Announcements

❖ 🚨 Remember 🚨: no late days for HW8 (Seam Carving)!

❖ You can always make appointments with staff (TAs or me) to discuss anything: homework, concepts, imposter syndrome, and more
 ▪ Crucially, if you need health accommodations for the final please reach out!
Lecture Outline

❖ Reading Review: Twiddling with Constants!

❖ Asymptotic Analysis Practice

❖ Theoretical Lower Bound for Comparison Sorts

❖ Comparison Sorts Summary
Feedback from the Reading Quiz

❖ How were 47 and 67 decided upon?

❖ What is a run (in the sorting context)?

❖ If QuickSort looks for runs, doesn’t that mean it’s doing extra work?

❖ Why is the best possible sorting algorithm $\Omega(N)$?
Reference Types vs Primitive Types

- Java uses MergeSort* for reference types because MergeSort is stable

- Java uses adaptive QuickSort for primitive types because stability doesn’t matter for these types, and QuickSort’s constants are better than MergeSort’s
 - However: InsertionSort’s constants are better for small arrays
 - However: MergeSort’s constants are better for partially-sorted arrays

* technically, this is a MergeSort variant known as TimSort
Java’s QuickSort Adapts to its Input

❖ At the beginning of the sort (ie, only once), sort() checks whether the input is partially sorted by looking for *runs*
 - 9 7 1 2 4 8 6 3 5
 - This is $\Theta(N)$ work, so still dominated by our $N \log N$ runtimes
 - If there are long-enough runs, switches to MergeSort*. Done.

❖ If not, it picks two pivots, partitions the input, and recursively sorts each partition
 - When the partition is small enough, switches to InsertionSort. Done.

❖ Why is “small enough” defined as <47?
 - Performance testing on InsertionSort and QuickSort using randomized input; the “break point” happened at 47

* technically, this is a MergeSort variant known as TimSort
Lecture Outline

❖ Reading Review: Twiddling with Constants!

❖ Asymptotic Analysis Practice

❖ Theoretical Lower Bound for Comparison Sorts

❖ Comparison Sorts Summary
Problem #1

❖ Consider the functions $N!$ and $(N/2)^{N/2}$. Is $N! \in \Omega((N/2)^{N/2})$? Prove your answer.

$N! = N \cdot (N-1) \cdot \ldots \cdot (N/2+1) \cdot (N/2) \cdot \ldots \cdot 2 \cdot 1$

$(N/2)^{N/2} = (N/2) \cdot (N/2) \cdot \ldots \cdot (N/2) \cdot (N/2)$

❖ $N! > (N/2)^{N/2}$ for large N, therefore $N! \in \Omega((N/2)^{N/2})$

❖ Demo: https://www.desmos.com/calculator/7lahriir6s
Problem #2

❖ Now, let’s consider the functions log N! and N log N. Show N log N ∈ Ω(log N!)

\[
\log N! = \log(N) \times \log(N-1) \times \cdots \times \log 1 \\
= \log(N) + \log(N-1) + \cdots + \log 1
\]

\[
N \log N = \log(N) + \log(N) + \cdots + \log(N)
\]

❖ log N! < N log N for large N, therefore N log N ∈ Ω(log N!)

❖ Demo: https://www.desmos.com/calculator/4jeakr9vvb
Problem #3

❖ Is log N! ∈ Ω(N log N)? Prove your answer.

❖ From problem #1, we know N! > (N/2)^{N/2} for large N
 ▪ Taking the log of both sides: log N! > log (N/2)^{N/2}
 ▪ log N! > N/2 log (N/2)
 ▪ log N! > N/2 (log N – log 2)
 • ... for large N

❖ Therefore, log N! ∈ Ω(N log N)

❖ Demo: https://www.desmos.com/calculator/4ptk1kcmss
Given that \(N \log N \in \Omega(\log N!) \) and \(\log N! \in \Omega(N \log N) \), which of the following statements are true?

A. \(N \log N \in \Theta(\log N!) \)
B. \(\log N! \in \Theta(N \log N) \)
C. Both A and B
D. Neither A nor B
E. I’m not sure ...

Intuitively:
\[
N \log N \geq \log N!
\]
\[
\log N! \geq N \log N
\]
\[
\therefore N \log N = \log N!
\]

Formally:
- We've shown \(\Omega(N \log N) = \Omega(\log N!) \)
- We can use similar logic to prove \(O(N \log N) = O(\log N!) \)

\(\therefore \) Both A & B are true

(\text{note: you can also show } \Theta(N \log N) = \Theta(\log N!))
Lecture Outline

❖ Reading Review: Twiddling with Constants!

❖ Asymptotic Analysis Practice

❖ **Theoretical Lower Bound for Comparison Sorts**

❖ Comparison Sorts Summary
Comparison Sorts Review

<table>
<thead>
<tr>
<th></th>
<th>Best-Case Time</th>
<th>Worst-Case Time</th>
<th>Space</th>
<th>Stable?</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>SelectionSort</td>
<td>$\Theta(N^2)$</td>
<td>$\Theta(N^2)$</td>
<td>$\Theta(1)$</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>In-Place HeapSort</td>
<td>$\Theta(N)$</td>
<td>$\Theta(N \log N)$</td>
<td>$\Theta(1)$</td>
<td>No</td>
<td>Slow in practice</td>
</tr>
<tr>
<td>MergeSort</td>
<td>$\Theta(N \log N)$</td>
<td>$\Theta(N \log N)$</td>
<td>$\Theta(N)$</td>
<td>Yes</td>
<td>Fastest stable sort</td>
</tr>
<tr>
<td>In-Place InsertionSort</td>
<td>$\Theta(N)$</td>
<td>$\Theta(N^2)$</td>
<td>$\Theta(1)$</td>
<td>Yes</td>
<td>Best for small or partially-sorted input</td>
</tr>
<tr>
<td>Naïve QuickSort</td>
<td>$\Theta(N \log N)$</td>
<td>$\Theta(N^2)$</td>
<td>$\Theta(N)$</td>
<td>Yes</td>
<td>$\geq 2x$ slower than MergeSort</td>
</tr>
<tr>
<td>Dual-Pivot QuickSort</td>
<td>$\Omega(N)$</td>
<td>$O(N^2)$</td>
<td>$\Theta(1)$</td>
<td>No</td>
<td>Fastest comparison sort</td>
</tr>
</tbody>
</table>
Best Case != Worst Case

- Our best-cases are linear, but our worst-cases are $N \log N$

- We spent all of last lecture and the reading twiddling with real-world constants to speed up $N \log N$, but we didn’t ask ourselves:

 \[\text{Does there exist a comparison-based sorting algorithm whose worst-case is asymptotically faster than } N \log N? \]

- Let’s ask that now. Call this theoretical algorithm “OptimalSort”
 - Next, we will describe the constraints on OptimalSort and then try to derive its worst-case runtime
Modeling OptimalSort as a Decision Tree

- Given 3 items a, b, c, what is the minimum number of comparisons OptimalSort needs to order them?

- We don’t know in what order OptimalSort would do the comparisons, but we can model those comparisons as a decision-tree

https://xkcd.com/627/
OptimalSort Decision Tree: N=3

- a < b
 - No
 - a < c
 - No
 - b < c
 - No
 - c b a
 - Yes
 - b c a
 - Yes
 - b a c
 - Yes
 - b < c
 - No
 - b < c
 - No
 - c b a
 - Yes
 - b c a
 - Yes
 - a b c
 - Yes
 - a < c
 - No
 - c a b
 - Yes
 - a c b
How many possible *permutations* exist for a list of N=4 elements?

A. 16
B. 24 $= 4!$
C. 32
D. 36
E. I’m not sure ...
In the worst case, how many comparisons would OptimalSort make for a list of N=4 elements? \[\lceil \log_2 N \rceil \]

A. 3
B. 4
C. 5 = \lceil \log_2 4! \rceil = \lceil 4.58 \rceil
D. 6
E. I’m not sure ...
OptimalSort for all N

- OptimalSort needs to decide between \(N!\) possible permutations (i.e., \(N!\) leaves) in a list of \(N\) elements.

- The height of OptimalSort’s decision tree is \(\log_2 N!\), rounded up.

- Therefore, OptimalSort’s worst-case requires \(\Omega(\log N!\)) comparisons.
 - So its total runtime must also be \(\Omega(\log N!)\)
 - (because we still need to do swaps, merges, partitions, etc)
 - ... which is equivalent to \(\Omega(N \log N)\)
 - ... which means that OptimalSort’s worst-case runtime is \(\Omega(N \log N)\)
Comparison Sorts Review

<table>
<thead>
<tr>
<th></th>
<th>Best-Case Time</th>
<th>Worst-Case Time</th>
<th>Space</th>
<th>Stable?</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>SelectionSort</td>
<td>$\Theta(N^2)$</td>
<td>$\Theta(N^2)$</td>
<td>$\Theta(1)$</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>In-Place HeapSort</td>
<td>$\Theta(N)$</td>
<td>$\Theta(N \log N)$</td>
<td>$\Theta(1)$</td>
<td>No</td>
<td>Slow in practice</td>
</tr>
<tr>
<td>MergeSort</td>
<td>$\Theta(N \log N)$</td>
<td>$\Theta(N \log N)$</td>
<td>$\Theta(N)$</td>
<td>Yes</td>
<td>Fastest stable sort</td>
</tr>
<tr>
<td>In-Place InsertionSort</td>
<td>$\Theta(N)$</td>
<td>$\Theta(N^2)$</td>
<td>$\Theta(1)$</td>
<td>Yes</td>
<td>Best for small or partially-sorted input</td>
</tr>
<tr>
<td>Naïve QuickSort</td>
<td>$\Theta(N \log N)$</td>
<td>$\Theta(N^2)$</td>
<td>$\Theta(N)$</td>
<td>Yes</td>
<td>$\geq 2x$ slower than MergeSort</td>
</tr>
<tr>
<td>Dual-Pivot QuickSort</td>
<td>$\Omega(N)$</td>
<td>$\Theta(N^2)$</td>
<td>$\Theta(1)$</td>
<td>No</td>
<td>Fastest comparison sort</td>
</tr>
</tbody>
</table>

- HeapSort, MergeSort, and Dual-Pivot QuickSort are asymptotically optimal
 - Mathematically impossible to make *asymptotically fewer* comparisons
 - That’s why we focus on optimizing their constants
Lecture Outline

❖ Reading Review: Twiddling with Constants!

❖ Asymptotic Analysis Practice

❖ Theoretical Lower Bound for Comparison Sorts

❖ Comparison Sorts Summary
Why Did We Just Spend a Week on Sorting?

- Sorting is a great case study for algorithm-design techniques
 1. “Start Simple” / “Do the Straightforward Thing First”
 - SelectionSort
 - MergeSort
 2. Data structures can improve your algorithm
 - BFS vs Dijkstra’s
 - HeapSort
 3. Pay attention to your asymptotes first; pay attention to your constants *afterwards*
 - Noticed that MergeSort “equals” HeapSort “equals” QuickSort
 - Spent an entire lecture optimizing QuickSort’s constants (in-place, single-pass, \(\log_3 N \) vs \(\log_2 N \), switching to InsertionSort)
 - Realized that there’s nothing “asymptotically better” than \(N \log N \)
 - Asymptotes require analysis; constants require performance benchmarks
 4. Question your assumptions (see next lecture)