Comparison Sorts
CSE 373 Winter 2020

Instructor: Hannah C. Tang

Teaching Assistants:
Aaron Johnston Ethan Knutson Nathan Lipiarski
Amanda Park Farrell Fileas Sam Long
Anish Velagapudi Howard Xiao Yifan Bai
Brian Chan Jade Watkins Yuma Tou
Elena Spasova Lea Quan
Announcements

- HW8 (Seam Carving) has been released!
 - 🚨 NOTE 🚨: We are NOT offering late days for this homework. If you think you’ll need extra time, pretend it’s due on Tuesday instead of Friday
Lecture Outline

❖ Intro to Sorting

❖ SelectionSort and Naïve HeapSort

❖ In-place HeapSort

❖ MergeSort

❖ InsertionSort
Our Major Focus for Several Lectures: Sorting

❖ For the next 3 lectures we’ll discuss the sorting problem
 ▪ Informally: Given items, put them in order

❖ Sorting is a useful task in its own right! Examples:
 ▪ Equivalent items are adjacent, allowing rapid duplicate finding
 ▪ Items are in increasing order, allowing binary search
 ▪ Can be converted into balanced data structures (e.g. BSTs, k-d Trees)

❖ But it’s also an interesting case study for how to approach computational problems
 ▪ We’ll use data structures and algorithms we’ve already studied
Not Everything Can Be Sorted

❖ Our course prerequisite chart:

Math 126 → CSE 142 → CSE 143 → CSE 373 → CSE 374

❖ Possible ordering:

Math 126 → CSE 142 → CSE 143 → CSE 373 → CSE 417 → CSE 374
Sorting Definitions: Knuth’s TAOCP

- An ordering relation < for keys a, b, and c has the following properties:
 - Law of Trichotomy: Exactly one of a < b, a = b, b < a is true
 - Law of Transitivity: If a < b, and b < c, then a < c

- An ordering relation with these properties is also known as a total order

- A sort is a permutation (re-arrangement) of a sequence of elements that puts the keys into non-decreasing order, relative to the ordering relation
 - $x_1 \leq x_2 \leq x_3 \leq \ldots \leq x_N$
Sorting Definition: An Alternate Viewpoint

- An **inversion** is a pair of elements that are out of order with respect to `<

\[
0 \ 1 \ 1 \ 2 \ 3 \ 4 \ 8 \ 6 \ 9 \ 5 \ 7
\]

8-6, 8-5, 8-7, 6-5, 9-5, 9-7

(6 inversions out of 55 max)

- Another way to state the goal of sorting:
 - Given a sequence of elements with \(Z \) inversions, perform a sequence of operations that reduces inversions to 0

- Max number of inversions is \(N \times (N -1)/2 \)
 - A “partially sorted” array has \(O(N) \) inversions
Sorting: Performance Definitions

- Runtime performance is sometimes called the **time complexity**
 - Example: Dijkstra’s has time complexity $O(E \log V)$.

- *Extra* memory usage is sometimes called the **space complexity**
 - Dijkstra’s has space complexity $\Theta(V)$
 - The input graph takes up space $\Theta(V+E)$, but we don’t count this as part of the space complexity since the graph itself already exists and is an input to Dijkstra’s
Sorting: Stability

❖ A sort is **stable** if the relative order of *equivalent* keys is maintained after sorting

- **Examples:**
 - Email is originally sorted by date, but you re-sort by sender
 - T-shirts originally sorted by size, but you re-sort by color

<table>
<thead>
<tr>
<th>Anita</th>
<th>Basia</th>
<th>Anita</th>
<th>Duska</th>
<th>Esteban</th>
<th>Duska</th>
<th>Caris</th>
</tr>
</thead>
</table>

- Stability and Equivalency only matter for complex types

<table>
<thead>
<tr>
<th>Anita</th>
<th>Basia</th>
<th>Anita</th>
<th>Duska</th>
<th>Esteban</th>
<th>Duska</th>
<th>Caris</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anita</th>
<th>Basia</th>
<th>Anita</th>
<th>Duska</th>
<th>Esteban</th>
<th>Duska</th>
<th>Caris</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anita</th>
<th>Basia</th>
<th>Anita</th>
<th>Duska</th>
<th>Esteban</th>
<th>Duska</th>
<th>Caris</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anita</th>
<th>Basia</th>
<th>Anita</th>
<th>Caris</th>
<th>Duska</th>
<th>Duska</th>
<th>Esteban</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anita</th>
<th>Anita</th>
<th>Basia</th>
<th>Caris</th>
<th>Duska</th>
<th>Duska</th>
<th>Esteban</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Lecture Outline

❖ Intro to Sorting

❖ **SelectionSort and Naïve HeapSort**

❖ In-place HeapSort

❖ MergeSort

❖ InsertionSort
Selection Sort Review

❖ We’ve seen this already
 ▪ Find smallest item in the unsorted region
 ▪ Swap this item to the end of the sorted region
 ▪ Repeat until the unsorted region is empty / sorted region is full
 ▪ Demo: https://goo.gl/g14Cit

❖ Performance Characteristics:
 ▪ Time: Θ(N²)
 ▪ Space: Θ(1) (we can reuse the input array)
 ▪ Stable: No

❖ Inefficient! Finding the minimum element requires N work

If only we had an algorithm or data structure that found the minimum quickly ... 😞
Naïve HeapSort

- Instead of rescanning entire array looking for minimum, maintain a heap so that getting the minimum is fast!

- Demo:
 https://goo.gl/EZWwSJ

Naïve HeapSorting N items:
- Insert all items into a min heap
- Discard input array
- Create output array

Repeat N times:
- Delete smallest item from the min heap
- Put that item at the end of the sorted region
What is the time and space complexity for naïve HeapSort?

A. \(\Theta(\log N) / \Theta(1) \)
B. \(\Theta(N) / \Theta(N) \)
C. \(\Theta(N) / \Theta(N^2) \)
D. \(\Theta(N \log N) / \Theta(N) \)
E. \(\Theta(N \log N) / \Theta(N^2) \)
F. \(\Theta(N^2) / \Theta(N) \)
G. I’m not sure ...

NaïveHeapSort:

- Insert all items into a min heap
- Discard input array
- Create output array
- Repeat \(N \) times:
 - Delete smallest item from the min heap
 - Put that item at the end of the sorted region
Lecture Outline

❖ Intro to Sorting

❖ SelectionSort and Naïve HeapSort

❖ In-place HeapSort

❖ MergeSort

❖ InsertionSort
Remember Floyd!

- **buildHeap:**
 - Start with full array (representing a binary heap with lots of violations)
 - Call `percolateDown()` \(\frac{N}{2} \) times
 - Runtime: \(\Theta(N) \)

- No need to copy input into a heap; just modify the input

- (review lecture 11 if you still have questions)

This “clever implementation” is called Floyd’s Algorithm
In-Place HeapSort

- Instead of copying the input array into a heap, reuse and modify the input array as a **MAX** Heap
 - Note: max-heap instead of min-heap lets us reuse input array!
 - When we removeMax(), the heap shrinks by one element; we then reuse the emptied back of array to store our sorted items

- Demo:
 https://docs.google.com/presentation/d/1SzcQC48OB9agStD0dFRgccU-tyjD6m3esrSC-GLxmNc/present?ueb=true&slide=id.g12a2a1b52f_0_0

- Performance Characteristics:
 - Time: ?? \(N + N \log N \) (naïve heapsort \(N \log N + N \log N \))
 - Space: \(\Theta(1) \) (we can reuse the input array)
 - Stability: ?? No \(1,2a,2b \rightarrow 1,2b,2a \)
Lecture Outline

- Intro to Sorting
- SelectionSort and Naïve HeapSort
- In-place HeapSort
- MergeSort
- InsertionSort
MergeSort Review

- We’ve seen this one before as well
 - Split array in half
 - MergeSort each half (steps not shown; this is a recursive algorithm!)
 - Merge the two sorted halves to form the final result

- Demo: https://docs.google.com/presentation/d/1hgS13kKWSKd_5gt2FPXLYigFY4jf5rBkNFL3qZzRRw/present?ueb=true&slide=id.g463de7561_042
MergeSort Characteristics

- Performance Characteristics:
 - Time: $\Theta(N \log N)$ (see lecture 6 for analysis)
 - Space: $\Theta(N)$ (auxiliary array used for merges)
 - Stable: Yes!

- Note: in-place MergeSort is possible. However, the algorithm is very complicated and runtime performance suffers by a significant constant factor
Lecture Outline

- Intro to Sorting
- SelectionSort and Naïve HeapSort
- In-place HeapSort
- MergeSort
- InsertionSort
Naïve InsertionSort

❖ General strategy:
 ▪ Start with an empty output sequence
 ▪ Add each item from input, inserting into output at correct position

❖ Demo: http://goo.gl/bVyVCS

<table>
<thead>
<tr>
<th>Input:</th>
<th>32</th>
<th>15</th>
<th>2</th>
<th>17</th>
<th>19</th>
<th>26</th>
<th>41</th>
<th>17</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output:</td>
<td>2</td>
<td>15</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>19</td>
<td>26</td>
<td>32</td>
<td>41</td>
</tr>
</tbody>
</table>

❖ Performance Characteristics:
 ▪ Time: $O(N^2)$
 ▪ Space: $\Theta(N)$
 ▪ Stable: Yes!
In-Place InsertionSort

❖ General strategy for in-place variant:
 ▪ Similar to HeapSort: grow the “output region” as the “input region” shrinks
 ▪ Instead of shift-then-copy into the output array, shift into the output region using pairwise swaps

❖ Demo:
https://docs.google.com/presentation/d/10b9aRqpGJu8pUk8OpfqUIEEm8ou-zmmC7b_BE5wgNg0/present?ueba=true&slide=id.g463de7561_042

❖ Performance Characteristics:
 ▪ Stable: Yes!
In-Place InsertionSort: Runtime

❖ How many swaps did we do for:

| 32 | 15 | 2 | 17 | 19 | 26 | 41 | 17 | 17 |

❖ Versus:

| 41 | 32 | 26 | 19 | 17 | 17 | 17 | 15 | 2 |

❖ Or even: *(partially sorted: O(N) inversions)*

| 0 | 1 | 1 | 2 | 3 | 4 | 8 | 6 | 9 | 5 | 7 |
What is the runtime of In-Place InsertionSort?

A. \(\Omega(1) / O(N) \)
B. \(\Omega(N) / O(N) \)
C. \(\Omega(1) / O(N^2) \)
D. \(\Omega(N) / O(N^2) \)
E. \(\Omega(N^2) / O(N^2) \)
F. I’m not sure ...
In-Place InsertionSort: Runtime

- InsertionSort’s lower bound is linear!
 - InsertionSort does one swap per inversion
 - Its runtime is $\Theta(N + K)$, where K is the number of inversions
 - When the number of inversions is small – say, $O(N)$ – InsertionSort has the fastest asymptotic runtime

- InsertionSort also has the fastest empirical runtime for small arrays ($\sim N < 15$)
 - Theoretical analysis beyond scope of the course, but rough idea is that divide-and-conquer algorithms like HeapSort and MergeSort spend too much time dividing
 - The Java implementation of Mergesort does this!
tl;dr (1 of 2)

- Techniques/ideas we’ve seen today:
 - **HeapSort:**
 - Use a data structure to help us pick the smallest element
 - Reuse the input array to minimize space complexity
 - **MergeSort:**
 - Process our input sequentially to maintain stability
 - (Non-sequential swaps are sometimes known as “long-distance jumps”)
 - **InsertionSort:**
 - Reuse the input array to minimize space complexity
 - Process our input sequentially to maintain stability
tl;dr (2 of 2)

<table>
<thead>
<tr>
<th></th>
<th>Best-Case Time</th>
<th>Worst-Case Time</th>
<th>Space</th>
<th>Stable?</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>SelectionSort</td>
<td>Θ(N²)</td>
<td>Θ(N²)</td>
<td>Θ(1)</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>In-Place HeapSort</td>
<td>Θ(N)</td>
<td>Θ(N log N)</td>
<td>Θ(1)</td>
<td>No</td>
<td>Slow in practice</td>
</tr>
<tr>
<td>MergeSort</td>
<td>Θ(N log N)</td>
<td>Θ(N log N)</td>
<td>Θ(N)</td>
<td>Yes</td>
<td>Fastest stable sort</td>
</tr>
<tr>
<td>In-Place InsertionSort</td>
<td>Θ(N)</td>
<td>Θ(N²)</td>
<td>Θ(1)</td>
<td>Yes</td>
<td>Best for small or partially-sorted input</td>
</tr>
</tbody>
</table>