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Disjoint Sets ADT

❖ Possible Implementations:

▪ WeightedQuickUnion

▪ WeightedQuickUnion with Path 
Compression
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Disjoint Sets ADT. A collection of 

elements and sets of those 

elements.

• An element can only belong to a 

single set.

• Each set is identified by a unique id.

• Sets can be combined/ connected/ 

unioned.
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Disjoint Sets Performance Tradeoffs

find union
excludes 
find(s)

union
includes find(s)

QuickFind Θ(1) Θ(N) N/A

QuickUnion h ∈ O(N) Θ(1) O(N)

WeightedQuickUnion h ∈ Θ(log N) Θ(1) Θ(log N)

WQU + Path 
Compression

h ∈ O(1)* O(1)* O(1)*

* amortized
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Lecture Outline

❖ ADT and Data Structure Review

❖ Algorithms Review
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tl;dr

❖ Dijkstra’s is great for all-pairs shortest path

❖ A* is great for single-pair shortest path

▪ But you need to be careful about picking a good heuristic

25
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How to Review These Algorithms

❖ For each algorithm, which situations apply?

▪ If we used this algorithm, what do we learn about our data?

▪ In what state does the data need to be in, if we wanted to ue it?

❖ For each algorithm, what are the pros/cons of …

▪ Its ease of implementation?

▪ Its time complexity?

▪ Its space complexity?

26
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Graph Algorithms

❖ Graphs Traversals:

▪ BFS

▪ DFS

• Pre- and Post-Order Traversals

• For trees, also add In-order Traversals

❖ Shortest Paths:

▪ Dijkstra’s

▪ A* Search

❖ Minimum Spanning Trees

▪ Prim’s

▪ Kruskal’s

❖ Topological Sort

27
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Comparison-Based Sorting Algorithms
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Best-Case 
Time

Worst-Case 
Time

Space Stable? Notes

SelectionSort Θ(N2) Θ(N2) Θ(1) No

In-Place 
HeapSort

Θ(N) Θ(N log N) Θ(1) No Slow in practice

MergeSort Θ(N log N) Θ(N log N) Θ(N) Yes Fastest stable sort

In-Place 
InsertionSort

Θ(N) Θ(N2) Θ(1) Yes
Best for small or 
partially-sorted 

input

Naïve 
QuickSort

Θ(N log N) Θ(N2) Θ(N) Yes
>=2x slower than 

MergeSort

Dual-Pivot 
QuickSort

Ω(N) O(N2) Θ(1) No
Fastest 

comparison sort
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RadixSorts

29

Time 
Complexity

Space 
Complexity

CountingSort Θ(N+R) Θ(N+R)

LSD RadixSort Θ(LN + LR) Θ(N + R)

MSD RadixSort
Best: Θ(N + R)

Worst: Θ(LN + LR)
Θ(N + LR)
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tl;dr

❖ THANK YOU for a wonderful quarter!

30


