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❖ Approximately how long did HW7: HuskyMaps take?

A. 0-4 hours

B. 5-9 hours

C. 10-14 hours

D. 15-19 hours

E. 20-24 hours

F. 25-29 hours

G. 29+ hours

H. I’m not done / I don’t want to say …
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Announcements

❖ HW8 (Seam Carving) has been released!

▪ 🚨 NOTE 🚨: We are NOT offering late days for this homework.  If you think 
you’ll need extra time, pretend it’s due on Tuesday instead of Friday

❖ You can always make appointments with staff (TAs or me) to discuss 
anything: homework, concepts, imposter syndrome, and more

❖ Your health is more important than this class!

▪ COVID-19 announcements/updates: https://uw.edu/coronavirus

▪ Will adjust the in-class participation (PollEverywhere) policy so that you can 
remain at home for the rest of the quarter
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https://uw.edu/coronavirus
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Lecture Outline

❖ Comparison Sorts Review

❖ Partitioning

❖ QuickSort Intro

❖ Analyzing QuickSort’s Runtime

❖ Avoiding QuickSort’s Worst Case

❖ QuickSort in Practice
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An (Oversimplified) Summary of Sorting 
Algorithms So Far

❖ SelectionSort: find the smallest item and put it in the front

❖ HeapSort: SelectionSort, but use a heap to find the smallest 
item

❖ MergeSort: Merge two sorted halves into one sorted whole

❖ QuickSort:

▪ Much stranger core idea: Partitioning

▪ Invented by Sir Tony Hoare in 1960, at the time a novice programmer

▪ Interview: https://www.bl.uk/voices-of-science/interviewees/tony-
hoare/audio/tony-hoare-inventing-quicksort

▪ “I thought, that’s a nice exercise: how would I program sorting?”

https://www.bl.uk/voices-of-science/interviewees/tony-hoare/audio/tony-hoare-inventing-quicksort
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Partitioning Definition

❖ Partitioning an array a[] on a pivot x=a[i] rearranges a[] so that:

▪ x moves to position j (may be the same as i)
▪ All entries to the left of x are <= x
▪ All entries to the right of x are >= x

❖ Which of these are valid partitions? 5 550 10 4 10 9 330

i

4 5 9 10 10 330 550

5 9 10 4 10 550 330

5 4 9 10 10 550 330

5 9 10 4 10 550 330

A.

C.

B.

D.

j j

j j
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Your Turn!  Implement Partitioning

❖ Write pseudocode to implement the following:

▪ Given an array of elements, rearrange the array so that all the less-
than-0th-value elements are to the left of the 0th value and all 
greater-than-0th-value elements are to the right

❖ Constraints:

▪ Your algorithm must complete in O(N log N) time, but ideally Θ(N)

▪ Your algorithm must use O(N) space, but ideally Θ(1)

▪ You may use any data structure (eg, BSTs, stacks/deques/queues, 
etc)

• Please don’t copy the two solutions discussed in the reading: sort and copy-
lessthan-then-copy-greaterthan

▪ Relative order does NOT need to stay the same
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❖ Describe your implementation in a sentence or two

❖ Constraints:

▪ Your algorithm must complete in O(N log N) time, but ideally Θ(N)

▪ Your algorithm must use O(N) space, but ideally Θ(1)

▪ You may use any data structure (eg, BSTs, stacks/deques/queues, etc)

• Please don’t copy the two solutions discussed in the reading: sort and copy-
lessthan-then-copy-greaterthan

▪ Relative order does NOT need to stay the same
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6 8 3 1 2 7 4

Input:

3 1 2 4 6 8 7

Valid outputs:

3 4 2 1 6 7 8
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Partitioning Implementations

❖ Sort the elements (described in the reading)

▪ Note: this implies that partitioning reduces to sorting

❖ Three-pass: copy “less than”s, then copy pivots, finally copy 
“greater-than”s

▪ Described in reading

▪ Demo: 
https://docs.google.com/presentation/d/16pOLboxhtJlaDxF7iRT5Xclt
DKmwab_wbvjZ4wPmJYk/edit
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https://docs.google.com/presentation/d/16pOLboxhtJlaDxF7iRT5XcltDKmwab_wbvjZ4wPmJYk/edit
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Context for QuickSort’s Invention

❖ In 1960, exchange student (!!) Tony Hoare worked on a 
translation program between Russian and English

❖ O(N log D) if we binary search the dictionary: not bad! 

❖ … alas, the dictionary was stored on magnetic tape.  Seeks 
require very slow physical movement of a tape head
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“The cat wore a beautiful hat.”

Dictionary of D english words

Sentence of N words

“Кошка носил  
красивая шапка.”
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Constants Matter (Sometimes)
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❖ Iterating through an in-memory array != iterating through a 
magnetic tape
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Context for QuickSort’s Invention

❖ O(N log D) if we binary search the dictionary: not bad! 

▪ … alas, the dictionary was stored on magnetic tape.  Seeks require 
very slow physical movement of a tape head.  Moving the head N 
times was too slow

❖ Better solution: sort the sentence and scan the dictionary (ie, 
the tape) in a single pass

❖ Named the resultant algorithm “QuickSort”, although 
“PartitionSort” may be clearer
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QuickSort is Partitioning

❖ After partitioning on 5:

▪ 5 is in its “correct place” (ie, where it’d be if the array were sorted)

▪ Can now sort two halves separately (eg, through recursive use of 
partitioning)

3 2 1 4 5 7 8 65

2 1 3 4 5 6 7 85

5 3 2 1 8 4 67

3 2 1 4 7 8 65
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QuickSort is Partitioning

❖ For Naïve QuickSort:

▪ SelectPivot() selects the 0th element

▪ Partition() copies into a new array using three-pass method (see 
reading)

❖ Demo: https://docs.google.com/presentation/d/1QjAs-
zx1i0_XWlLqsKtexb-iueao9jNLkN-
gW9QxAD0/present?ueb=true&slide=id.g463de7561_042

QuickSort(a[]):

p = SelectPivot(a)

a1, a2 = Partition(a, p)

QuickSort(a1)

QuickSort(a2)

32 15 2 17 19 26 41 17 17

https://docs.google.com/presentation/d/1QjAs-zx1i0_XWlLqsKtexb-iueao9jNLkN-gW9QxAD0/present?ueb=true&slide=id.g463de7561_042
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Best Case: Pivot Always Lands in the Middle 

Only size 1 problems remain, so we’re done.
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Best Case: Runtime

Only size 1 problems remain, so we’re done

Total work at each level:

≈ N

≈N/2 + ≈N/2 = ≈N

≈N/4 * 4 = ≈N

h = Θ(log N)

So best-case runtime is 
Θ(N log N)
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Worst Case: Pivot Always Lands at Beginning

❖ Give an example of an array that 
would follow the pattern to the right.

▪ 1 2 3 4 5 6

❖ What is the runtime Θ(∙)?

▪ N2
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Randomized Case

❖ Suppose pivot always ends up at least 10% from either edge

❖ Work at each level: O(N) and Runtime is O(NH)

▪ H is approximately log 10/9 N = O(log N)

❖ Randomized Case: O(N log N)
▪ Even if you’re unlucky enough to have a pivot that never lands 

anywhere near the middle but is at least 10% from one edge, runtime 
is still O(N log N)

N

N/10 9N/10

N/100 9N/100 9N/100 81N/100



CSE373, Winter 2020L22: QuickSort

QuickSort Runtime, Empiracally

❖ For N items:

▪ Mean number of compares to complete Quicksort: ~2N ln N
▪ Standard deviation: 

❖ For more, see: 
http://www.informit.com/articles/article.aspx?p=2017754&seq
Num=7

Empirical histogram for quicksort compare counts (10,000 trials with N = 1000)

Lots of arrays take 12,000ish 
compares to sort with Quicksort

A very small number take 15,000ish 
compares to sort with Quicksort.

Chance of taking 1,000,000ish compares is effectively zero.

http://www.informit.com/articles/article.aspx?p=2017754&seqNum=7
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QuickSort Performance

❖ Theoretical analysis:

▪ Best case: Θ(N log N)
▪ Worst case: Θ(N2)
▪ Randomized case: Θ(N log N) expected

❖ Compare this to Mergesort

▪ Best case: Θ(N log N)
▪ Worst case: Θ(N log N)

❖ Why is QuickSort empirically faster than MergeSort in the best 
and randomized cases?

▪ No obvious reason why, just need to run experiments to show that 
constants are better
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Avoiding QuickSort’s Worst Case

❖ If pivot lands “somewhere good”, Quicksort is Θ(N log N)  🥂

❖ However, the very rare Θ(N2) cases do happen in practice   👎

▪ Bad ordering: Array already in (almost-)sorted order
▪ Bad elements: Array with all duplicates

❖ What can we do to avoid worst case behavior?

❖ Three philosophies:

1. Randomness: pick a random pivot; shuffle before sorting

2. Smarter Pivot Selection: calculate or approximate the median

3. Introspection: switch to safer sort if recursion goes too deep
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#1: Randomness

❖ Dealing with Bad Ordering:

▪ Strategy 1: Pick pivots randomly

▪ Strategy 2: Shuffle before you sort

❖ Dealing with Bad Elements (ie, duplicates):

▪😭
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#2a: Smarter Pivot Selection (Constant Time)

❖ Any algorithm for picking a pivot which requires constant time 
and determinism (ie, not random) has a corresponding family 
of dangerous inputs

▪ “A Killer Adversary for QuickSort”: 
https://www.cs.dartmouth.edu/~doug/mdmspe.pdf

❖ Dealing with Bad Elements (ie, duplicates):

▪😭
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#2b: Smarter Pivot Selection (Linear Time)

❖ Dealing With Bad Ordering:

▪ We can calculate the actual median in linear time!

▪ Worst-case is Θ(N log N), but constants make it slower than 
MergeSort 😭

▪ Note: we can adapt QuickSort into QuickSelect

• Selects the k-th element in Θ(N) time; we can use it to find the N/2 aka 
median element

❖ Dealing with Bad Elements (ie, duplicates):

▪😭
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#3: Introspection

❖ If recursion depth exceeds some threshold (eg, 10 log N), 
switch to MergeSort

▪ Reasonable, but not common in practice

❖ Dealing With Bad Ordering:

▪ ¯\_(ツ)_/¯

❖ Dealing with Bad Elements (ie, duplicates):

▪ ¯\_(ツ)_/¯
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Ultimately …

❖ As we saw with LLRB trees and B-trees, having a “100% 
guarantee” against worst-case input came with a cost

▪ Here, our “100% guarantee” changed QuickSort’s constants so that it 
became slower than MergeSort in the cases where it used to be 
faster: best-case and randomized-case

❖ Ultimately, most QuickSort implementations choose a few 
“reasonable protections” against pessimal input to maintain its 
performance against MergeSort in best-case and randomized-
case

▪ If you, the implementer, need a “100% guarantee” against worst-
case input you should choose MergeSort instead.  You should also 
recognize that you’re paying for that guarantee with a slower 
runtime in most other cases
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Decisions When Implementing QuickSort

❖ How to select pivot?

▪ Naïve QuickSort uses 0th element

▪ Dual-pivot QuickSort uses 1/3rd-

2/3rd

❖ How to partition?

▪ Naïve QuickSort uses a stable 
three-pass partition

▪ Dual-pivot QuickSort uses three-
way partition

32

QuickSort(a[]):

p = SelectPivot(a)

a1, a2 = Partition(a, p)

QuickSort(a1)

QuickSort(a2)
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Pivot Selection: Median-of-Three

❖ Median-of-Three approximates the true median in Θ(1) time

▪ Pick 3 items and take the median of the sample

❖ Options for picking 3:

▪ Randomly choose 3 indices

▪ Pick first, middle, last

▪ … ?

❖ “Good enough” for protecting
against bad ordering

▪ Intuitively: it’s not-that-hard to
one bad pivot, but it’s pretty-hard to pick three bad pivots 
simultaneously

33

if (a < b)

if (b < c) return b;

else if (a < c) return c;

else return a;

else

if (a < c) return a;

else if (b < c) return c;

else return b;
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Partitioning: Hoare Partitioning

❖ This is the original QuickSort partitioning algorithm

▪ Good constants: single-pass and in-place

▪ Yields an unstable sort

❖ Idea: initialize two pointers, L and R

▪ L loves small items < pivot

▪ R loves large items > pivot

▪ Walk towards eachother, swapping anything they don’t like

❖ Demo: 
https://docs.google.com/presentation/d/1DOnWS59PJOa-
LaBfttPRseIpwLGefZkn450TMSSUiQY/pub?start=false&loop=fal
se&delayms=3000&slide=id.g463de7561_042
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https://docs.google.com/presentation/d/1DOnWS59PJOa-LaBfttPRseIpwLGefZkn450TMSSUiQY/pub?start=false&loop=false&delayms=3000&slide=id.g463de7561_042


CSE373, Winter 2020L22: QuickSort

Partitioning: Three-Way Partition

❖ Pick two pivots

▪ Same intuition as median-of-three: it’s hard to pick two bad pivots 
simultaneously

❖ Like Hoare Partitioning, use two pointers walking to the middle

▪ But split array into three pieces, not two

▪ Good constants: single-pass and in-place; log3N vs log2N

▪ Still results in an unstable sort
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Case Study: Dual-Pivot QuickSort

❖ In 2009, Dual-Pivot QuickSort was introduced to the world by a 
previously-unknown guy in a Java developers’ forum

▪ Link: 
https://web.archive.org/web/20100428064017/http:/permalink.gma
ne.org/gmane.comp.java.openjdk.core-libs.devel/2628

❖ It is now the de-facto QuickSort implementation for many 
languages, including Java’s Arrays.sort(), Python’s unstable 
sort, etc

36

https://web.archive.org/web/20100428064017/http:/permalink.gmane.org/gmane.comp.java.openjdk.core-libs.devel/2628
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Case Study: Dual-Pivot QuickSort

❖ Dual-Pivot QuickSort combines several ideas:

▪ InsertionSort when array length < 48 elements

• Provides some protection against bad ordering and bad elements

▪ Three-way partition

• Good constants: single-pass and in-place; log3N vs log2N

• Dual “middle pivots” provides some protection against bad ordering

– 1/3rd and 2/3rd elements instead of “the end elements” (first and last)
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tl;dr

❖ Constants matter in the real world, even if they don’t matter 
asymptotically!

Best-Case 
Time

Worst-Case 
Time

Space Stable? Notes

SelectionSort Θ(N2) Θ(N2) Θ(1) No

In-Place 
HeapSort

Θ(N) Θ(N log N) Θ(1) No Slow in practice

MergeSort Θ(N log N) Θ(N log N) Θ(N) Yes Fastest stable sort

In-Place 
InsertionSort

Θ(N) Θ(N2) Θ(1) Yes
Best for small or 
partially-sorted 

input

Naïve 
QuickSort

Θ(N log N) Θ(N2) Θ(N) Yes
>=2x slower than 

MergeSort

Dual-Pivot 
QuickSort

Ω(N) O(N2) Θ(1) No
Fastest 

comparison sort


