Asymptotic Bounds on Comparison Sorts
 CSE 373 Winter 2020

Instructor: Hannah C. Tang

Teaching Assistants:

Aaron Johnston
Amanda Park
Anish Velagapudi
Brian Chan
Elena Spasova
Lea Quan

Nathan Lipiarski
Sam Long
Yifan Bai
Yuma Tou

Announcements

* Remember : no late days for HW8 (Seam Carving)!
* You can always make appointments with staff (TAs or me) to discuss anything: homework, concepts, imposter syndrome, and more
- Crucially, if you need health accommodations for the final please reach out!

Lecture Outline

* Reading Review: Twiddling with Constants!
* Asymptotic Analysis Practice
* Theoretical Lower Bound for Comparison Sorts
* Comparison Sorts Summary

Feedback from the Reading Quiz

* How were 47 and 67 decided upon?
*What is a run (in the sorting context)?
* If QuickSort looks for runs, doesn't that mean it's doing extra work?
*Why is the best possible sorting algorithm $\Omega(\mathrm{N})$?

Reference Types vs Primitive Types

* Java uses MergeSort* for reference types because MergeSort is stable
* Java uses adaptive QuickSort for primitive types because stability doesn't matter for these types, and QuickSort's constants are better than MergeSort's
- However: InsertionSort's constants are better for small arrays
- However: MergeSort's constants are better for partially-sorted arrays

Java's QuickSort Adapts to its Input

* At the beginning of the sort (ie, only once), sort() checks whether the input is partially sorted by looking for runs
- 971248635
- This is $\Theta(\mathrm{N})$ work, so still dominated by our $\mathrm{N} \log \mathrm{N}$ runtimes
- If there are long-enough runs, switches to MergeSort*. Done.
* If not, it picks two pivots, partitions the input, and recursively sorts each partition
- When the partition is small enough, switches to InsertionSort. Done.
* Why is "small enough" defined as <47?
- Performance testing on InsertionSort and QuickSort using randomized input; the "break point" happened at 47

Lecture Outline

* Reading Review: Twiddling with Constants!
* Asymptotic Analysis Practice
* Theoretical Lower Bound for Comparison Sorts
* Comparison Sorts Summary

Problem \#1

* Consider the functions $\mathrm{N}!$ and $(\mathrm{N} / 2)^{\mathrm{N} / 2}$. Is $\mathrm{N}!\in \Omega\left((\mathrm{N} / 2)^{\mathrm{N} / 2}\right)$? Prove your answer.

. $\mathrm{N}!>(\mathrm{N} / 2)^{\mathrm{N} / 2}$ for large N, therefore $\mathrm{N}!\in \Omega\left((\mathrm{N} / 2)^{\mathrm{N} / 2}\right)$
* Demo: https://www.desmos.com/calculator/7lahriir6s

Problem \#2

* Now, let's consider the functions log N ! and $\mathrm{N} \log \mathrm{N}$. Show $N \log N \in \Omega(\log N!)$

$* \log N!<N \log N$ for large N, therefore $N \log N \in \Omega(\log N!)$
* Demo: https://www.desmos.com/calculator/4jeakr9vvb

Problem \#3

$\%$ Is $\log N!\in \Omega(N \log N)$? Prove your answer.

* From problem \#1, we know N ! > ($\mathrm{N} / 2)^{\mathrm{N} / 2}$ for large N
- Taking the \log of both sides: $\log \mathrm{N}!>\log (N / 2)^{\mathrm{N} / 2}$
- $\log \mathrm{N}!>\mathrm{N} / 2 \log (\mathrm{~N} / 2)$
- $\log \mathrm{N}!>\mathrm{N} / 2(\log \mathrm{~N}-\log 2)$
- ... for large N
$\%$ Therefore, $\log N!\in \Omega(N \log N)$
* Demo: https://www.desmos.com/calculator/4ptk1kcmss
* Given that $N \log N \in \Omega(\log N!)$ and $\log N!\in \Omega(N \log N)$, which of the following statements are true?
A. $N \log N \in \Theta(\log N!)$
B. $\quad \log N!\in \Theta(N \log N)$
C. Both A and B
D. Neither A nor B
E. I'm not sure ... Intuitively:
$N \log N \geq \log N!$
$\log N!\geq N \log N$
$\therefore N \log N=\log N!$

Formally:

- We've shown $\Omega(N \log N)=\Omega(\log N!)$
- We can use similar logic to pro

$$
O(N \log N)=O\left(\log N n_{0}^{\prime}\right)
$$

\therefore Both A\&B are true
(note: you can also show

Lecture Outline

* Reading Review: Twiddling with Constants!
* Asymptotic Analysis Practice
* Theoretical Lower Bound for Comparison Sorts
* Comparison Sorts Summary

Comparison Sorts Review

	Best-Case Time	Worst-Case Time	Space	Stable?	Notes
SelectionSort	$\Theta\left(N^{2}\right)$	$\Theta\left(N^{2}\right)$	$\Theta(1)$	No	
In-Place HeapSort	$\Theta(N)<$	$\rightarrow \Theta(\mathrm{N} \log \mathrm{N})$	$\Theta(1)$	No	Slow in practice
MergeSort	$\Theta(N \log N)$	$\Theta(N \log N)$	$\Theta(N)$	Yes	Fastest stable sort
In-Place InsertionSort	$\Theta(N)$	$\Theta\left(N^{2}\right)$	$\Theta(1)$	Yes	Best for small or partially-sorted input
Naïve QuickSort	$\Theta(N \log N)$	$\Theta\left(N^{2}\right)$	$\Theta(N)$	Yes	>=2x slower than MergeSort
Dual-Pivot QuickSort	$\Omega(\mathrm{N})$	$\mathrm{O}\left(\mathrm{N}^{2}\right)$	$\Theta(1)$	No	Fastest comparison sort

Best Case != Worst Case

* Our best-cases are linear, but our worst-cases are $\mathrm{N} \log \mathrm{N}$
* We spent all of last lecture and the reading twiddling with realworld constants to speed up N log N , but we didn't ask ourselves:

Does there exist a comparison-based sorting algorithm whose worst-case is asymptotically faster than N log N ?

* Let's ask that now. Call this theoretical algorithm "OptimalSort"
- Next, we will describe the constraints on OptimalSort and then try to derive its worst-case runtime

Modeling OptimalSort as a Decision Tree

* Given 3 items a, b, c, what is the minimum number of comparisons OptimalSort needs to order them?
* We don't know in what order OptimalSort would do the comparisons, but we can model those comparisons as a decision-tree

https://xkcd.com/627/

OptimalSort Decision Tree: N=3

(II) Poll Everywhere

* How many possible permutations exist for a list of $\mathrm{N}=4$ elements?

(II) Poll Everywhere

* In the worst case, how many comparisons would OptimalSort make for a list of $N=4$ elements? $\left\lceil\log _{2} N_{0}^{1}\right\rceil$
A. 3
в. 4
c. $\frac{5}{6}=\left\lceil\log _{2} 4!\right\rceil=\lceil 4.58\rceil$
E. I'm not sure ...

OptimalSort for all N

* OptimalSort needs to decide between N! possible permutations (ie, N! leaves) in a list of N elements
* The height of OptimalSort's decision tree is $\log _{2} \mathrm{~N}$!, rounded up
* Therefore, OptimalSort's worst-case requires Ω (log $\mathrm{N}!)$ comparisons
- So its total runtime must also be $\Omega(\log \mathrm{N}!)$
- (because we still need to do swaps, merges, partitions, etc)
- ... which is equivalent to $\Omega(\mathrm{N} \log \mathrm{N})$
- ... which means that OptimalSort's worst-case runtime is $\Omega(\mathrm{N} \log \mathrm{N})$

Comparison Sorts Review

	Best-Case Time	Worst-Case Time	Space	Stable?	Notes
SelectionSort	$\Theta\left(N^{2}\right)$	$\Theta\left(N^{2}\right)$	$\Theta(1)$	No	
In-Place HeapSort	$\Theta(N)$	$\Theta(N \log N)$	$\Theta(1)$	No	Slow in practice
MergeSort	$\Theta(N \log N)$	$\Theta(N \log N)$	$\Theta(N)$	Yes	Fastest stable sort
In-Place InsertionSort	$\Theta(N)$	$\Theta\left(N^{2}\right)$	$\Theta(1)$	Yes	Best for small or partially-sorted input
Naïve QuickSort	$\Theta(N \log N)$	$\Theta\left(N^{2}\right)$	$\Theta(N)$	Yes	$>=2 x$ slower than MergeSort
Dual-Pivot QuickSort	$\Omega(N)$	$O\left(N^{2}\right)$	$\Theta(1)$	No	Fastest comparison sort

* HeapSort, MergeSort, and Dual-Pivot QuickSort are asymptotically optimal
- Mathematically impossible to make asymptotically fewer comparisons
- That's why we focus on optimizing their constants

Lecture Outline

* Reading Review: Twiddling with Constants!
* Asymptotic Analysis Practice
* Theoretical Lower Bound for Comparison Sorts
* Comparison Sorts Summary

Why Did We Just Spend a Week on Sorting?

* Sorting is a great case study for algorithm-design techniques

1. "Start Simple" / "Do the Straightforward Thing First"

- SelectionSort
- MergeSort

2. Data structures can improve your algorithm

- BFS vs Dijkstra’s
- HeapSort

3. Pay attention to your asymptotes first; pay attention to your constants afterwards

- Noticed that MergeSort "equals" HeapSort "equals" QuickSort
- Spent an entire lecture optimizing QuickSort's constants (in-place, singlepass, $\log _{3} \mathrm{~N}$ vs $\log _{2} \mathrm{~N}$, switching to InsertionSort)
- Realized that there's nothing "asymptotically better" than $\mathrm{N} \log \mathrm{N}$
- Asymptotes require analysis; constants require performance benchmarks

4. Question your assumptions (see next lecture)
