Asymptotic Bounds on Comparison Sorts

CSE 373 Winter 2020

Instructor: Hannah C. Tang

Teaching Assistants:

Aaron Johnston Ethan Knutson Nathan Lipiarski

Amanda Park Farrell Fileas Sam Long

Anish Velagapudi Howard Xiao Yifan Bai

Brian Chan Jade Watkins Yuma Tou

Elena Spasova Lea Quan

Announcements

- Remember : no late days for HW8 (Seam Carving)!
- You can always make appointments with staff (TAs or me) to discuss anything: homework, concepts, imposter syndrome, and more
 - Crucially, if you need health accommodations for the final please reach out!

Lecture Outline

- Reading Review: Twiddling with Constants!
- Asymptotic Analysis Practice
- Theoretical Lower Bound for Comparison Sorts
- Comparison Sorts Summary

Feedback from the Reading Quiz

- How were 47 and 67 decided upon?
- What is a run (in the sorting context)?
- If QuickSort looks for runs, doesn't that mean it's doing extra work?
- Why is the best possible sorting algorithm $\Omega(N)$?

Reference Types vs Primitive Types

- Java uses MergeSort* for reference types because MergeSort is stable
- Java uses adaptive QuickSort for primitive types because stability doesn't matter for these types, and QuickSort's constants are better than MergeSort's
 - However: InsertionSort's constants are better for small arrays
 - However: MergeSort's constants are better for partially-sorted arrays

Java's QuickSort Adapts to its Input

- At the beginning of the sort (ie, only once), sort() checks whether the input is partially sorted by looking for runs
 - 97 1248 635
 - This is $\Theta(N)$ work, so still dominated by our N log N runtimes
 - If there are long-enough runs, switches to MergeSort*. Done.
- If not, it picks two pivots, partitions the input, and recursively sorts each partition
 - When the partition is small enough, switches to InsertionSort. Done.
- Why is "small enough" defined as <47?</p>
 - Performance testing on InsertionSort and QuickSort using randomized input; the "break point" happened at 47

^{*} technically, this is a MergeSort variant known as TimSort

Lecture Outline

- Reading Review: Twiddling with Constants!
- Asymptotic Analysis Practice
- Theoretical Lower Bound for Comparison Sorts
- Comparison Sorts Summary

Problem #1

* Consider the functions N! and $(N/2)^{N/2}$. Is N! $\in \Omega((N/2)^{N/2})$? Prove your answer.

$$N! = N * (N-1) * ... * (N/2 + 1) * N/2 * ... * 2 * 1$$

$$(N/2)^{N/2} = N/2 * N/2 * ... * N/2 * N/2 * N/2 * ... * 2 * 1$$

- ♦ N! > $(N/2)^{N/2}$ for large N, therefore N! ∈ $\Omega((N/2)^{N/2})$
- Demo: https://www.desmos.com/calculator/7lahriir6s

Problem #2

* Now, let's consider the functions log N! and N log N. Show N log N $\in \Omega(\log N!)$

log N! =
$$log(N) * (N-1) * ... *$$

= $log(N) + log(N-1) + ... + log 1$
N log N = $log(N) + log(N) + ... + log(N)$

- ♦ log N! < N log N for large N, therefore N log N ∈ Ω (log N!)
- Demo: https://www.desmos.com/calculator/4jeakr9vvb

Problem #3

- ⋆ Is log N! ∈ Ω(N log N)? Prove your answer.
- From problem #1, we know N! > $(N/2)^{N/2}$ for large N
 - Taking the log of both sides: log N! > log (N/2)^{N/2}
 - log N! > N/2 log (N/2)
 - $\log N! > N/2 (\log N \log 2)$
 - · ... for large N
- ❖ Therefore, log N! ∈ Ω (N log N)
- Demo: https://www.desmos.com/calculator/4ptk1kcmss

Poll Everywhere

pollev.com/uwcse373

- * Given that N log N $\in \Omega(\log N!)$ and log N! $\in \Omega(N \log N)$, which of the following statements are true?
- A. $N \log N \in \Theta(\log N!)$
- B. $\log N! \in \Theta(N \log N)$

e. Both A and B

- D. Neither A nor B
- E. I'm not sure ...

Intuitively:

$$N \log N \ge \log N!$$
 $\log N! \ge N \log N$
 $\therefore N \log N = \log N!$

tormally: - we've shown $\Omega(N\log N) = \Omega(\log N!)$ - we can use similar logic to grove $O(N\log N) = O(\log N!)$... Both A&B are true (note: you can also show $\Theta(N \log N) = \Theta(\log N!)$

Lecture Outline

- Reading Review: Twiddling with Constants!
- Asymptotic Analysis Practice
- Theoretical Lower Bound for Comparison Sorts
- Comparison Sorts Summary

Comparison Sorts Review

	Best-Case Time	Worst-Case Time	Space	Stable?	Notes
SelectionSort	$\Theta(N^2)$	Θ(N ²)	Θ(1)	No	
In-Place HeapSort	Θ(N) <u></u>	→ Θ(N log N)	Θ(1)	No	Slow in practice
MergeSort	Θ(N log N)	Θ(N log N)	Θ(N)	Yes	Fastest stable sort
In-Place InsertionSort	Θ(N)	$\Theta(N^2)$	Θ(1)	Yes	Best for small or partially-sorted input
Naïve QuickSort	Θ(N log N)	Θ(N²)	Θ(N)	Yes	>=2x slower than MergeSort
Dual-Pivot QuickSort	Ω(N)	O(N ²)	Θ(1)	No	Fastest comparison sort

Best Case != Worst Case

- Our best-cases are linear, but our worst-cases are N log N
- We spent all of last lecture and the reading twiddling with realworld constants to speed up N log N, but we didn't ask ourselves:

Does there exist a **comparison-based sorting** algorithm whose worst-case is asymptotically faster than N log N?

- Let's ask that now. Call this theoretical algorithm "OptimalSort"
 - Next, we will describe the constraints on OptimalSort and then try to derive its worst-case runtime

Modeling OptimalSort as a Decision Tree

- Given 3 items a, b, c, what is the minimum number of comparisons OptimalSort needs to order them?
- We don't know in what order OptimalSort would do the comparisons, but we can model those comparisons as a decision-tree

https://xkcd.com/627/

OptimalSort Decision Tree: N=3

pollev.com/uwcse373

How many possible permutations exist for a list of N=4 elements?

A.
$$16$$
B. 24
C. 32

- 20
- D. 36
- E. I'm not sure ...

pollev.com/uwcse373

- * In the worst case, how many *comparisons* would OptimalSort make for a list of N=4 elements? $\log_2 N_o$
- A. 3
- B. **Z**

c.
$$5 = \lceil \log_2 4 \rceil = \lceil 4.58 \rceil$$

- D. 6
- E. I'm not sure ...

OptimalSort for all N

- OptimalSort needs to decide between N! possible permutations (ie, N! leaves) in a list of N elements
- The height of OptimalSort's decision tree is log₂N!, rounded up
- Therefore, OptimalSort's worst-case requires Ω(log N!) comparisons
 - So its total runtime must also be $\Omega(\log N!)$
 - (because we still need to do swaps, merges, partitions, etc)
 - ... which is equivalent to Ω(N log N)
 - ... which means that OptimalSort's worst-case runtime is $\Omega(N \log N)$

Comparison Sorts Review

	Best-Case Time	Worst-Case Time	Space	Stable?	Notes
SelectionSort	Θ(N²)	Θ(N²)	Θ(1)	No	
In-Place HeapSort	Θ(N)	Θ(N log N)	Θ(1)	No	Slow in practice
MergeSort	Θ(N log N)	Θ(N log N)	Θ(N)	Yes	Fastest stable sort
In-Place InsertionSort	Θ(N)	Θ(N²)	Θ(1)	Yes	Best for small or partially-sorted input
Naïve QuickSort	Θ(N log N)	Θ(N²)	Θ(N)	Yes	>=2x slower than MergeSort
Dual-Pivot QuickSort	Ω(N)	O(N ²)	Θ(1)	No	Fastest comparison sort

- HeapSort, MergeSort, and Dual-Pivot QuickSort are asymptotically optimal
 - Mathematically impossible to make asymptotically fewer comparisons
 - That's why we focus on optimizing their constants

Lecture Outline

- Reading Review: Twiddling with Constants!
- Asymptotic Analysis Practice
- Theoretical Lower Bound for Comparison Sorts
- Comparison Sorts Summary

Why Did We Just Spend a Week on Sorting?

- Sorting is a great case study for algorithm-design techniques
 - "Start Simple" / "Do the Straightforward Thing First"
 - SelectionSort
 - MergeSort
 - 2. Data structures can improve your algorithm
 - BFS vs Dijkstra's
 - HeapSort
 - 3. Pay attention to your asymptotes first; pay attention to your constants *afterwards*
 - Noticed that MergeSort "equals" HeapSort "equals" QuickSort
 - Spent an entire lecture optimizing QuickSort's constants (in-place, single-pass, log₃N vs log₂N, switching to InsertionSort)
 - Realized that there's nothing "asymptotically better" than N log N
 - Asymptotes require analysis; constants require performance benchmarks
 - 4. Question your assumptions (see next lecture)