
CSE373, Winter 2020L27: Wrapup

Course Wrapup
CSE 373 Winter 2020

Instructor: Hannah C. Tang

Teaching Assistants:

Aaron Johnston Ethan Knutson Nathan Lipiarski

Amanda Park Farrell Fileas Sam Long

Anish Velagapudi Howard Xiao Yifan Bai

Brian Chan Jade Watkins Yuma Tou

Elena Spasova Lea Quan

CSE373, Winter 2020L27: Wrapup

Announcements

❖ Final is cancelled, but HW8 is still due

▪ … and there’s no late days

❖ Please fill out your TA nominations!

▪ https://www.cs.washington.edu/students/ta/bandes

❖ Lecture eval: https://uw.iasystem.org/survey/219337

3

https://www.cs.washington.edu/students/ta/bandes
https://uw.iasystem.org/survey/219337

CSE373, Winter 2020L27: Wrapup

Announcements

❖ Section Evals:

▪ AA: https://uw.iasystem.org/survey/221482

▪ AB: https://uw.iasystem.org/survey/221455

▪ AC: https://uw.iasystem.org/survey/221537

▪ AD: TBD

▪ AE: https://uw.iasystem.org/survey/221470

▪ AF: https://uw.iasystem.org/survey/221507

▪ AG: https://uw.iasystem.org/survey/221496

▪ AH: https://uw.iasystem.org/survey/221521

4

https://uw.iasystem.org/survey/221482
https://uw.iasystem.org/survey/221455
https://uw.iasystem.org/survey/221537
https://uw.iasystem.org/survey/221470
https://uw.iasystem.org/survey/221507
https://uw.iasystem.org/survey/221496
https://uw.iasystem.org/survey/221521

CSE373, Winter 2020L27: Wrapup

Two Key Skills

❖ In Software Engineering, two important skills to have are:

▪ Identifying the requirements (ie, selecting an ADT)

▪ Making tradeoffs (ie, selecting the data structure for that ADT)

❖ So let’s review the ADTs’ functionality and the performance
characteristics of each data structure

5

CSE373, Winter 2020L27: Wrapup

Intuitively …

❖ Think of the ADTs and data structures you’ve learned this
quarter as a cookbook

▪ ADTs are the chapters/category: Soups, Salads, Cookies, Cakes, etc

• High-level descriptions of a category of functionality

• You don’t serve a soup when guests expect a cookie!

▪ Data structures (and algorithms) are the recipes: chocolate chip
cookies, snickerdoodles, etc

• Step-by-step, concrete descriptions of an item with specific characteristics

• Understand your tradeoffs before replacing carrot cake with a wedding cake

❖ When you go out into the world, your two key skills are:

▪ Figure out which category is required

▪ Choose the specific recipe within that category which best fits the
situation

6

CSE373, Winter 2020L27: Wrapup

Lecture Outline

❖ ADT and Data Structure Review

❖ Algorithms Review

7

CSE373, Winter 2020L27: Wrapup

How to Review These Structures

❖ For each ADT:

▪ What behavior does the ADT actually allow?

▪ What is unique about this ADT?

❖ For each data structure:

▪ How easy is it to implement?

▪ What is the runtime for each of its core operations?

▪ What is its memory utilization?

8

CSE373, Winter 2020L27: Wrapup

List Functionality

❖ Possible Implementations:

▪ ArrayList

▪ LinkedList

9

List ADT. A collection storing an

ordered sequence of

elements.

• Each element is accessible by a

zero-based index.

• A list has a size defined as the

number of elements in the list.

• Elements can be added to the

front, back, or any index in the list.

• Optionally, elements can be

removed from the front, back, or

any index in the list.

CSE373, Winter 2020L27: Wrapup

List Performance Tradeoffs

10

ArrayList LinkedList

addFront linear constant

removeFront linear constant

addBack constant* linear

removeBack constant linear

get(idx) const linear

put(idx) linear linear

* constant for most invocations

CSE373, Winter 2020L27: Wrapup

Stack and Queue Functionality

❖ Possible Implementations:

▪ ArrayStack, LinkedStack

11

Queue ADT. A collection storing an

ordered sequence of elements.

• A queue has a size defined as the

number of elements in the

queue.

• Elements can only be added to

one end and removed from the

other (“FIFO”)

Stack ADT. A collection storing an

ordered sequence of elements.

• A stack has a size defined as the

number of elements in the stack.

• Elements can only be added and

removed from the top (“LIFO”)

❖ Possible Implementations:

▪ ArrayQueue, LinkedQueue

CSE373, Winter 2020L27: Wrapup

Stack and Queue Performance Tradeoffs

❖ Stack (LIFO):

❖ Queue (FIFO):

12

ArrayStack LinkedStack

push constant* constant

pop constant constant

* constant for most invocations

Array Queue (v2) LinkedQueue (v2)

enqueue constant* constant

dequeue constant constant

* constant for most invocations

CSE373, Winter 2020L27: Wrapup

Deque Functionality

❖ Possible Implementations:

▪ ArrayDeque, LinkedDeque

13

Deque ADT. A collection storing an

ordered sequence of elements.

• Each element is accessible by a

zero-based index.

• A deque has a size defined as the

number of elements in the deque.

• Elements can be added to the

front or back.

• Optionally, elements can be

removed from the front or back.

CSE373, Winter 2020L27: Wrapup

Deque Performance Tradeoffs

14

CircularArrayDeque LinkedDeque

addFirst constant* constant

removeFirst constant constant

addLast constant* constant

removeLast constant constant

* constant for most invocations

CSE373, Winter 2020L27: Wrapup

Set and Map Functionality

❖ Possible Implementations:

▪ Unbalanced BST

▪ LLRB Tree

▪ B-Tree (eg, 2-3 Tree)

▪ Hash Tables

▪ Tries
15

Set ADT. A collection of values.

• A set has a size defined as the

number of elements in the set.

• You can add and remove values.

• Each value is accessible via a “get”

or “contains” operation.

Map ADT. A collection of keys, each

associated with a value.

• A map has a size defined as the

number of elements in the map.

• You can add and remove (key,

value) pairs.

• Each value is accessible by its key

via a “get” or “contains” operation.

CSE373, Winter 2020L27: Wrapup

Set and Map Performance Tradeoffs

16

Find Add Remove

Resizing Separate
Chaining Hash Table

(worst case)
Q ∈ Θ(N) Q ∈ Θ(N) Q ∈ Θ(N)

Resizing Separate
Chaining Hash Table

(best/average cases) +

Θ(1) Θ(1)* Θ(1)*

LLRB Tree h ∈ Θ(log N) h ∈ Θ(log N) h ∈ Θ(log N)

B-Tree h ∈ Θ(log N) h ∈ Θ(log N) h ∈ Θ(log N)

BST h ∈ Θ(N) h ∈ Θ(N) h ∈ Θ(N)

LinkedList Θ(N) Θ(N) Θ(N)

Trie Θ(1)* Θ(1)* Θ(1)*

CSE373, Winter 2020L27: Wrapup

Priority Queue Functionality

❖ Possible Implementations:

▪ Balanced BST with “max” pointer

▪ Binary Heap

▪ (and a ton of others we didn’t discuss)

❖ Don’t forget you also know Floyd’s
buildHeap!

17

Priority Queue ADT. A collection

of values.

• A PQ has a size defined as the

number of elements in the set.

• You can add values.

• You cannot access or remove

arbitrary values, only the max

value.

CSE373, Winter 2020L27: Wrapup

Priority Queue Performance Tradeoffs

18

Balanced BST
(worst case)

Binary Heap
(worst case)

add O(log N) O(log N)**

max O(1)* O(1)

removeMax O(log N) O(log N)

* If we keep a pointer to the largest element in the BST
** Average case is constant

CSE373, Winter 2020L27: Wrapup

Multidimensional Data

❖ Key Operations:

▪ Range Searching: What are all the objects inside this (rectangular)
region?

▪ Nearest Neighbour: What is the closest object top a specific point
(this is often the k-nearest in machine learning)

❖ Spatial Partitioning: Dividing space into non-overlapping
subspaces, allowing us to prune the search space

▪ Uniform partitioning

▪ Quadtree

▪ k-d Tree

19

CSE373, Winter 2020L27: Wrapup

Graph Functionality

20

Graph ADT. A collection of vertices

and the edges connecting them.

• We can query for vertices

connected to, or edges leaving

from, a vertex v

• Edges are specified as pairs of

vertices

• We can add/remove edges from the

graph

❖ Possible Implementations:

▪ Adjacency Matrix

▪ Edge Set

▪ Adjacency List

CSE373, Winter 2020L27: Wrapup

Graph Performance Tradeoffs

getAllEdgesFrom(v) hasEdge(v, w) getAllEdges()

Adjacency
Matrix

Θ(V) Θ(1) Θ(V2)

Edge Set Θ(E) Θ(E) Θ(E)

Adjacency List O(V) Θ(degree(v)) Θ(E + V)

CSE373, Winter 2020L27: Wrapup

Disjoint Sets ADT

❖ Possible Implementations:

▪ WeightedQuickUnion

▪ WeightedQuickUnion with Path
Compression

22

Disjoint Sets ADT. A collection of

elements and sets of those

elements.

• An element can only belong to a

single set.

• Each set is identified by a unique id.

• Sets can be combined/ connected/

unioned.

CSE373, Winter 2020L27: Wrapup

Disjoint Sets Performance Tradeoffs

find union
excludes
find(s)

union
includes find(s)

QuickFind Θ(1) Θ(N) N/A

QuickUnion h ∈ O(N) Θ(1) O(N)

WeightedQuickUnion h ∈ Θ(log N) Θ(1) Θ(log N)

WQU + Path
Compression

h ∈ O(1)* O(1)* O(1)*

* amortized

CSE373, Winter 2020L27: Wrapup

Lecture Outline

❖ ADT and Data Structure Review

❖ Algorithms Review

24

CSE373, Winter 2020L27: Wrapup

tl;dr

❖ Dijkstra’s is great for all-pairs shortest path

❖ A* is great for single-pair shortest path

▪ But you need to be careful about picking a good heuristic

25

CSE373, Winter 2020L27: Wrapup

How to Review These Algorithms

❖ For each algorithm, which situations apply?

▪ If we used this algorithm, what do we learn about our data?

▪ In what state does the data need to be in, if we wanted to ue it?

❖ For each algorithm, what are the pros/cons of …

▪ Its ease of implementation?

▪ Its time complexity?

▪ Its space complexity?

26

CSE373, Winter 2020L27: Wrapup

Graph Algorithms

❖ Graphs Traversals:

▪ BFS

▪ DFS

• Pre- and Post-Order Traversals

• For trees, also add In-order Traversals

❖ Shortest Paths:

▪ Dijkstra’s

▪ A* Search

❖ Minimum Spanning Trees

▪ Prim’s

▪ Kruskal’s

❖ Topological Sort

27

CSE373, Winter 2020L27: Wrapup

Comparison-Based Sorting Algorithms

28

Best-Case
Time

Worst-Case
Time

Space Stable? Notes

SelectionSort Θ(N2) Θ(N2) Θ(1) No

In-Place
HeapSort

Θ(N) Θ(N log N) Θ(1) No Slow in practice

MergeSort Θ(N log N) Θ(N log N) Θ(N) Yes Fastest stable sort

In-Place
InsertionSort

Θ(N) Θ(N2) Θ(1) Yes
Best for small or
partially-sorted

input

Naïve
QuickSort

Θ(N log N) Θ(N2) Θ(N) Yes
>=2x slower than

MergeSort

Dual-Pivot
QuickSort

Ω(N) O(N2) Θ(1) No
Fastest

comparison sort

CSE373, Winter 2020L27: Wrapup

RadixSorts

29

Time
Complexity

Space
Complexity

CountingSort Θ(N+R) Θ(N+R)

LSD RadixSort Θ(LN + LR) Θ(N + R)

MSD RadixSort
Best: Θ(N + R)

Worst: Θ(LN + LR)
Θ(N + LR)

CSE373, Winter 2020L27: Wrapup

tl;dr

❖ THANK YOU for a wonderful quarter!

30

