
CSE373, Winter 2020L22: QuickSort

QuickSort
CSE 373 Winter 2020

Instructor: Hannah C. Tang

Teaching Assistants:

Aaron Johnston Ethan Knutson Nathan Lipiarski

Amanda Park Farrell Fileas Sam Long

Anish Velagapudi Howard Xiao Yifan Bai

Brian Chan Jade Watkins Yuma Tou

Elena Spasova Lea Quan

CSE373, Winter 2020L22: QuickSort

pollev.com/uwcse373

❖ Approximately how long did HW7: HuskyMaps take?

A. 0-4 hours

B. 5-9 hours

C. 10-14 hours

D. 15-19 hours

E. 20-24 hours

F. 25-29 hours

G. 29+ hours

H. I’m not done / I don’t want to say …

2

CSE373, Winter 2020L22: QuickSort

Announcements

❖ HW8 (Seam Carving) has been released!

▪ 🚨 NOTE 🚨: We are NOT offering late days for this homework. If you think
you’ll need extra time, pretend it’s due on Tuesday instead of Friday

❖ You can always make appointments with staff (TAs or me) to discuss
anything: homework, concepts, imposter syndrome, and more

❖ Your health is more important than this class!

▪ COVID-19 announcements/updates: https://uw.edu/coronavirus

▪ Will adjust the in-class participation (PollEverywhere) policy so that you can
remain at home for the rest of the quarter

3

https://uw.edu/coronavirus

CSE373, Winter 2020L22: QuickSort

Lecture Outline

❖ Comparison Sorts Review

❖ Partitioning

❖ QuickSort Intro

❖ Analyzing QuickSort’s Runtime

❖ Avoiding QuickSort’s Worst Case

❖ QuickSort in Practice

4

CSE373, Winter 2020L22: QuickSort

An (Oversimplified) Summary of Sorting
Algorithms So Far

❖ SelectionSort: find the smallest item and put it in the front

❖ HeapSort: SelectionSort, but use a heap to find the smallest
item

❖ MergeSort: Merge two sorted halves into one sorted whole

❖ QuickSort:

▪ Much stranger core idea: Partitioning

▪ Invented by Sir Tony Hoare in 1960, at the time a novice programmer

▪ Interview: https://www.bl.uk/voices-of-science/interviewees/tony-
hoare/audio/tony-hoare-inventing-quicksort

▪ “I thought, that’s a nice exercise: how would I program sorting?”

https://www.bl.uk/voices-of-science/interviewees/tony-hoare/audio/tony-hoare-inventing-quicksort

CSE373, Winter 2020L22: QuickSort

Lecture Outline

❖ Comparison Sorts Review

❖ Partitioning

❖ QuickSort Intro

❖ Analyzing QuickSort’s Runtime

❖ Avoiding QuickSort’s Worst Case

❖ QuickSort in Practice

6

CSE373, Winter 2020L22: QuickSort

Partitioning Definition

❖ Partitioning an array a[] on a pivot x=a[i] rearranges a[] so that:

▪ x moves to position j (may be the same as i)
▪ All entries to the left of x are <= x
▪ All entries to the right of x are >= x

❖ Which of these are valid partitions? 5 550 10 4 10 9 330

i

4 5 9 10 10 330 550

5 9 10 4 10 550 330

5 4 9 10 10 550 330

5 9 10 4 10 550 330

A.

C.

B.

D.

j j

j j

CSE373, Winter 2020L22: QuickSort

Your Turn! Implement Partitioning

❖ Write pseudocode to implement the following:

▪ Given an array of elements, rearrange the array so that all the less-
than-0th-value elements are to the left of the 0th value and all
greater-than-0th-value elements are to the right

❖ Constraints:

▪ Your algorithm must complete in O(N log N) time, but ideally Θ(N)

▪ Your algorithm must use O(N) space, but ideally Θ(1)

▪ You may use any data structure (eg, BSTs, stacks/deques/queues,
etc)

• Please don’t copy the two solutions discussed in the reading: sort and copy-
lessthan-then-copy-greaterthan

▪ Relative order does NOT need to stay the same

8

CSE373, Winter 2020L22: QuickSort

pollev.com/uwcse373

❖ Describe your implementation in a sentence or two

❖ Constraints:

▪ Your algorithm must complete in O(N log N) time, but ideally Θ(N)

▪ Your algorithm must use O(N) space, but ideally Θ(1)

▪ You may use any data structure (eg, BSTs, stacks/deques/queues, etc)

• Please don’t copy the two solutions discussed in the reading: sort and copy-
lessthan-then-copy-greaterthan

▪ Relative order does NOT need to stay the same

9

6 8 3 1 2 7 4

Input:

3 1 2 4 6 8 7

Valid outputs:

3 4 2 1 6 7 8

CSE373, Winter 2020L22: QuickSort

Partitioning Implementations

❖ Sort the elements (described in the reading)

▪ Note: this implies that partitioning reduces to sorting

❖ Three-pass: copy “less than”s, then copy pivots, finally copy
“greater-than”s

▪ Described in reading

▪ Demo:
https://docs.google.com/presentation/d/16pOLboxhtJlaDxF7iRT5Xclt
DKmwab_wbvjZ4wPmJYk/edit

10

https://docs.google.com/presentation/d/16pOLboxhtJlaDxF7iRT5XcltDKmwab_wbvjZ4wPmJYk/edit

CSE373, Winter 2020L22: QuickSort

Lecture Outline

❖ Comparison Sorts Review

❖ Partitioning

❖ QuickSort Intro

❖ Analyzing QuickSort’s Runtime

❖ Avoiding QuickSort’s Worst Case

❖ QuickSort in Practice

11

CSE373, Winter 2020L22: QuickSort

Context for QuickSort’s Invention

❖ In 1960, exchange student (!!) Tony Hoare worked on a
translation program between Russian and English

❖ O(N log D) if we binary search the dictionary: not bad!

❖ … alas, the dictionary was stored on magnetic tape. Seeks
require very slow physical movement of a tape head

12

“The cat wore a beautiful hat.”

Dictionary of D english words

Sentence of N words

“Кошка носил
красивая шапка.”

CSE373, Winter 2020L22: QuickSort

Constants Matter (Sometimes)

13

❖ Iterating through an in-memory array != iterating through a
magnetic tape

CSE373, Winter 2020L22: QuickSort

Context for QuickSort’s Invention

❖ O(N log D) if we binary search the dictionary: not bad!

▪ … alas, the dictionary was stored on magnetic tape. Seeks require
very slow physical movement of a tape head. Moving the head N
times was too slow

❖ Better solution: sort the sentence and scan the dictionary (ie,
the tape) in a single pass

❖ Named the resultant algorithm “QuickSort”, although
“PartitionSort” may be clearer

14

CSE373, Winter 2020L22: QuickSort

QuickSort is Partitioning

❖ After partitioning on 5:

▪ 5 is in its “correct place” (ie, where it’d be if the array were sorted)

▪ Can now sort two halves separately (eg, through recursive use of
partitioning)

3 2 1 4 5 7 8 65

2 1 3 4 5 6 7 85

5 3 2 1 8 4 67

3 2 1 4 7 8 65

CSE373, Winter 2020L22: QuickSort

QuickSort is Partitioning

❖ For Naïve QuickSort:

▪ SelectPivot() selects the 0th element

▪ Partition() copies into a new array using three-pass method (see
reading)

❖ Demo: https://docs.google.com/presentation/d/1QjAs-
zx1i0_XWlLqsKtexb-iueao9jNLkN-
gW9QxAD0/present?ueb=true&slide=id.g463de7561_042

QuickSort(a[]):

p = SelectPivot(a)

a1, a2 = Partition(a, p)

QuickSort(a1)

QuickSort(a2)

32 15 2 17 19 26 41 17 17

https://docs.google.com/presentation/d/1QjAs-zx1i0_XWlLqsKtexb-iueao9jNLkN-gW9QxAD0/present?ueb=true&slide=id.g463de7561_042

CSE373, Winter 2020L22: QuickSort

Lecture Outline

❖ Comparison Sorts Review

❖ Partitioning

❖ QuickSort Intro

❖ Analyzing QuickSort’s Runtime

❖ Avoiding QuickSort’s Worst Case

❖ QuickSort in Practice

17

CSE373, Winter 2020L22: QuickSort

Best Case: Pivot Always Lands in the Middle

Only size 1 problems remain, so we’re done.

CSE373, Winter 2020L22: QuickSort

Best Case: Runtime

Only size 1 problems remain, so we’re done

Total work at each level:

≈ N

≈N/2 + ≈N/2 = ≈N

≈N/4 * 4 = ≈N

h = Θ(log N)

So best-case runtime is
Θ(N log N)

CSE373, Winter 2020L22: QuickSort

Worst Case: Pivot Always Lands at Beginning

❖ Give an example of an array that
would follow the pattern to the right.

▪ 1 2 3 4 5 6

❖ What is the runtime Θ(∙)?

▪ N2

CSE373, Winter 2020L22: QuickSort

Randomized Case

❖ Suppose pivot always ends up at least 10% from either edge

❖ Work at each level: O(N) and Runtime is O(NH)

▪ H is approximately log 10/9 N = O(log N)

❖ Randomized Case: O(N log N)
▪ Even if you’re unlucky enough to have a pivot that never lands

anywhere near the middle but is at least 10% from one edge, runtime
is still O(N log N)

N

N/10 9N/10

N/100 9N/100 9N/100 81N/100

CSE373, Winter 2020L22: QuickSort

QuickSort Runtime, Empiracally

❖ For N items:

▪ Mean number of compares to complete Quicksort: ~2N ln N
▪ Standard deviation:

❖ For more, see:
http://www.informit.com/articles/article.aspx?p=2017754&seq
Num=7

Empirical histogram for quicksort compare counts (10,000 trials with N = 1000)

Lots of arrays take 12,000ish
compares to sort with Quicksort

A very small number take 15,000ish
compares to sort with Quicksort.

Chance of taking 1,000,000ish compares is effectively zero.

http://www.informit.com/articles/article.aspx?p=2017754&seqNum=7

CSE373, Winter 2020L22: QuickSort

QuickSort Performance

❖ Theoretical analysis:

▪ Best case: Θ(N log N)
▪ Worst case: Θ(N2)
▪ Randomized case: Θ(N log N) expected

❖ Compare this to Mergesort

▪ Best case: Θ(N log N)
▪ Worst case: Θ(N log N)

❖ Why is QuickSort empirically faster than MergeSort in the best
and randomized cases?

▪ No obvious reason why, just need to run experiments to show that
constants are better

CSE373, Winter 2020L22: QuickSort

Lecture Outline

❖ Comparison Sorts Review

❖ Partitioning

❖ QuickSort Intro

❖ Analyzing QuickSort’s Runtime

❖ Avoiding QuickSort’s Worst Case

❖ QuickSort in Practice

24

CSE373, Winter 2020L22: QuickSort

Avoiding QuickSort’s Worst Case

❖ If pivot lands “somewhere good”, Quicksort is Θ(N log N) 🥂

❖ However, the very rare Θ(N2) cases do happen in practice 👎

▪ Bad ordering: Array already in (almost-)sorted order
▪ Bad elements: Array with all duplicates

❖ What can we do to avoid worst case behavior?

❖ Three philosophies:

1. Randomness: pick a random pivot; shuffle before sorting

2. Smarter Pivot Selection: calculate or approximate the median

3. Introspection: switch to safer sort if recursion goes too deep

CSE373, Winter 2020L22: QuickSort

#1: Randomness

❖ Dealing with Bad Ordering:

▪ Strategy 1: Pick pivots randomly

▪ Strategy 2: Shuffle before you sort

❖ Dealing with Bad Elements (ie, duplicates):

▪😭

26

CSE373, Winter 2020L22: QuickSort

#2a: Smarter Pivot Selection (Constant Time)

❖ Any algorithm for picking a pivot which requires constant time
and determinism (ie, not random) has a corresponding family
of dangerous inputs

▪ “A Killer Adversary for QuickSort”:
https://www.cs.dartmouth.edu/~doug/mdmspe.pdf

❖ Dealing with Bad Elements (ie, duplicates):

▪😭

27

https://www.cs.dartmouth.edu/~doug/mdmspe.pdf

CSE373, Winter 2020L22: QuickSort

#2b: Smarter Pivot Selection (Linear Time)

❖ Dealing With Bad Ordering:

▪ We can calculate the actual median in linear time!

▪ Worst-case is Θ(N log N), but constants make it slower than
MergeSort 😭

▪ Note: we can adapt QuickSort into QuickSelect

• Selects the k-th element in Θ(N) time; we can use it to find the N/2 aka
median element

❖ Dealing with Bad Elements (ie, duplicates):

▪😭

28

CSE373, Winter 2020L22: QuickSort

#3: Introspection

❖ If recursion depth exceeds some threshold (eg, 10 log N),
switch to MergeSort

▪ Reasonable, but not common in practice

❖ Dealing With Bad Ordering:

▪ ¯_(ツ)_/¯

❖ Dealing with Bad Elements (ie, duplicates):

▪ ¯_(ツ)_/¯

29

CSE373, Winter 2020L22: QuickSort

Ultimately …

❖ As we saw with LLRB trees and B-trees, having a “100%
guarantee” against worst-case input came with a cost

▪ Here, our “100% guarantee” changed QuickSort’s constants so that it
became slower than MergeSort in the cases where it used to be
faster: best-case and randomized-case

❖ Ultimately, most QuickSort implementations choose a few
“reasonable protections” against pessimal input to maintain its
performance against MergeSort in best-case and randomized-
case

▪ If you, the implementer, need a “100% guarantee” against worst-
case input you should choose MergeSort instead. You should also
recognize that you’re paying for that guarantee with a slower
runtime in most other cases

30

CSE373, Winter 2020L22: QuickSort

Lecture Outline

❖ Comparison Sorts Review

❖ Partitioning

❖ QuickSort Intro

❖ Analyzing QuickSort’s Runtime

❖ Avoiding QuickSort’s Worst Case

❖ QuickSort in Practice

31

CSE373, Winter 2020L22: QuickSort

Decisions When Implementing QuickSort

❖ How to select pivot?

▪ Naïve QuickSort uses 0th element

▪ Dual-pivot QuickSort uses 1/3rd-

2/3rd

❖ How to partition?

▪ Naïve QuickSort uses a stable
three-pass partition

▪ Dual-pivot QuickSort uses three-
way partition

32

QuickSort(a[]):

p = SelectPivot(a)

a1, a2 = Partition(a, p)

QuickSort(a1)

QuickSort(a2)

CSE373, Winter 2020L22: QuickSort

Pivot Selection: Median-of-Three

❖ Median-of-Three approximates the true median in Θ(1) time

▪ Pick 3 items and take the median of the sample

❖ Options for picking 3:

▪ Randomly choose 3 indices

▪ Pick first, middle, last

▪ … ?

❖ “Good enough” for protecting
against bad ordering

▪ Intuitively: it’s not-that-hard to
one bad pivot, but it’s pretty-hard to pick three bad pivots
simultaneously

33

if (a < b)

if (b < c) return b;

else if (a < c) return c;

else return a;

else

if (a < c) return a;

else if (b < c) return c;

else return b;

CSE373, Winter 2020L22: QuickSort

Partitioning: Hoare Partitioning

❖ This is the original QuickSort partitioning algorithm

▪ Good constants: single-pass and in-place

▪ Yields an unstable sort

❖ Idea: initialize two pointers, L and R

▪ L loves small items < pivot

▪ R loves large items > pivot

▪ Walk towards eachother, swapping anything they don’t like

❖ Demo:
https://docs.google.com/presentation/d/1DOnWS59PJOa-
LaBfttPRseIpwLGefZkn450TMSSUiQY/pub?start=false&loop=fal
se&delayms=3000&slide=id.g463de7561_042

34

https://docs.google.com/presentation/d/1DOnWS59PJOa-LaBfttPRseIpwLGefZkn450TMSSUiQY/pub?start=false&loop=false&delayms=3000&slide=id.g463de7561_042

CSE373, Winter 2020L22: QuickSort

Partitioning: Three-Way Partition

❖ Pick two pivots

▪ Same intuition as median-of-three: it’s hard to pick two bad pivots
simultaneously

❖ Like Hoare Partitioning, use two pointers walking to the middle

▪ But split array into three pieces, not two

▪ Good constants: single-pass and in-place; log3N vs log2N

▪ Still results in an unstable sort

35

CSE373, Winter 2020L22: QuickSort

Case Study: Dual-Pivot QuickSort

❖ In 2009, Dual-Pivot QuickSort was introduced to the world by a
previously-unknown guy in a Java developers’ forum

▪ Link:
https://web.archive.org/web/20100428064017/http:/permalink.gma
ne.org/gmane.comp.java.openjdk.core-libs.devel/2628

❖ It is now the de-facto QuickSort implementation for many
languages, including Java’s Arrays.sort(), Python’s unstable
sort, etc

36

https://web.archive.org/web/20100428064017/http:/permalink.gmane.org/gmane.comp.java.openjdk.core-libs.devel/2628

CSE373, Winter 2020L22: QuickSort

Case Study: Dual-Pivot QuickSort

❖ Dual-Pivot QuickSort combines several ideas:

▪ InsertionSort when array length < 48 elements

• Provides some protection against bad ordering and bad elements

▪ Three-way partition

• Good constants: single-pass and in-place; log3N vs log2N

• Dual “middle pivots” provides some protection against bad ordering

– 1/3rd and 2/3rd elements instead of “the end elements” (first and last)

37

CSE373, Winter 2020L22: QuickSort

tl;dr

❖ Constants matter in the real world, even if they don’t matter
asymptotically!

Best-Case
Time

Worst-Case
Time

Space Stable? Notes

SelectionSort Θ(N2) Θ(N2) Θ(1) No

In-Place
HeapSort

Θ(N) Θ(N log N) Θ(1) No Slow in practice

MergeSort Θ(N log N) Θ(N log N) Θ(N) Yes Fastest stable sort

In-Place
InsertionSort

Θ(N) Θ(N2) Θ(1) Yes
Best for small or
partially-sorted

input

Naïve
QuickSort

Θ(N log N) Θ(N2) Θ(N) Yes
>=2x slower than

MergeSort

Dual-Pivot
QuickSort

Ω(N) O(N2) Θ(1) No
Fastest

comparison sort

