
CSE373, Winter 2020L22: QuickSort

Bounds on Comparison Sorts
CSE 373 Winter 2020

Instructor: Hannah C. Tang

Teaching Assistants:

Aaron Johnston Ethan Knutson Nathan Lipiarski

Amanda Park Farrell Fileas Sam Long

Anish Velagapudi Howard Xiao Yifan Bai

Brian Chan Jade Watkins Yuma Tou

Elena Spasova Lea Quan

CSE373, Winter 2020L22: QuickSort

Announcements

❖ 🚨 Remember 🚨 : no late days for HW8 (Seam Carving)!

❖ You can always make appointments with staff (TAs or me) to discuss
anything: homework, concepts, imposter syndrome, and more

▪ Crucially, if you need health accommodations for the final please reach out!

2

CSE373, Winter 2020L22: QuickSort

Lecture Outline

❖ Reading Review: Twiddling with Constants!

❖ Asymptotic Analysis Practice

❖ Theoretical Lower Bound for Comparison Sorts

3

CSE373, Winter 2020L22: QuickSort

Feedback from the Reading Quiz

❖ How were 47 and 67 decided upon?

❖ What is a run (in the sorting context)?

❖ If QuickSort looks for runs, doesn’t that mean it’s doing extra
work?

❖ Why is the best possible sorting algorithm Ω(N)?

4

CSE373, Winter 2020L22: QuickSort

Reference Types vs Primitive Types

❖ Java uses MergeSort* for reference types because MergeSort
is stable

❖ Java uses adaptive QuickSort for primitive types because
stability doesn’t matter for these types, and QuickSort’s
constants are better than MergeSort’s

▪ However: InsertionSort’s constants are better for small arrays

▪ However: MergeSort’s constants are better for partially-sorted
arrays

5* technically, this is a MergeSort variant known as TimSort

CSE373, Winter 2020L22: QuickSort

Java’s QuickSort Adapts to its Input

❖ At the beginning of the sort (ie, only once), sort() checks
whether the input is partially sorted by looking for runs

▪ 9 7 1 2 4 8 6 3 5

▪ This is Θ(N) work, so still dominated by our N log N runtimes

▪ If there are long-enough runs, switches to MergeSort. Done.

❖ If not, it picks two pivots, partitions the input, and recursively
sorts each partition

▪ When the partition is small enough, switches to InsertionSort. Done.

❖ Why is “small enough” defined as <47?

▪ Performance testing on InsertionSort and QuickSort using
randomized input; the “break point” happened at 47

6
* technically, this is a MergeSort variant known as TimSort

CSE373, Winter 2020L22: QuickSort

Lecture Outline

❖ Reading Review: Twiddling with Constants!

❖ Asymptotic Analysis Practice

❖ Theoretical Lower Bound for Comparison Sorts

7

CSE373, Winter 2020L22: QuickSort

Problem #1

❖ Consider the functions N! and (N/2)N/2. Is N! ∈ Ω((N/2)N/2)?
Prove your answer.

N! = N * (N-1)* … * (N/2 + 1) * N/2 * … * 2 * 1

(N/2)N/2 = N/2 * N/2 * … * N/2 * N/2

❖ N! > (N/2)N/2 for large N, therefore N! ∈ Ω((N/2)N/2)

❖ Demo: https://www.desmos.com/calculator/7lahriir6s

https://www.desmos.com/calculator/7lahriir6s

CSE373, Winter 2020L22: QuickSort

Problem #2

❖ Now, let’s consider the functions log N! and N log N.
Is log N! ∈ Ω(N log N)? Prove your answer.

❖ From problem #1, we know N! > (N/2)N/2

▪ Taking the log of both sides: log N! > log (N/2)N/2

▪ log N! > N/2 log (N/2)

▪ log N! > N/2 (log N – log 2)

❖ Therefore, log N! ∈ Ω(N log N)

❖ Demo: https://www.desmos.com/calculator/4ptk1kcmss

https://www.desmos.com/calculator/4ptk1kcmss

CSE373, Winter 2020L22: QuickSort

Problem #3

❖ Show N log N ∈ Ω(log N!)

log N! = log(N * (N-1) * … * 1)

= log(N) + log(N-1) + … + log 1

N log N = log(N) + log(N) + … + log(N)

❖ log N! < N log N for large N, therefore N log N ∈ Ω(log N!)

❖ Demo: https://www.desmos.com/calculator/4jeakr9vvb

https://www.desmos.com/calculator/4jeakr9vvb

CSE373, Winter 2020L22: QuickSort

pollev.com/uwcse373

❖ Given that N log N ∈ Ω(log N!) and log N! ∈ Ω(N log N), which of the
following statements are true?

A. N log N ∈ Θ(log N!)

B. log N! ∈ Θ(N log N)

C. Both A and B

D. Neither A nor B

E. I’m not sure …

14

CSE373, Winter 2020L22: QuickSort

Lecture Outline

❖ Reading Review: Twiddling with Constants!

❖ Asymptotic Analysis Practice

❖ Theoretical Lower Bound for Comparison Sorts

15

CSE373, Winter 2020L22: QuickSort

Comparison Sorts Review

Best-Case
Time

Worst-Case
Time

Space Stable? Notes

SelectionSort Θ(N2) Θ(N2) Θ(1) No

In-Place
HeapSort

Θ(N) Θ(N log N) Θ(1) No Slow in practice

MergeSort Θ(N log N) Θ(N log N) Θ(N) Yes Fastest stable sort

In-Place
InsertionSort

Θ(N) Θ(N2) Θ(1) Yes
Best for small or
partially-sorted

input

Naïve
QuickSort

Θ(N log N) Θ(N2) Θ(N) Yes
>=2x slower than

MergeSort

Dual-Pivot
QuickSort

Ω(N) O(N2) ? No
Fastest

comparison sort

CSE373, Winter 2020L22: QuickSort

Best Case != Worst Case

❖ Our best-cases are linear but our worst-cases are N log N

❖ We spent all of last lecture and the reading twiddling with real-
world constants to speed up N log N, but we didn’t ask ourselves

Does there exist a comparison-based sorting algorithm
whose worst-case is faster than N log N?

❖ Let’s ask that now. Call this theoretical algorithm “OptimalSort”

▪ Next, we will describe the constraints on OptimalSort and then try to
derive its worst-case runtime

17

CSE373, Winter 2020L22: QuickSort

OptimalSort on 3 Items

❖ Given 3 items a, b, c, what is
the minimum number of
comparisons OptimalSort
needs to order them?

❖ We don’t know in what order
OptimalSort would do the
comparisons, but we can
model those comparisons as a
decision-tree

18

https://xkcd.com/627/

https://xkcd.com/627/

CSE373, Winter 2020L22: QuickSort

OptimalSort Decision Tree: N=3

19

a ⩻ b

b ⩻ c

No Yes

a ⩻ c

a c bc a b

YesNo

a ⩻ c

b ⩻ c b a c

b c ac b a

YesNo

No Yes

No Yes

a b c

CSE373, Winter 2020L22: QuickSort

pollev.com/uwcse373

❖ How many possible permutations exist for a list of N=4 elements?

A. 16

B. 24

C. 32

D. 36

E. I’m not sure …

20

a ⩻ b

b ⩻ c

No Yes

a ⩻ c

a c bc a b

YesNo

a ⩻ c

b ⩻ c b a c

b c ac b a

YesNo

No Yes

No Yes

a b c

CSE373, Winter 2020L22: QuickSort

pollev.com/uwcse373

❖ In the worst case, how many comparisons would OptimalSort make for
a list of N=4 elements?

A. 3

B. 4

C. 5

D. 6

E. I’m not sure …

21

a ⩻ b

b ⩻ c

No Yes

a ⩻ c

a c bc a b

YesNo

a ⩻ c

b ⩻ c b a c

b c ac b a

YesNo

No Yes

No Yes

a b c

CSE373, Winter 2020L22: QuickSort

OptimalSort for all N

❖ OptimalSort needs to decide between N! permutations (ie, N!
leaves) in a list of N elements

❖ The height of OptimalSort’s decision tree is log2N!, rounded up

❖ Therefore, OptimalSort’s worst-case requires Ω(log N!)
comparisons

▪ So its total runtime must be Ω(log N!)

• Because we still need to do swaps, merges, partitions, etc

▪ … which is equivalent to Ω(N log N)

▪ … which means that OptimalSort’s worst-case runtime is Ω(N log N)

CSE373, Winter 2020L22: QuickSort

Comparison Sorts Review

❖ HeapSort, MergeSort, and Dual-Pivot QuickSort are
asymptotically optimal

▪ Mathematically impossible to make asymptotically fewer comparisons

▪ That’s why we focus on optimizing their constants

Best-Case
Time

Worst-Case
Time

Space Stable? Notes

SelectionSort Θ(N2) Θ(N2) Θ(1) No

In-Place
HeapSort

Θ(N) Θ(N log N) Θ(1) No Slow in practice

MergeSort Θ(N log N) Θ(N log N) Θ(N) Yes Fastest stable sort

In-Place
InsertionSort

Θ(N) Θ(N2) Θ(1) Yes
Best for small or

partially-sorted input

Naïve QuickSort Θ(N log N) Θ(N2) Θ(N) Yes
>=2x slower than

MergeSort

Dual-Pivot
QuickSort

Ω(N) O(N2) ? No Fastest comparison sort

