
CSE373, Winter 2020L19: Tries

Tries
CSE 373 Winter 2020

Guest Instructor: Aaron Johnston!

Teaching Assistants:

Aaron Johnston Ethan Knutson Nathan Lipiarski

Amanda Park Farrell Fileas Sam Long

Anish Velagapudi Howard Xiao Yifan Bai

Brian Chan Jade Watkins Yuma Tou

Elena Spasova Lea Quan

CSE373, Winter 2020L19: Tries

Announcements

❖ HW7 is out

▪ Due this Friday, February 28

▪ Lots of code to look through! Start early

❖ Midterm Regrades are open

▪ Please consult the posted sample solution before submitting a
regrade request

3

CSE373, Winter 2020L19: Tries

Feedback from the Reading Quiz

❖ Why is contains O(NL) for a hash table?

▪ Consider the worst case, where all strings collide in a single bucket.
That means scanning through N strings.

▪ It takes time to compare strings – we have to go character by
character!

▪ For each string, there may be L characters to examine.

❖ How does DataIndexedCharMap relate to a trie?

▪ We need a mapping from a character to the corresponding child in
each node of the trie

❖ How to pronounce trie?

4

CSE373, Winter 2020L19: Tries

Learning Objectives

❖ By the end of today’s lecture, you should be able to:

▪ Identify when a Trie can be used, and what useful properties

it provides

▪ Describe common Trie implementations and how they affect

the amount of space required

▪Write code for prefix algorithms to run over a Trie

5

CSE373, Winter 2020L19: Tries

Lecture Outline

❖ Tries

▪ When does a Trie make sense?

❖ Implementing a Trie

▪ How do we find the next child?

❖ Advanced Implementations: Dealing with Sparsity

▪ Hash Tables, BSTs, Ternary Search Tries

❖ Prefix Operations

▪ Finding keys with a given prefix

6

CSE373, Winter 2020L19: Tries

The Trie: A Specialized Data Structure

7

Tries are a character-by-character set-of-strings implementation.

a

md p

e

w

l

s

sad

same

sap

awls

a

0

1

2

3

sad

awls

a

same

sap

sam

sam

Binary Search Tree Hash Table Trie

sa

CSE373, Winter 2020L19: Tries

An Abstract Trie

8

This trie stores the set of strings:
s

a

md p

e

a

w

l

s

Each level of the tree represents an
index, and the children represent
possible characters at that index.

How to deal with a and awls?

• Mark which nodes complete strings
(shown in blue)

awls, a, sad,

same, sap, sam

CSE373, Winter 2020L19: Tries

Searching in Tries

9

contains(“sam”): true, blue. hit.

contains(“sa”): false, white. miss.

contains(“a”): true, blue. hit.

contains(“saq”): false, fell off. miss.

Two ways to have a search miss.

1. If the final node is not blue (not a key).

2. If we fall off the tree.

s

a

md p

e

a

w

l

s

CSE373, Winter 2020L19: Tries

pollev.com/uwcse373

10

Given a trie with N keys, what is the runtime for
contains given a key of length L?

A. Θ(log 𝐿)

B. Θ(𝐿)

C. Θ(log𝑁)

D. Θ(𝑁)

E. Θ 𝑁 + 𝐿

F. We’re not sure

s

a

md p

e

a

w

l

s

In this trie:

N = 6

For contains(“same”):

L = 4

CSE373, Winter 2020L19: Tries

Lecture Outline

❖ Tries

▪ When does a Trie make sense?

❖ Implementing a Trie

▪ How do we find the next child?

❖ Advanced Implementations: Dealing with Sparsity

▪ Hash Tables, BSTs, Ternary Search Tries

❖ Prefix Operations

▪ Finding keys with a given prefix

11

CSE373, Winter 2020L19: Tries

Simple Trie Implementation

12

Design 1

public class TrieSet {

private static final int R = 128; // ASCII

private Node root;

private static class Node {

private char ch;

private boolean isKey;

private DataIndexedCharMap<Node> next;

private Node(char c, boolean b, int R) {

ch = c; isKey = b;

next = new DataIndexedCharMap<Node>(R);

}

}

}

s

a

md p

e

a

w

l

s

CSE373, Winter 2020L19: Tries

13

CSE373, Winter 2020L19: Tries

Simple Trie Node Implementation

14

Design 1

private static class Node {

private char ch;

private boolean isKey;

private DataIndexedCharMap<Node> next;

...

}

ch a

isKey true

next

items

0 1 2 3 4 5 6
...

121 122 123 124 125 126 127

Node

DataIndexedCharMap

ch y

isKey true

next

items

Node

DataIndexedCharMap

128 links, mostly null

a

y

CSE373, Winter 2020L19: Tries

Simple Trie Node Implementation

15

Design 1

ch a

isKey true

next

items

0 1 2 3 4 5 6
...

121 122 123 124 125 126 127

Node

DataIndexedCharMap

ch y

isKey true

next

items

Node

DataIndexedCharMap

a

y

a

y

y

...

128 links, mostly null

private static class Node {

private char ch;

private boolean isKey;

private DataIndexedCharMap<Node> next;

...

}

CSE373, Winter 2020L19: Tries

Simple Trie Implementation

16

s

a

d

a

w

l

a s

a

d

w

l

...

...
...

...

...

...

... ...

public class TrieSet {

private static final int R = 128; // ASCII

private Node root;

private static class Node {

private char ch;

private boolean isKey;

private DataIndexedCharMap<Node> next;

private Node(char c, boolean b, int R) {

ch = c; isKey = b;

next = new DataIndexedCharMap<Node>(R);

}

}

}

Design 1

CSE373, Winter 2020L19: Tries

Removing Redundancy

17

s

a

d

a

w

l

a s

a

d

w

l

...

...
...

...

...

...

... ...

public class TrieSet {

private static final int R = 128; // ASCII

private Node root;

private static class Node {

private char ch;

private boolean isKey;

private DataIndexedCharMap<Node> next;

private Node(char c, boolean b, int R) {

ch = c; isKey = b;

next = new

DataIndexedCharMap<Node>(R);

}

}

}

Design 1.5

CSE373, Winter 2020L19: Tries

pollev.com/uwcse373

18

Does the structure of a trie depend on the order
in which strings are inserted?

A. Yes

B. No

C. We’re not sure

a s

a

d

w

l

...

...
...

...

...

...

... ...

CSE373, Winter 2020L19: Tries

Trie Runtimes

19

Key Type contains(x) add(x)

Balanced BST Comparable Θ(log𝑁) Θ(log𝑁)

Hash Table Hashable Θ(1)* Θ 1 *†

Data-Indexed
Array

Char Θ(1) Θ(1)

Trie (Design 1.5) String Θ(1) Θ(1)

Typical runtime when treating length of keys as a constant

* : Assuming items are evenly spread
† : Indicates “on average”

- When our keys are strings, Tries give us slightly better performance on
contains and add.

- However, DataIndexedCharMap wastes a ton of memory storing R links
per node.

Takeaways:

Design 1.5

CSE373, Winter 2020L19: Tries

Lecture Outline

❖ Tries

▪ When does a Trie make sense?

❖ Implementing a Trie

▪ How do we find the next child?

❖ Advanced Implementations: Dealing with Sparsity

▪ Hash Tables, BSTs, Ternary Search Tries

❖ Prefix Operations

▪ Finding keys with a given prefix

20

CSE373, Winter 2020L19: Tries

v1.5: DataIndexedCharMap

21

… 97 98 99 100 …

… 97 98 99 100 … … 97 98 99 100 …

… 97 98 99 100 …

isKey = false

isKey = true

isKey = true

isKey = false

a

d

c

Abstract Trie

Design 1.5

CSE373, Winter 2020L19: Tries

v2.0: Hash-Table-Based Trie

22

(ad)

(c)

isKey = false
d0

1

2

3

c

a
0

1

2

3

0

1

2

3

0

1

2

3

isKey = true

isKey = true

isKey = false

a

d

c

Abstract Trie

Design 2

CSE373, Winter 2020L19: Tries

v3.0: BST-Based Trie

23

(ad)

(c)

isKey = false

isKey = true

isKey = true

isKey = false

‘c’

‘a’

‘d’

Each trie node keeps
track of its own BST

a

d

c

Abstract Trie

Design 3

CSE373, Winter 2020L19: Tries

v3.0: BST-Based Trie

24

(ad)

(c)

isKey = false

isKey = true

isKey = true

isKey = false

‘c’

‘a’

‘d’

2. “Internal” children
(another character option)

In this design, we now have
two different types of “child”
nodes:

1. “Trie” children
(advance a character)

But both are essentially child references – could we simplify this design?

Design 3

CSE373, Winter 2020L19: Tries

v4.0: Ternary Search Trie (TST)

25

a

d c

”Internal” left child
(lesser character at same

index)

a

d

c

Abstract Trie Ternary Search Trie

”Internal” right child
(greater character at

same index)
“Trie” child

(advance to next string
index)

index 0

index 1

index 0

index 1

Design 4

CSE373, Winter 2020L19: Tries

pollev.com/uwcse373

Which node is associated with the key “CAC”?

26

A

C

C

G

G

C

G

C

C

A

G

C

C

1

2 3

4

5

6

Tries in COS 226 (Sedgewick, Wayne/Princeton)

CSE373, Winter 2020L19: Tries

Follow links corresponding to each character in the key.

❖ If less, take left link; if greater, take right link.

❖ If equal, take the middle link and move to the next key character.

Search hit. Final node is blue (isKey == true).

Search miss. Reach a null link or final node is white (isKey == false).

27

Searching in a TST Design 4

CSE373, Winter 2020L19: Tries

pollev.com/uwcse373

28

Does the structure of a TST depend on the order
in which strings are inserted?

A. Yes

B. No

C. We’re not sure
a

d c

CSE373, Winter 2020L19: Tries

Lecture Outline

❖ Tries

▪ When does a Trie make sense?

❖ Implementing a Trie

▪ How do we find the next child?

❖ Advanced Implementations: Dealing with Sparsity

▪ Hash Tables, BSTs, Ternary Search Tries

❖ Prefix Operations

▪ Finding keys with a given prefix

29

CSE373, Winter 2020L19: Tries

String-Specific Operations

30

s

a

md p

e

a

w

l

s

Theoretical asymptotic speed improvement
is nice.

But the main appeal of tries is their efficient
prefix matching!

Prefix match.

keysWithPrefix("sa")

Longest prefix.

longestPrefixOf("sample")

In this section, we’ll use the abstract trie
representation.

Abstract Trie

CSE373, Winter 2020L19: Tries

Collecting Trie Keys

31

Describe in English an algorithm to collect all the keys in a trie.

collect():

["a","awls","sad","sam","same","sap"]

1. Create an empty list of results x.

2. For character c in root.next.keys():

Call colHelp(c, x, root.next.get(c)).

3. Return x.

colHelp(String s, List<String> x, Node n)

1. ???

Abstract Trie

sa

w

CSE373, Winter 2020L19: Tries

Collecting Trie Keys

32

Describe in English an algorithm to collect all the keys in a trie.

collect():

["a","awls","sad","sam","same","sap"]

1. Create an empty list of results x.

2. For character c in root.next.keys():

Call colHelp(c, x, root.next.get(c)).

3. Return x.

colHelp(String s, List<String> x, Node n)

1. If n.isKey, then x.add(s).

2. For character c in n.next.keys():
Call colHelp(s + c, x, n.next.get(c)).

Abstract Trie

sa

w

CSE373, Winter 2020L19: Tries

colHelp("a", x,)

colHelp("aw", x,)

colHelp("awl", x,)

colHelp("awls", x,)

33

s

a

md p

e

a

w

l

s

collect(): []collect(): [

"a",

]

collect(): [

"a",

"awls",

]

Collecting Trie Keys

colHelp(String s, List<String> x, Node n)

1. If n.isKey, then x.add(s).

2. For character c in n.next.keys():
Call colHelp(s + c, x, n.next.get(c)).

Abstract Trie

CSE373, Winter 2020L19: Tries

34

Collecting Trie Keys

colHelp(String s, List<String> x, Node n)

1. If n.isKey, then x.add(s).

2. For character c in n.next.keys():
Call colHelp(s + c, x, n.next.get(c)).

Abstract Trie

s

a

md p

e

a

w

l

s

collect(): [

"a",

"awls",

"sad",

"sam",

"same",

"sap"

]

CSE373, Winter 2020L19: Tries

35

Prefix Operations with Tries Abstract Trie

Describe in English an algorithm for
keysWithPrefix.

keysWithPrefix("sa"):

["sad","sam","same","sap"]

s

a

md p

e

a

w

l

s

1. Find the node α corresponding to
the string (in green).

2. Create an empty list x.
3. For character c in α.next.keys():

Call colHelp("sa" + c, x, α.next.get(c)).

CSE373, Winter 2020L19: Tries

tl;dr

❖ Tries can be used for storing strings (sequential data)

❖ Real-world performance is often better than a hash table or
search tree

❖ Many different implementations

▪ Could store DataIndexedCharMaps/Hash Tables/BSTs within nodes,
or combine overall structure to get a TST

❖ Tries enable very efficient prefix operations like
keysWithPrefix

36

CSE373, Winter 2020L19: Tries

37

Extra: Autocomplete with Tries Abstract Trie

Autocomplete should return the most
relevant results.

One way: a Trie-based Map<String,
Relevance>.

When a user types in a string
"hello",

1. Call
keysWithPrefix("hello").

2. Return the 10 strings with the
highest relevance.

CSE373, Winter 2020L19: Tries

38

Extra: Autocomplete with Tries Abstract Trie

One approach to find top 3
matches with prefix “s”:

1. Call
keysWithPrefix("s").

sad, smog, spit, spite, spy

2. Return the 3 keys with
highest value.

spit, spite, sad

This algorithm is slow. Why?

s

a m

d

p

o

b

u

c

k g

yi

t

e

10

12

5 15

20

7

CSE373, Winter 2020L19: Tries

Improving Autocomplete

Very short queries, e.g. "s",
will require checking billions
of results.

But we only need to keep the
top 10.

Prune the search space. Each
node stores its own relevance
as well as the max relevance
of its descendents.

39

s

a m

d

p

o

b

u

c

k g

yi

t

e

None
10

None
10

None
10

10
10

value = None
best = 20

None
20

None
12

12
12

None
5

None
5

5
5

None
20

None
20

15
20

20
20

7
7

Extra: Autocomplete with Tries

