
CSE373, Winter 2020L21: Comparison Sorts

Comparison Sorts
CSE 373 Winter 2020

Instructor: Hannah C. Tang

Teaching Assistants:

Aaron Johnston Ethan Knutson Nathan Lipiarski

Amanda Park Farrell Fileas Sam Long

Anish Velagapudi Howard Xiao Yifan Bai

Brian Chan Jade Watkins Yuma Tou

Elena Spasova Lea Quan

CSE373, Winter 2020L21: Comparison Sorts

Announcements

❖ HW8 (Seam Carving) has been released!

▪ 🚨 NOTE 🚨: We are NOT offering late days for this homework. If you think
you’ll need extra time, pretend it’s due on Tuesday instead of Friday

3

CSE373, Winter 2020L21: Comparison Sorts

Lecture Outline

❖ Intro to Sorting

❖ SelectionSort and Naïve HeapSort

❖ In-place HeapSort

❖ MergeSort

❖ InsertionSort

4

CSE373, Winter 2020L21: Comparison Sorts

Our Major Focus for Several Lectures: Sorting

❖ For the next 3 lectures we’ll discuss the sorting problem

▪ Informally: Given items, put them in order

❖ Sorting is a useful task in its own right! Examples:

▪ Equivalent items are adjacent, allowing rapid duplicate finding

▪ Items are in increasing order, allowing binary search

▪ Can be converted into balanced data structures (e.g. BSTs, k-d Trees)

❖ But it’s also an interesting case study for how to approach
computational problems

▪ We’ll use data structures and algorithms we’ve already studied

CSE373, Winter 2020L21: Comparison Sorts

Not Everything Can Be Sorted

❖ Our course prerequisite chart:

❖ Possible ordering:

6

Math 126

CSE 142

CSE 143

CSE 373

CSE 374

CSE 417

Math 126 CSE 142 CSE 143 CSE 373 CSE 417 CSE 374

CSE373, Winter 2020L21: Comparison Sorts

Sorting Definitions: Knuth’s TAOCP

❖ An ordering relation < for keys a, b, and c has the following
properties:

▪ Law of Trichotomy: Exactly one of a < b, a = b, b < a is true

▪ Law of Transitivity: If a < b, and b < c, then a < c

❖ An ordering relation with these properties is also known as a
total order

❖ A sort is a permutation (re-arrangement) of a sequence of
elements that puts the keys into non-decreasing order, relative
to the ordering relation

▪ x1 ≤ x2 ≤ x3≤ ...≤ xN

https://www.amazon.com/Art-Computer-Programming-Sorting-Searching/dp/0201896850

CSE373, Winter 2020L21: Comparison Sorts

Sorting Definition: An Alternate Viewpoint

❖ An inversion is a pair of elements that are out of
order with respect to <

❖ Another way to state the goal of sorting:

▪ Given a sequence of elements with Z inversions, perform a sequence
of operations that reduces inversions to 0

❖ Max number of inversions is N*(N -1)/2

▪ A “partially sorted” array has O(N) inversions

0 1 1 2 3 4 8 6 9 5 7

8-6, 8-5, 8-7, 6-5, 9-5, 9-7
(6 inversions out of 55 max)

Gabriel Cramer

CSE373, Winter 2020L21: Comparison Sorts

Sorting: Performance Definitions

❖ Runtime performance is sometimes called the time complexity

▪ Example: Dijkstra’s has time complexity O(E log V).

❖ Extra memory usage is sometimes called the space complexity

▪ Dijkstra’s has space complexity Θ(V)

▪ The input graph takes up space Θ(V+E), but we don’t count this as
part of the space complexity since the graph itself already exists and
is an input to Dijkstra’s

CSE373, Winter 2020L21: Comparison Sorts

Sorting: Stability

❖ A sort is stable if the relative order of equivalent keys is
maintained after sorting

▪ Examples:

• Email is originally sorted by date, but you re-sort by sender

• T-shirts originally sorted by size, but you re-sort by color

▪ Stability and Equivalency only matter for complex types

10

Anita
2010

Basia
2018

Anita
2016

Duska
2020

Esteban
2014

Duska
2015

Caris
2019

Anita
2010

Anita
2016

Basia
2018

Caris
2019

Duska
2020

Duska
2015

Esteban
2014

Anita Basia Anita Duska Esteban Duska Caris

Anita Anita Basia Caris Duska Duska Esteban

CSE373, Winter 2020L21: Comparison Sorts

Lecture Outline

❖ Intro to Sorting

❖ SelectionSort and Naïve HeapSort

❖ In-place HeapSort

❖ MergeSort

❖ InsertionSort

11

CSE373, Winter 2020L21: Comparison Sorts

Selection Sort Review

❖ We’ve seen this already

▪ Find smallest item in the unsorted region

▪ Swap this item to the end of the sorted region

▪ Repeat until the unsorted region is empty / sorted region is full

▪ Demo: https://goo.gl/g14Cit

❖ Performance Characteristics:

▪ Time: Θ(N2)

▪ Space: Θ(1) (we can reuse the input array)

▪ Stable: No

❖ Inefficient! Finding the minimum element requires N work

If only we had an algorithm or data structure that found the minimum quickly …🤔

https://goo.gl/g14Cit

CSE373, Winter 2020L21: Comparison Sorts

Naïve HeapSort

❖ Instead of rescanning entire
array looking for minimum,
maintain a heap so that
getting the minimum is fast!

❖ Demo:
https://goo.gl/EZWwSJ

Naïve HeapSorting N items:

Insert all items into

a min heap

Discard input array

Create output array

Repeat N times:

Delete smallest item from

the min heap

Put that item at the end

of the sorted region

https://goo.gl/EZWwSJ

CSE373, Winter 2020L21: Comparison Sorts

pollev.com/uwcse373

❖ What is the time and space
complexity for naïve
HeapSort?

A. Θ(log N) / Θ(1)

B. Θ(N) / Θ(N)

C. Θ(N) / Θ(N2)

D. Θ(N log N) / Θ(N)

E. Θ(N log N) / Θ(N2)

F. Θ(N2) / Θ(N)

G. I’m not sure …

14

NaïveHeapSort:

Insert all items into

a min heap

Discard input array

Create output array

Repeat N times:

Delete smallest item from

the min heap

Put that item at the end

of the sorted region

CSE373, Winter 2020L21: Comparison Sorts

Lecture Outline

❖ Intro to Sorting

❖ SelectionSort and Naïve HeapSort

❖ In-place HeapSort

❖ MergeSort

❖ InsertionSort

15

CSE373, Winter 2020L21: Comparison Sorts

Remember Floyd!

❖ buildHeap:

▪ Start with full array
(representing a binary heap
with lots of violations)

▪ Call percolateDown() N/2
times

▪ Runtime: Θ(N)

❖ No need to copy input into a
heap; just modify the input

❖ (review lecture 11 if you still
have questions)

16
This “clever implementation” is called Floyd’s Algorithm

CSE373, Winter 2020L21: Comparison Sorts

In-Place HeapSort

❖ Instead of copying the input array into a heap, reuse and
modify the input array as a MAX Heap

▪ Note: max-heap instead of min-heap lets us reuse input array!

▪ When we removeMax(), the heap shrinks by one element; we
then reuse the emptied back of array to store our sorted items

❖ Demo:
https://docs.google.com/presentation/d/1SzcQC48OB9ag
StD0dFRgccU-tyjD6m3esrSC-
GLxmNc/present?ueb=true&slide=id.g12a2a1b52f_0_0

❖ Performance Characteristics:

▪ Time: ??

▪ Space: Θ(1) (we can reuse the input array)

▪ Stability: ??
17

https://docs.google.com/presentation/d/1SzcQC48OB9agStD0dFRgccU-tyjD6m3esrSC-GLxmNc/present?ueb=true&slide=id.g12a2a1b52f_0_0

CSE373, Winter 2020L21: Comparison Sorts

Lecture Outline

❖ Intro to Sorting

❖ SelectionSort and Naïve HeapSort

❖ In-place HeapSort

❖ MergeSort

❖ InsertionSort

18

CSE373, Winter 2020L21: Comparison Sorts

MergeSort Review

❖ We’ve seen this one before as well

▪ Split array in half

▪ MergeSort each half (steps not shown; this is a recursive algorithm!)

▪ Merge the two sorted halves to form the final result

❖ Demo: https://docs.google.com/presentation/d/1h-
gS13kKWSKd_5gt2FPXLYigFY4jf5rBkNFl3qZzRRw/present?ueb=t
rue&slide=id.g463de7561_042

https://docs.google.com/presentation/d/1h-gS13kKWSKd_5gt2FPXLYigFY4jf5rBkNFl3qZzRRw/present?ueb=true&slide=id.g463de7561_042

CSE373, Winter 2020L21: Comparison Sorts

MergeSort Characteristics

❖ Performance Characteristics:

▪ Time: Θ(N log N) (see lecture 6 for analysis)

▪ Space: Θ(N) (auxiliary array used for merges)

▪ Stable:

❖ Note: in-place MergeSort is possible. However, the algorithm is
very complicated and runtime performance suffers by a
significant constant factor

CSE373, Winter 2020L21: Comparison Sorts

Lecture Outline

❖ Intro to Sorting

❖ SelectionSort and Naïve HeapSort

❖ In-place HeapSort

❖ MergeSort

❖ InsertionSort

21

CSE373, Winter 2020L21: Comparison Sorts

Naïve InsertionSort

❖ General strategy:

▪ Start with an empty output sequence
▪ Add each item from input, inserting into output at correct position

❖ Demo: http://goo.gl/bVyVCS

❖ Performance Characteristics:

▪ Time: O(N2)

▪ Space: Θ(N)

▪ Stable: Yes!

Output:

32 15 2 17 19 26 41 17 17Input:

2 15 17 17 17 19 26 32 41

http://goo.gl/bVyVCS

CSE373, Winter 2020L21: Comparison Sorts

In-Place InsertionSort

❖ General strategy for in-place variant:

▪ Similar to HeapSort: grow the “output region” as the “input region”
shrinks

▪ Instead of shift-then-copy into the output array, shift into the output
region using pairwise swaps

❖ Demo:
https://docs.google.com/presentation/d/10b9aRqpGJu8pUk8O
pfqUIEEm8ou-
zmmC7b_BE5wgNg0/present?ueb=true&slide=id.g463de7561_
042

❖ Performance Characteristics:

▪ Stable: Yes!

https://docs.google.com/presentation/d/10b9aRqpGJu8pUk8OpfqUIEEm8ou-zmmC7b_BE5wgNg0/present?ueb=true&slide=id.g463de7561_042

CSE373, Winter 2020L21: Comparison Sorts

In-Place InsertionSort: Runtime

❖ How many swaps did we do for:

❖ Versus:

❖ Or even:

32 15 2 17 19 26 41 17 17

41 32 26 19 17 17 17 15 2

0 1 1 2 3 4 8 6 9 5 7

CSE373, Winter 2020L21: Comparison Sorts

pollev.com/uwcse373

❖ What is the runtime of In-Place InsertionSort?

A. Ω(1) / O(N)

B. Ω(N) / O(N)

C. Ω(1) / O(N2)

D. Ω(N) / O(N2)

E. Ω(N2) / O(N2)

F. I’m not sure …

25

CSE373, Winter 2020L21: Comparison Sorts

In-Place InsertionSort: Runtime

❖ InsertionSort’s lower bound is linear!

▪ InsertionSort does one swap per inversion

▪ Its runtime is Θ(N + K), where K is the number of inversions

▪ When the number of inversions is small – say, O(N) – InsertionSort
has the fastest asymptotic runtime

❖ InsertionSort also has the fastest empirical runtime for small
arrays (~N < 15)
▪ Theoretical analysis beyond scope of the course, but rough idea is

that divide-and-conquer algorithms like HeapSort and MergeSort
spend too much time dividing

▪ The Java implementation of Mergesort does this!

CSE373, Winter 2020L21: Comparison Sorts

tl;dr (1 of 2)

❖ Techniques/ideas we’ve seen today:

▪ HeapSort:

• Use a data structure to help us pick the smallest element

• Reuse the input array to minimize space complexity

▪ MergeSort:

• Process our input sequentially to maintain stability

• (Non-sequential swaps are sometimes known as “long-distance jumps”)

▪ InsertionSort:

• Reuse the input array to minimize space complexity

• Process our input sequentially to maintain stability

CSE373, Winter 2020L21: Comparison Sorts

tl;dr (2 of 2)

Best-Case
Time

Worst-Case
Time

Space Stable? Notes

SelectionSort Θ(N2) Θ(N2) Θ(1) No

In-Place
HeapSort

Θ(N) Θ(N log N) Θ(1) No Slow in practice

MergeSort Θ(N log N) Θ(N log N) Θ(N) Yes Fastest stable sort

In-Place
InsertionSort

Θ(N) Θ(N2) Θ(1) Yes
Best for small or
partially-sorted

input

