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Announcements

❖ HW8 (Seam Carving) has been released!

▪ 🚨 NOTE 🚨: We are NOT offering late days for this homework.  If you think 
you’ll need extra time, pretend it’s due on Tuesday instead of Friday
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Lecture Outline

❖ Intro to Sorting

❖ SelectionSort and Naïve HeapSort

❖ In-place HeapSort

❖ MergeSort

❖ InsertionSort

4



CSE373, Winter 2020L21: Comparison Sorts

Our Major Focus for Several Lectures: Sorting

❖ For the next 3 lectures we’ll discuss the sorting problem

▪ Informally: Given items, put them in order

❖ Sorting is a useful task in its own right!  Examples:

▪ Equivalent items are adjacent, allowing rapid duplicate finding

▪ Items are in increasing order, allowing binary search

▪ Can be converted into balanced data structures (e.g. BSTs, k-d Trees)

❖ But it’s also an interesting case study for how to approach 
computational problems

▪ We’ll use data structures and algorithms we’ve already studied
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Not Everything Can Be Sorted

❖ Our course prerequisite chart:

❖ Possible ordering:
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Math 126

CSE 142

CSE 143

CSE 373

CSE 374

CSE 417

Math 126 CSE 142 CSE 143 CSE 373 CSE 417 CSE 374
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Sorting Definitions: Knuth’s TAOCP

❖ An ordering relation < for keys a, b, and c has the following 
properties:

▪ Law of Trichotomy: Exactly one of a < b, a = b, b < a is true

▪ Law of Transitivity: If a < b, and b < c, then a < c

❖ An ordering relation with these properties is also known as a 
total order

❖ A sort is a permutation (re-arrangement) of a sequence of 
elements that puts the keys into non-decreasing order, relative 
to the ordering relation

▪ x1 ≤ x2 ≤ x3≤ ...≤ xN

https://www.amazon.com/Art-Computer-Programming-Sorting-Searching/dp/0201896850
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Sorting Definition: An Alternate Viewpoint

❖ An inversion is a pair of elements that are out of
order with respect to <

❖ Another way to state the goal of sorting:

▪ Given a sequence of elements with Z inversions, perform a sequence 
of operations that reduces inversions to 0

❖ Max number of inversions is N*(N -1)/2

▪ A “partially sorted” array has O(N) inversions

0  1  1  2  3  4  8  6  9  5  7

8-6, 8-5, 8-7, 6-5, 9-5, 9-7
(6 inversions out of 55 max)

Gabriel Cramer
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Sorting: Performance Definitions

❖ Runtime performance is sometimes called the time complexity

▪ Example: Dijkstra’s has time complexity O(E log V).

❖ Extra memory usage is sometimes called the space complexity

▪ Dijkstra’s has space complexity Θ(V)

▪ The input graph takes up space Θ(V+E), but we don’t count this as 
part of the space complexity since the graph itself already exists and 
is an input to Dijkstra’s
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Sorting: Stability

❖ A sort is stable if the relative order of equivalent keys is 
maintained after sorting

▪ Examples:

• Email is originally sorted by date, but you re-sort by sender

• T-shirts originally sorted by size, but you re-sort by color

▪ Stability and Equivalency only matter for complex types
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Lecture Outline

❖ Intro to Sorting

❖ SelectionSort and Naïve HeapSort

❖ In-place HeapSort

❖ MergeSort

❖ InsertionSort
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Selection Sort Review

❖ We’ve seen this already

▪ Find smallest item in the unsorted region

▪ Swap this item to the end of the sorted region

▪ Repeat until the unsorted region is empty / sorted region is full

▪ Demo: https://goo.gl/g14Cit

❖ Performance Characteristics:

▪ Time: Θ(N2) 

▪ Space: Θ(1) (we can reuse the input array)

▪ Stable: No

❖ Inefficient!  Finding the minimum element requires N work

If only we had an algorithm or data structure that found the minimum quickly …🤔

https://goo.gl/g14Cit
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Naïve HeapSort

❖ Instead of rescanning entire 
array looking for minimum, 
maintain a heap so that 
getting the minimum is fast!

❖ Demo: 
https://goo.gl/EZWwSJ

Naïve HeapSorting N items:

Insert all items into

a min heap

Discard input array

Create output array

Repeat N times:

Delete smallest item from 

the min heap

Put that item at the end

of the sorted region

https://goo.gl/EZWwSJ
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pollev.com/uwcse373

❖ What is the time and space 
complexity for naïve 
HeapSort?

A. Θ(log N) / Θ(1)

B. Θ(N) / Θ(N)

C. Θ(N) / Θ(N2)

D. Θ(N log N) / Θ(N)

E. Θ(N log N) / Θ(N2)

F. Θ(N2) / Θ(N)

G. I’m not sure …
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NaïveHeapSort:

Insert all items into

a min heap

Discard input array

Create output array

Repeat N times:

Delete smallest item from 

the min heap

Put that item at the end

of the sorted region
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Lecture Outline

❖ Intro to Sorting

❖ SelectionSort and Naïve HeapSort

❖ In-place HeapSort

❖ MergeSort

❖ InsertionSort
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Remember Floyd!

❖ buildHeap:

▪ Start with full array 
(representing a binary heap 
with lots of violations)

▪ Call percolateDown() N/2 
times

▪ Runtime: Θ(N)

❖ No need to copy input into a 
heap; just modify the input

❖ (review lecture 11 if you still 
have questions)
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This “clever implementation” is called Floyd’s Algorithm
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In-Place HeapSort

❖ Instead of copying the input array into a heap, reuse and 
modify the input array as a MAX Heap

▪ Note: max-heap instead of min-heap lets us reuse input array!

▪ When we removeMax(), the heap shrinks by one element; we  
then reuse the emptied back of array to store our sorted items

❖ Demo: 
https://docs.google.com/presentation/d/1SzcQC48OB9ag
StD0dFRgccU-tyjD6m3esrSC-
GLxmNc/present?ueb=true&slide=id.g12a2a1b52f_0_0

❖ Performance Characteristics:

▪ Time: ??

▪ Space: Θ(1) (we can reuse the input array)

▪ Stability: ??
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https://docs.google.com/presentation/d/1SzcQC48OB9agStD0dFRgccU-tyjD6m3esrSC-GLxmNc/present?ueb=true&slide=id.g12a2a1b52f_0_0
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Lecture Outline

❖ Intro to Sorting

❖ SelectionSort and Naïve HeapSort

❖ In-place HeapSort

❖ MergeSort

❖ InsertionSort
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MergeSort Review

❖ We’ve seen this one before as well

▪ Split array in half

▪ MergeSort each half (steps not shown; this is a recursive algorithm!)

▪ Merge the two sorted halves to form the final result

❖ Demo: https://docs.google.com/presentation/d/1h-
gS13kKWSKd_5gt2FPXLYigFY4jf5rBkNFl3qZzRRw/present?ueb=t
rue&slide=id.g463de7561_042

https://docs.google.com/presentation/d/1h-gS13kKWSKd_5gt2FPXLYigFY4jf5rBkNFl3qZzRRw/present?ueb=true&slide=id.g463de7561_042
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MergeSort Characteristics

❖ Performance Characteristics:

▪ Time: Θ(N log N)  (see lecture 6 for analysis)

▪ Space: Θ(N) (auxiliary array used for merges)

▪ Stable:

❖ Note: in-place MergeSort is possible.  However, the algorithm is 
very complicated and runtime performance suffers by a 
significant constant factor
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Lecture Outline

❖ Intro to Sorting

❖ SelectionSort and Naïve HeapSort

❖ In-place HeapSort

❖ MergeSort

❖ InsertionSort
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Naïve InsertionSort

❖ General strategy: 

▪ Start with an empty output sequence
▪ Add each item from input, inserting into output at correct position

❖ Demo: http://goo.gl/bVyVCS

❖ Performance Characteristics:

▪ Time: O(N2)

▪ Space: Θ(N)

▪ Stable: Yes!

Output:

32 15 2 17 19 26 41 17 17Input:

2 15 17 17 17 19 26 32 41

http://goo.gl/bVyVCS
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In-Place InsertionSort

❖ General strategy for in-place variant: 

▪ Similar to HeapSort: grow the “output region” as the “input region” 
shrinks

▪ Instead of shift-then-copy into the output array, shift into the output 
region using pairwise swaps

❖ Demo: 
https://docs.google.com/presentation/d/10b9aRqpGJu8pUk8O
pfqUIEEm8ou-
zmmC7b_BE5wgNg0/present?ueb=true&slide=id.g463de7561_
042

❖ Performance Characteristics:

▪ Stable: Yes!

https://docs.google.com/presentation/d/10b9aRqpGJu8pUk8OpfqUIEEm8ou-zmmC7b_BE5wgNg0/present?ueb=true&slide=id.g463de7561_042
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In-Place InsertionSort: Runtime

❖ How many swaps did we do for:

❖ Versus:

❖ Or even:

32 15 2 17 19 26 41 17 17

41 32 26 19 17 17 17 15 2

0 1 1 2 3 4 8 6 9 5 7
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pollev.com/uwcse373

❖ What is the runtime of In-Place InsertionSort?

A. Ω(1) / O(N)

B. Ω(N) / O(N)

C. Ω(1) / O(N2)

D. Ω(N) / O(N2)

E. Ω(N2) / O(N2)

F. I’m not sure …
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In-Place InsertionSort: Runtime

❖ InsertionSort’s lower bound is linear!

▪ InsertionSort does one swap per inversion

▪ Its runtime is Θ(N + K), where K is the number of inversions

▪ When the number of inversions is small – say, O(N) – InsertionSort
has the fastest asymptotic runtime

❖ InsertionSort also has the fastest empirical runtime for small 
arrays (~N < 15)
▪ Theoretical analysis beyond scope of the course, but rough idea is 

that divide-and-conquer algorithms like HeapSort and MergeSort 
spend too much time dividing

▪ The Java implementation of Mergesort does this!
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tl;dr (1 of 2)

❖ Techniques/ideas we’ve seen today:

▪ HeapSort:

• Use a data structure to help us pick the smallest element

• Reuse the input array to minimize space complexity

▪ MergeSort:

• Process our input sequentially to maintain stability

• (Non-sequential swaps are sometimes known as “long-distance jumps”)

▪ InsertionSort:

• Reuse the input array to minimize space complexity

• Process our input sequentially to maintain stability
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tl;dr (2 of 2)

Best-Case 
Time

Worst-Case 
Time

Space Stable? Notes

SelectionSort Θ(N2) Θ(N2) Θ(1) No

In-Place 
HeapSort

Θ(N) Θ(N log N) Θ(1) No Slow in practice

MergeSort Θ(N log N) Θ(N log N) Θ(N) Yes Fastest stable sort

In-Place 
InsertionSort

Θ(N) Θ(N2) Θ(1) Yes
Best for small or 
partially-sorted 

input


