YA UNIVERSITY of WASHINGTON L22: QuickSort CSE373, Winter 2020

Bounds on Comparison Sorts
CSE 373 Winter 2020

Instructor: Hannah C. Tang

Teaching Assistants:

Aaron Johnston Ethan Knutson Nathan Lipiarski
Amanda Park Farrell Fileas Sam Long

Anish Velagapudi Howard Xiao Yifan Bai

Brian Chan Jade Watkins Yuma Tou

Elena Spasova Lea Quan

L22: QuickSort CSE373, Winter 2020

YA UNIVERSITY of WASHINGTON

Announcements

+ @ Remember & : no late days for HW8 (Seam Carving)!

> You can always make appointments with staff (TAs or me) to discuss
anything: homework, concepts, imposter syndrome, and more
® Crucially, if you need health accommodations for the final please reach out!

YA UNIVERSITY of WASHINGTON L22: QuickSort CSE373, Winter 2020

Lecture Outline

+ Reading Review: Twiddling with Constants!
« Asymptotic Analysis Practice

« Theoretical Lower Bound for Comparison Sorts

YA UNIVERSITY of WASHINGTON L22: QuickSort CSE373, Winter 2020

Feedback from the Reading Quiz

« How were 47 and 67 decided upon?
« What is a run (in the sorting context)?

<« If QuickSort looks for runs, doesn’t that mean it’s doing extra
work?

« Why is the best possible sorting algorithm Q(N)?

W UNIVERSITY of WASHINGTON

L22: QuickSort

Reference Types vs Primitive Types

+ Java uses MergeSort* for reference types because MergeSort
is stable

<+ Java uses adaptive QuickSort for primitive types because
stability doesn’t matter for these types, and QuickSort’s
constants are better than MergeSort’s
" However: InsertionSort’s constants are better for small arrays

" However: MergeSort’s constants are better for partially-sorted
arrays

* technically, this is a MergeSort variant known as TimSort

CSE373, Winter 2020

5

YA UNIVERSITY of WASHINGTON L22: QuickSort

Java’s QuickSort Adapts to its Input

« At the beginning of the sort (ie, only once), sort() checks
whether the input is partially sorted by looking for runs
"=971248 635

® This is ©(N) work, so still dominated by our N log N runtimes
= |f there are long-enough runs, switches to MergeSort. Done.

« If not, it picks two pivots, partitions the input, and recursively
sorts each partition

= When the partition is small enough, switches to InsertionSort. Done.

+ Why is “small enough” defined as <477

= Performance testing on InsertionSort and QuickSort using
randomized input; the “break point” happened at 47

* technically, this is a MergeSort variant known as TimSort

CSE373, Winter 2020

6

YA UNIVERSITY of WASHINGTON L22: QuickSort CSE373, Winter 2020

Lecture Outline

+ Reading Review: Twiddling with Constants!
« Asymptotic Analysis Practice

« Theoretical Lower Bound for Comparison Sorts

YA UNIVERSITY of WASHINGTON L22: QuickSort CSE373, Winter 2020

Problem #1

+ Consider the functions N! and (N/2)N/2. Is NI € Q((N/2)N/2)?
Prove your answer.

N! =N * (N-1)* .. * (N/2 + 1) * N/2 * .. * 2 * 1
(N/2)N/2 = N/2 * N/2 * .. * N/2 * N/2

+ NI'> (N/2)V2 for large N, therefore N! € Q((N/2)/2)

+» Demo: https://www.desmos.com/calculator/7lahriir6s

https://www.desmos.com/calculator/7lahriir6s

YA UNIVERSITY of WASHINGTON L22: QuickSort CSE373, Winter 2020

Problem #2

« Now, let’s consider the functions log N! and N log N.
Is log N! € Q(N log N)? Prove your answer.

+ From problem #1, we know N! > (N/2)V/2
= Taking the log of both sides: log N! > log (N/2)N/2
" [og N!' > N/2 log (N/2)
" [og NI >N/2 (log N —log 2)

« Therefore, log N! € Q(N log N)

+ Demo: https://www.desmos.com/calculator/4ptklkcmss

https://www.desmos.com/calculator/4ptk1kcmss

YA UNIVERSITY of WASHINGTON L22: QuickSort CSE373, Winter 2020

Problem #3

« Show N log N € Q(log N!)

log N!' = log(N * (N=-1) * ... * 1)
= log(N) + log(N-1) + .. + log 1
N log N = 1log(N) + log(N) + .. + 1log(N)

« log NI < N log N for large N, therefore N log N € Q(log N!)

+ Demo: https://www.desmos.com/calculator/4jeakr9vvb

https://www.desmos.com/calculator/4jeakr9vvb

W UNIVERSITY of WASHINGTON L22: QuickSort CSE373, Winter 2020

0 PO" E\Ie rYWhere pollev.com/uwcse373

« Given that N log N € Q(log N!) and log N! € Q(N log N), which of the
following statements are true?

A NlogN € O(log N!)
B. log N!€ O(N logN)
c. BothAandB

p. Neither AnorB

e. I’'mnot sure ...

14

YA UNIVERSITY of WASHINGTON L22: QuickSort CSE373, Winter 2020

Lecture Outline

+ Reading Review: Twiddling with Constants!
« Asymptotic Analysis Practice

+ Theoretical Lower Bound for Comparison Sorts

15

W UNIVERSITY of WASHINGTON L22: QuickSort

Comparison Sorts Review

CSE373, Winter 2020

Best-Case | Worst-Case Stable?
Time Time

0(1)

SelectionSort O(N?2) O(N?)
In-Place
HeapSort o, S e)

MergeSort ©(N log N) ©(N log N)

In-Place 5
InsertionSort ALY, Uiy
Naive O(N log N) O(N?)
QuickSort &
Dual-Pivot 5
QuickSort U AL

(1)

O(N)

o(1)

O(N)

No

Yes

Yes

Yes

No

Slow in practice

Fastest stable sort

Best for small or
partially-sorted
input

>=2x slower than
MergeSort

Fastest
comparison sort

YA UNIVERSITY of WASHINGTON L22: QuickSort CSE373, Winter 2020

Best Case != Worst Case

« Our best-cases are linear but our worst-cases are N log N

« We spent all of last lecture and the reading twiddling with real-
world constants to speed up N log N, but we didn’t ask ourselves

Does there exist a comparison-based sorting algorithm
whose worst-case is faster than N log N?

« Let’s ask that now. Call this theoretical algorithm “OptimalSort”

= Next, we will describe the constraints on OptimalSort and then try to
derive its worst-case runtime

17

YA UNIVERSITY of WASHINGTON L22: QuickSort CSE373, Winter 2020

OptimalSort on 3 Items

« Given 3 items a, b, ¢, what is
the minimum number of
comparisons OptimalSort
needs to order them? o

+~ We don’t know in what order
OptimalSort would do the
comparisons, but we can ' sl
model those comparisons as a
decision-tree

https://xkcd.com/627/

18

https://xkcd.com/627/

Y UNIVERSITY of WASHINGTON L22: QuickSort CSE373, Winter 2020

OptimalSort Decision Tree: N=3

a<b
M Yes
akc bkc
No Yes No es

b < c m a<c m
[cba][bca] [cab][acb]

19

W UNIVERSITY of WASHINGTON L22: QuickSort CSE373, Winter 2020

0 PO" E\Ie rYWhere pollev.com/uwcse373

« How many possible permutations exist for a list of N=4 elements?

A 16
B. 24 .
a<b
c. 32 VNS
D. 36 2 2
a<c b<c

’
e I'mnot sure. ... N \yes Ny \yes
? ?

20

W UNIVERSITY of WASHINGTON L22: QuickSort CSE373, Winter 2020

0 PO" E\Ie rYWhere pollev.com/uwcse373

+ In the worst case, how many comparisons would OptimalSort make for
a list of N=4 elements?

(o9}
o b~ w
i
©
/
]

. I’'mnotsure. ...

21

YA UNIVERSITY of WASHINGTON L22: QuickSort CSE373, Winter 2020

OptimalSort for all N

« OptimalSort needs to decide between N! permutations (ie, N!
leaves) in a list of N elements

+ The height of OptimalSort’s decision tree is log,N!, rounded up

« Therefore, OptimalSort’s worst-case requires Q(log N!)
comparisons
® So its total runtime must be Q(log N!)
+ Because we still need to do swaps, merges, partitions, etc
= .. which is equivalent to Q(N log N)
= ... which means that OptimalSort’s worst-case runtime is Q(N log N)

W UNIVERSITY of WASHINGTON L22: QuickSort CSE373, Winter 2020

Comparison Sorts Review

Best-Case Worst-Case
Time Time

SelectionSort O(N?) O(N?) o(1) No
In-Place . .
Weseisar O(N) O(N log N) 0(1) No Slow in practice
MergeSort O(N log N) O(N log N) O(N) Yes Fastest stable sort
In-Place o(N) o(N?) o(1) Yes Best for small or

InsertionSort partially-sorted input

>=2x slower than

. . ,
Naive QuickSort O(N log N) O(N2?) O(N) Yes Vergesort
Dual-Pivot 5 .
?
QuickSort Q(N) O(N?) : No Fastest comparison sort

« HeapSort, MergeSort, and Dual-Pivot QuickSort are
asymptotically optimal
= Mathematically impossible to make asymptotically fewer comparisons
® That’s why we focus on optimizing their constants

