Bounds on Comparison Sorts CSE 373 Winter 2020

Instructor: Hannah C. Tang

Teaching Assistants:

Aaron Johnston	Ethan Knutson
Amanda Park	Farrell Fileas
Anish Velagapudi	Howard Xiao
Brian Chan	Jade Watkins
Elena Spasova	Lea Quan

Nathan Lipiarski Sam Long Yifan Bai Yuma Tou

Announcements

- Remember A: no late days for HW8 (Seam Carving)!
- You can always make appointments with staff (TAs or me) to discuss anything: homework, concepts, imposter syndrome, and more
 - Crucially, if you need health accommodations for the final please reach out!

Lecture Outline

- * Reading Review: Twiddling with Constants!
- Asymptotic Analysis Practice
- Theoretical Lower Bound for Comparison Sorts

Feedback from the Reading Quiz

- How were 47 and 67 decided upon?
- What is a run (in the sorting context)?
- If QuickSort looks for runs, doesn't that mean it's doing extra work?
- * Why is the best possible sorting algorithm $\Omega(N)$?

Reference Types vs Primitive Types

- Java uses MergeSort* for reference types because MergeSort is stable
- Java uses adaptive QuickSort for primitive types because stability doesn't matter for these types, and QuickSort's constants are better than MergeSort's
 - However: InsertionSort's constants are better for small arrays
 - However: MergeSort's constants are better for partially-sorted arrays

Java's QuickSort Adapts to its Input

- At the beginning of the sort (ie, only once), sort() checks whether the input is partially sorted by looking for *runs*
 - 97 1248 635
 - This is Θ(N) work, so still dominated by our N log N runtimes
 - If there are long-enough runs, switches to MergeSort. Done.
- If not, it picks two pivots, partitions the input, and recursively sorts each partition
 - When the partition is small enough, switches to InsertionSort. Done.
- Why is "small enough" defined as <47?</p>
 - Performance testing on InsertionSort and QuickSort using randomized input; the "break point" happened at 47

* technically, this is a MergeSort variant known as TimSort

Lecture Outline

- Reading Review: Twiddling with Constants!
- *** Asymptotic Analysis Practice**
- Theoretical Lower Bound for Comparison Sorts

Problem #1

N! = N * (N-1) * ... * (N/2 + 1) * N/2 * ... * 2 * 1 $(N/2)^{N/2}$ = N/2 * N/2 * ... * N/2 * N/2

- ↓ N! > (N/2)^{N/2} for large N, therefore N! ∈ Ω((N/2)^{N/2})
- Demo: <u>https://www.desmos.com/calculator/7lahriir6s</u>

Problem #2

- Now, let's consider the functions log N! and N log N.
 Is log N! ∈ Ω(N log N)? Prove your answer.
- * From problem #1, we know N! > $(N/2)^{N/2}$
 - Taking the log of both sides: log N! > log (N/2)^{N/2}
 - log N! > N/2 log (N/2)
 - log N! > N/2 (log N log 2)
- ↔ Therefore, log N! ∈ Ω(N log N)

Demo: <u>https://www.desmos.com/calculator/4ptk1kcmss</u>

Problem #3

- ↔ Show N log N ∈ Ω(log N!)
- log N! = log(N * (N-1) * ... * 1)= log(N) + log(N-1) + ... + log 1 N log N = log(N) + log(N) + ... + log(N)
- ↔ log N! < N log N for large N, therefore N log N ∈ Ω(log N!)
- Demo: <u>https://www.desmos.com/calculator/4jeakr9vvb</u>

pollev.com/uwcse373

- Given that N log N ∈ Ω(log N!) and log N! ∈ Ω(N log N), which of the following statements are true?
- A. $N \log N \in \Theta(\log N!)$
- B. $\log N! \in \Theta(N \log N)$
- c. Both A and B
- D. Neither A nor B
- E. I'm not sure ...

Lecture Outline

- Reading Review: Twiddling with Constants!
- Asymptotic Analysis Practice
- ***** Theoretical Lower Bound for Comparison Sorts

Comparison Sorts Review

	Best-Case Time	Worst-Case Time	Space	Stable?	Notes
SelectionSort	Θ(N ²)	Θ(N ²)	Θ(1)	No	
In-Place HeapSort	Θ(N)	Θ(N log N)	Θ(1)	No	Slow in practice
MergeSort	Θ(N log N)	Θ(N log N)	Θ(N)	Yes	Fastest stable sort
In-Place InsertionSort	Θ(N)	Θ(N²)	Θ(1)	Yes	Best for small or partially-sorted input
Naïve QuickSort	Θ(N log N)	Θ(N²)	Θ(N)	Yes	>=2x slower than MergeSort
Dual-Pivot QuickSort	Ω(N)	O(N ²)	?	No	Fastest comparison sort

Best Case != Worst Case

Our best-cases are linear but our worst-cases are N log N

 We spent all of last lecture and the reading twiddling with realworld constants to speed up N log N, but we didn't ask ourselves

Does there exist a **comparison-based sorting** algorithm whose worst-case is faster than N log N?

* Let's ask that now. Call this theoretical algorithm "OptimalSort"

 Next, we will describe the constraints on OptimalSort and then try to derive its worst-case runtime

OptimalSort on 3 Items

- Given 3 items a, b, c, what is the minimum number of comparisons OptimalSort needs to order them?
- We don't know in what order OptimalSort would do the comparisons, but we can *model* those comparisons as a decision-tree

https://xkcd.com/627/

OptimalSort Decision Tree: N=3

pollev.com/uwcse373

- How many possible permutations exist for a list of N=4 elements?
- A. 16
- в. 24
- c. 32
- d. 36
- E. I'm not sure ...

pollev.com/uwcse373

- In the worst case, how many *comparisons* would OptimalSort make for a list of N=4 elements?
- A. 3
 B. 4
 c. 5
 d. 6
- E. I'm not sure ...

OptimalSort for all N

- OptimalSort needs to decide between N! permutations (ie, N! leaves) in a list of N elements
- The height of OptimalSort's decision tree is log₂N!, rounded up
- Therefore, OptimalSort's worst-case requires Ω(log N!) comparisons
 - So its total runtime must be Ω(log N!)
 - Because we still need to do swaps, merges, partitions, etc
 - ... which is equivalent to Ω(N log N)
 - ... which means that OptimalSort's worst-case runtime is Ω(N log N)

Comparison Sorts Review

	Best-Case Time	Worst-Case Time	Space	Stable?	Notes
SelectionSort	Θ(N ²)	Θ(N ²)	Θ(1)	No	
In-Place HeapSort	Θ(N)	Θ(N log N)	Θ(1)	No	Slow in practice
MergeSort	Θ(N log N)	Θ(N log N)	Θ(N)	Yes	Fastest stable sort
In-Place InsertionSort	Θ(N)	Θ(N²)	Θ(1)	Yes	Best for small or partially-sorted input
Naïve QuickSort	Θ(N log N)	Θ(N²)	Θ(N)	Yes	>=2x slower than MergeSort
Dual-Pivot QuickSort	Ω(N)	O(N ²)	?	No	Fastest comparison sort

- HeapSort, MergeSort, and Dual-Pivot QuickSort are asymptotically optimal
 - Mathematically impossible to make asymptotically fewer comparisons
 - That's why we focus on optimizing their constants