
CSE373, Winter 2020L24: Radix Sorts

RadixSorts
CSE 373 Winter 2020

Instructor: Hannah C. Tang

Teaching Assistants:

Aaron Johnston Ethan Knutson Nathan Lipiarski

Amanda Park Farrell Fileas Sam Long

Anish Velagapudi Howard Xiao Yifan Bai

Brian Chan Jade Watkins Yuma Tou

Elena Spasova Lea Quan

CSE373, Winter 2020L24: Radix Sorts

Announcements
❖ COVID-19 is really something, huh?

▪ HW8: No change, still due

▪ Drop-in Times: we’ll switch to online DITs next week

▪ Workshops: cancelled

▪ Quiz sections: since topic is final prep, may switch to online format or cancel

▪ Final review session: keeping, but in online format

▪ Final exam: still happening; online exam during usual time slot (Thu, Mar 19
2:30-4:20)
• Please ensure you have access to a quiet location with good internet connectivity at that time!

▪ Lectures: today’s lecture finishes the topics that’ll be on the final exam
• We’ll post pre-recorded videos for next week’s 3 lectures

• Fortunately, topics were review + enrichment. Do your best … or just use the time to finish HW8

❖ I’m insanely behind on email, but contact us anyway with questions,
requests, etc

▪ We’ll announce details related to format, tools, etc on Piazza

▪ You’ll probably need to install Zoom (video conferencing)
3

CSE373, Winter 2020L24: Radix Sorts

Feedback from Reading Quiz

❖ How to handle non-numeric keys like {♣, ♠, ♥, ♦}?
▪ Map keys to numeric values; exact implementation can vary
▪ Eg:♣→ 0, ♠→ 1, ♥→ 2, ♦→ 3

❖ We’ll answer these in lecture today:
▪ What’s the runtime of counting sort? Is it Θ(N2) or Θ(2N)?
▪ What’s a radix?
▪ How does radix sort maintain stability?
▪ Can we use radix sort techniques for comparison sorts?

4

CSE373, Winter 2020L24: Radix Sorts

Lecture Outline

❖ Generalizing CountingSort

❖ RadixSort

▪ LSD RadixSort

▪ MSD RadixSort

5

CSE373, Winter 2020L24: Radix Sorts

Comparison-Based Sorting

❖ Definition: A type of sorting algorithm that determines an
element’s ordering using comparison operations

▪ More simply: sorting using only compareTo() type operations

❖ We determined the best we can do with comparison-based
sorting is Θ(N log N) time complexity

❖ Can we do better? What if we don’t compare at all?

6

CSE373, Winter 2020L24: Radix Sorts

Radix: A Definition

❖ Radix: the number of “characters” in the “alphabet”
▪ More formally: the number of elements in the domain

7

Name Radix Characters

Binary 2 0,1

Decimal 10 0,1,2,3,4,5,6,7,8,9

Lowercase Latin
Alphabet

26 a,b,c,d,e,f,g,h,I,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z

ASCII 128 http://www.asciitable.com/

Unicode >137,000 https://en.wikipedia.org/wiki/List_of_Unicode_charac
ters

http://www.asciitable.com/
https://en.wikipedia.org/wiki/List_of_Unicode_characters

CSE373, Winter 2020L24: Radix Sorts

Reading Review: Generalizing CountingSort

❖ We want Counting Sort to work for non-unique and/or non-
consecutive keys!
▪ Count the occurrences for each key value
▪ Compute each key’s starting index using the counts array
▪ For each [item, key] in the input do:

• Get the destination index by checking the index array for key
• Copy item into the result using this destination index
• Increment the index for key

▪ Copy items back to initial array (if needed)

❖ Demo: https://docs.google.com/presentation/d/1FTTxlds-
7EqbJ6Md40svCV9zjDL-XxGI00pXp4gXsr8/edit

8

https://docs.google.com/presentation/d/1FTTxlds-7EqbJ6Md40svCV9zjDL-XxGI00pXp4gXsr8/edit?usp=drive_web&ouid=111395171384415337627

CSE373, Winter 2020L24: Radix Sorts

pollev.com/uwcse373

❖ What is the runtime for CountingSort on an input of N items and an
alphabet of size (“radix”) R? Treat R as a variable, not a constant.

A. Θ(N)

B. Θ(R)

C. Θ(N + R)

D. Θ(NR)

E. I’m not sure …

9

CSE373, Winter 2020L24: Radix Sorts

CountingSort: Performance Analysis

Time Complexity:

❖ Θ(N)

❖ Θ(R)

❖ Θ(N)

❖ Overall: Θ(N + R)

10

CountingSort(a):

map<char, int> counts

foreach key in a:

counts[key]++

map<char, int> indices;

foreach key in counts:

indices[key] =

indices[key – 1] +

indices[key]

foreach (key, item) in a:

output[indices[key]] =

item;

indices[key]++

CSE373, Winter 2020L24: Radix Sorts

CountingSort: Performance Analysis

❖ CountingSort is stable because it processes then input in order
▪ No long-distance swaps like SelectionSort or Hoare Partitioning

❖ Runtime and memory use is Θ(N + R)!
▪ N = # of items, R = radix of alphabet

❖ We “beat” comparison sorts by avoiding comparisons!
▪ Aaaacccccctttually … empirical/performance testing is still needed to

compare against QuickSort on real-world inputs

11

CSE373, Winter 2020L24: Radix Sorts

pollev.com/uwcse373

❖ You have an array of 100 elements, consisting of a city’s name and its
population. If you want to sort them by population, which algorithm’s
worst-case runtime as measured in seconds (ie, not asymptotically) is
lower / faster?

A. CountingSort

B. QuickSort

C. I’m not sure …

12

CSE373, Winter 2020L24: Radix Sorts

CountingSort: Performance Analysis

❖ Runtime and memory use is Θ(N + R)!
▪ N = # of items, R = radix of alphabet

❖ But did we actually beat comparison sorts?

▪ If N >= R: performance is reasonable

▪ If N >> R: R is negligible, performance is great!

▪ What if N << R?

• In other words: When is our alphabet large?

• Integers, strings, …

13

CSE373, Winter 2020L24: Radix Sorts

Sorting Cities by Population

❖ CountingSort builds an array of size ~30,000,000 -- the largest
city’s population -- to sort the input

❖ … which is a very large and very sparse array

▪ Most indices are unused because we are sorting only 100 cities!

14

CSE373, Winter 2020L24: Radix Sorts

Lecture Outline

❖ Generalizing CountingSort

❖ RadixSort

▪ LSD RadixSort

▪ MSD RadixSort

15

CSE373, Winter 2020L24: Radix Sorts

RadixSort’s Raison D'être

❖ We want to be able to sort keys that don’t belong to a finite
alphabet, such as strings
▪ Strings don’t belong to a finite alphabet, but they consist of

characters from a finite alphabet!
▪ Numbers do too

❖ RadixSort’s idea is similar to tries’:
▪ Subdivide the key; it’s not an atomic indivisible “whole”?
▪ Sort each chunk/character/digit independently using CountingSort

❖ How should we “chunk”? In what order should we process the
chunks?

16

CSE373, Winter 2020L24: Radix Sorts

Least Significant Digit (LSD) RadixSort

❖ LSD RadixSort: Sort each chunk independently, from rightmost
to leftmost

❖ Example:

17

Key Name

22 Stitch

12 Gantu

31 Nani

23 Lilo

11 David

Key Name

31 Nani

11 David

22 Stitch

12 Gantu

23 Lilo

Key Name

11 David

12 Gantu

22 Stitch

23 Lilo

31 Nani

Alphabet: {1, 2, 3}

CSE373, Winter 2020L24: Radix Sorts

LSD RadixSort: Correctness

❖ Does LSD RadixSort create correct results?
▪ What property of CountingSort enables that?
▪ Can you give an example of what could go wrong?

18

Key Name

22 Stitch

12 Gantu

31 Nani

23 Lilo

11 David

Key Name

31 Nani

11 David

22 Stitch

12 Gantu

23 Lilo

Key Name

11 David

12 Gantu

23 Lilo

22 Stitch

31 Nani

CSE373, Winter 2020L24: Radix Sorts

LSD RadixSort Correctness: More Formally

❖ If the unexamined chunks are
different, the examined chunks
don’t matter!
▪ A later pass will sort correctly on

more significant chunks

❖ If the unexamined chunks are
identical, the keys are already
properly ordered

▪ Since the sort is stable, they will
remain so

19

Examined

32670

32800

11999

X0 X1 X2 X3 X4

Y0 Y1 Y2 Y3 Y4

Z0 Z1 Z2 Z3 Z4

Unexamined

CSE373, Winter 2020L24: Radix Sorts

LSD RadixSort: Non-equal Key Lengths 🤔

❖ If keys are of unequal length, treat empty spaces as less-than all
other chunks in the alphabet/domain

❖ Example:

20

Key Value

3 is

31 fun!

23 duper

12 super

1 sorting

Key Name

31 fun!

·1 sorting

12 super

·3 is

23 duper

Key Name

·1 sorting

·3 is

12 super

23 duper

31 fun!

Alphabet: {1, 2, 3}

CSE373, Winter 2020L24: Radix Sorts

LSD RadixSort: Runtime

❖ N = # items, R = radix, L = # chunks in longest item

▪ We have to run CountingSort for each chunk

▪ CountingSort has runtime on the order of Θ(N + R)

▪ Therefore, LSD RadixSort’s runtime: Θ(LN + LR)

21

CSE373, Winter 2020L24: Radix Sorts

LSD RadixSort: Summary

❖ Use CountingSort on each chunk, from right to left
▪ Now we can sort non-alphabetic keys that consist of alphabetic keys!

❖ Performance (N = # items, R = radix, L = # chunks in longest
item):
▪ Runtime: Θ(LN + LR)
▪ Memory use: Θ(N + R)

• Output array: N
• Need L counts array (R) and L starting indices array (R), but can reuse them

between chunks

❖ If R is small (CountingSort’s restriction) and L is small (an LSD
RadixSort restriction), the runtime isn’t shabby!

22

If only the runtime didn’t depend on the longest key … 🤔

CSE373, Winter 2020L24: Radix Sorts

Most Significant Digit (MSD) RadixSort

❖ By definition, LSD RadixSort examines the least significant
chunk first!
▪ ie, may do more computation than necessary

❖ MSD RadixSort Idea: similar to LSD, but leftmost to rightmost
▪ Handles keys that are much longer than the rest, eg:

23

349499234

4589245

132954351638273762

62302213

2934592

432035235

CSE373, Winter 2020L24: Radix Sorts

MSD RadixSort: Example

❖ Suppose we sort each chunk left to right. Will we arrive at the
correct result? Why or why not?

24

a d d

c a b

f a d

f e e

b a d

f e d

b e d

a c e

CSE373, Winter 2020L24: Radix Sorts

MSD RadixSort: Example

❖ No! Items that were previously ordered by a more-significant
chunk may get swapped!

25

a d d

c a b

f a d

f e e

b a d

f e d

b e d

a c e

a d d

a c e

b a d

b e d

c a b

f a d

f e e

f e d

b a d

c a b

f a d

a c e

a d d

b e d

f e e

f e d

CSE373, Winter 2020L24: Radix Sorts

MSD RadixSort: Example

❖ Solution: sort each subproblem separately, rejoin at the end

26

a d d

c a b

f a d

f e e

b a d

f e d

b e d

a c e

a d d

a c e

b a d

b e d

c a b

f a d

f e e

f e d

a d d

c a b

f e e

f e d

a c e

b e d

b a d

f a d

a d d

c a b

a c e

b e d

b a d

f a d

f e d

f e e

CSE373, Winter 2020L24: Radix Sorts

MSD RadixSort: Example

❖ Optimization: don’t subdivide or sort already-sorted singletons

27

a d d

c a b

f a d

f e e

b a d

f e d

b e d

a c e

a d d

a c e

b a d

b e d

c a b

f a d

f e e

f e d

a d d

c a b

f e e

f e d

a c e

b e d

b a d

f a d

a d d

c a b

a c e

b e d

b a d

f a d

f e d

f e e

CSE373, Winter 2020L24: Radix Sorts

MSD RadixSort: Runtime

❖ Best-case runtime of MSD RadixSort, expressed in N, R, L?
❖ What type of input leads to this best-case?
▪ One CountingSort pass, looking only at the first chunk: Θ(N + R)
▪ Every input has a unique most-significant chunk

❖ Worst-case runtime of MSD RadixSort, expressed in N, R, L?
▪ L CountingSort passes to look at every chunk (ie, degenerates to LSD

RadixSort): Θ(LN + LR)
▪ Every key is the same or only differs in the least-significant chunk

28

CSE373, Winter 2020L24: Radix Sorts

MSD RadixSort: Memory

❖ Memory usage: Θ(N + R)
▪ Output array: N
▪ Each chunk requires <=R CountingSorts for each subproblem, and

each CountingSort requires N+R memory. However, we can reuse
that memory between each CountingSort

29

CSE373, Winter 2020L24: Radix Sorts

MSD RadixSort: Analysis

❖ Runtime:
▪ Best case: Θ(N + R)
▪ Worst case: Θ(LN + LR)

❖ Memory usage: Θ(N + R)

❖ In practice, long strings are rarely
random; they may contain structure
▪ Eg, HTML has tags: <html>, <p>,

❖ Structured strings may benefit from
specialized sorting algorithms or,
minimally, specialized “chunkers”
▪ Eg, a HTML-tag-aware chunking

30

From Algorithms, 4th edition by Sedgewick and Wayne

CSE373, Winter 2020L24: Radix Sorts

tl;dr

Time
Complexity

Space
Complexity

CountingSort Θ(N+R) Θ(N+R)

LSD RadixSort Θ(LN + LR) Θ(N + R)

MSD RadixSort
Best: Θ(N + R)

Worst: Θ(LN + LR)
Θ(N + LR)

CSE373, Winter 2020L24: Radix Sorts

And, finally …

❖ Thank you for your understanding and patience re: COVID-19

❖ Thank you for being a great class!

❖ Good luck on HW8 and the final. Stay in touch!

32

