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Announcements

❖ 🚨 Remember 🚨 : no late days for HW8 (Seam Carving)!

❖ You can always make appointments with staff (TAs or me) to discuss 
anything: homework, concepts, imposter syndrome, and more

▪ Crucially, if you need health accommodations for the final please reach out!
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Lecture Outline

❖ Reading Review: Twiddling with Constants!

❖ Asymptotic Analysis Practice

❖ Theoretical Lower Bound for Comparison Sorts

3



CSE373, Winter 2020L22: QuickSort

Feedback from the Reading Quiz

❖ How were 47 and 67 decided upon?

❖ What is a run (in the sorting context)?

❖ If QuickSort looks for runs, doesn’t that mean it’s doing extra 
work?

❖ Why is the best possible sorting algorithm Ω(N)?
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Reference Types vs Primitive Types

❖ Java uses MergeSort* for reference types because MergeSort
is stable

❖ Java uses adaptive QuickSort for primitive types because
stability doesn’t matter for these types, and QuickSort’s
constants are better than MergeSort’s

▪ However: InsertionSort’s constants are better for small arrays

▪ However: MergeSort’s constants are better for partially-sorted 
arrays

5* technically, this is a MergeSort variant known as TimSort
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Java’s QuickSort Adapts to its Input

❖ At the beginning of the sort (ie, only once), sort() checks 
whether the input is partially sorted by looking for runs

▪ 9 7  1 2 4 8  6 3 5

▪ This is Θ(N) work, so still dominated by our N log N runtimes

▪ If there are long-enough runs, switches to MergeSort.  Done.

❖ If not, it picks two pivots, partitions the input, and recursively 
sorts each partition

▪ When the partition is small enough, switches to InsertionSort.  Done.

❖ Why is “small enough” defined as <47?

▪ Performance testing on InsertionSort and QuickSort using
randomized input; the “break point” happened at 47

6
* technically, this is a MergeSort variant known as TimSort
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Lecture Outline

❖ Reading Review: Twiddling with Constants!

❖ Asymptotic Analysis Practice

❖ Theoretical Lower Bound for Comparison Sorts
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Problem #1

❖ Consider the functions N! and (N/2)N/2.  Is N! ∈ Ω((N/2)N/2)? 
Prove your answer.

N!      = N  * (N-1)* … * (N/2 + 1) * N/2 * … * 2 * 1

(N/2)N/2 = N/2 * N/2 * … *    N/2    * N/2

❖ N! > (N/2)N/2 for large N, therefore N! ∈ Ω((N/2)N/2)

❖ Demo: https://www.desmos.com/calculator/7lahriir6s

https://www.desmos.com/calculator/7lahriir6s
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Problem #2

❖ Now, let’s consider the functions log N! and N log N.
Is log N! ∈ Ω(N log N)?  Prove your answer.

❖ From problem #1, we know N! > (N/2)N/2

▪ Taking the log of both sides: log N! > log (N/2)N/2

▪ log N! > N/2 log (N/2)

▪ log N! > N/2 (log N – log 2)

❖ Therefore, log N! ∈ Ω(N log N)

❖ Demo: https://www.desmos.com/calculator/4ptk1kcmss

https://www.desmos.com/calculator/4ptk1kcmss
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Problem #3

❖ Show N log N ∈ Ω(log N!)

log N!  = log(N  *    (N-1) * … *     1)

= log(N) + log(N-1) + … + log 1

N log N = log(N) + log(N)   + … + log(N)

❖ log N! < N log N for large N, therefore N log N ∈ Ω(log N!)

❖ Demo: https://www.desmos.com/calculator/4jeakr9vvb

https://www.desmos.com/calculator/4jeakr9vvb
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pollev.com/uwcse373

❖ Given that N log N ∈ Ω(log N!) and log N! ∈ Ω(N log N), which of the
following statements are true?

A. N log N ∈ Θ(log N!)

B. log N! ∈ Θ(N log N)

C. Both A and B

D. Neither A nor B

E. I’m not sure …
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Lecture Outline

❖ Reading Review: Twiddling with Constants!

❖ Asymptotic Analysis Practice

❖ Theoretical Lower Bound for Comparison Sorts
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Comparison Sorts Review

Best-Case 
Time

Worst-Case 
Time

Space Stable? Notes

SelectionSort Θ(N2) Θ(N2) Θ(1) No

In-Place 
HeapSort

Θ(N) Θ(N log N) Θ(1) No Slow in practice

MergeSort Θ(N log N) Θ(N log N) Θ(N) Yes Fastest stable sort

In-Place 
InsertionSort

Θ(N) Θ(N2) Θ(1) Yes
Best for small or 
partially-sorted 

input

Naïve 
QuickSort

Θ(N log N) Θ(N2) Θ(N) Yes
>=2x slower than 

MergeSort

Dual-Pivot 
QuickSort

Ω(N) O(N2) ? No
Fastest 

comparison sort
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Best Case != Worst Case

❖ Our best-cases are linear but our worst-cases are N log N

❖ We spent all of last lecture and the reading twiddling with real-
world constants to speed up N log N, but we didn’t ask ourselves

Does there exist a comparison-based sorting algorithm
whose worst-case is faster than N log N?

❖ Let’s ask that now.  Call this theoretical algorithm “OptimalSort”

▪ Next, we will describe the constraints on OptimalSort and then try to 
derive its worst-case runtime
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OptimalSort on 3 Items

❖ Given 3 items a, b, c, what is 
the minimum number of 
comparisons OptimalSort
needs to order them?

❖ We don’t know in what order
OptimalSort would do the
comparisons, but we can
model those comparisons as a
decision-tree
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OptimalSort Decision Tree: N=3
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a ⩻ b

b ⩻ c
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a ⩻ c

a c bc a b

YesNo

a ⩻ c

b ⩻ c b a c

b c ac b a
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No Yes

No Yes

a b c
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pollev.com/uwcse373

❖ How many possible permutations exist for a list of N=4 elements?

A. 16

B. 24

C. 32

D. 36

E. I’m not sure …
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pollev.com/uwcse373

❖ In the worst case, how many comparisons would OptimalSort make for 
a list of N=4 elements?

A. 3

B. 4

C. 5

D. 6

E. I’m not sure …
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OptimalSort for all N

❖ OptimalSort needs to decide between N! permutations (ie, N! 
leaves) in a list of N elements

❖ The height of OptimalSort’s decision tree is log2N!, rounded up

❖ Therefore, OptimalSort’s worst-case requires Ω(log N!) 
comparisons

▪ So its total runtime must be Ω(log N!)

• Because we still need to do swaps, merges, partitions, etc

▪ … which is equivalent to Ω(N log N)

▪ … which means that OptimalSort’s worst-case runtime is Ω(N log N)
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Comparison Sorts Review

❖ HeapSort, MergeSort, and Dual-Pivot QuickSort are 
asymptotically optimal

▪ Mathematically impossible to make asymptotically fewer comparisons

▪ That’s why we focus on optimizing their constants

Best-Case 
Time

Worst-Case 
Time

Space Stable? Notes

SelectionSort Θ(N2) Θ(N2) Θ(1) No

In-Place 
HeapSort

Θ(N) Θ(N log N) Θ(1) No Slow in practice

MergeSort Θ(N log N) Θ(N log N) Θ(N) Yes Fastest stable sort

In-Place 
InsertionSort

Θ(N) Θ(N2) Θ(1) Yes
Best for small or 

partially-sorted input

Naïve QuickSort Θ(N log N) Θ(N2) Θ(N) Yes
>=2x slower than 

MergeSort

Dual-Pivot 
QuickSort

Ω(N) O(N2) ? No Fastest comparison sort


