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Announcements

❖ HW7 is out

▪ Due this Friday, February 28

▪ Lots of code to look through! Start early

❖ Midterm Regrades are open

▪ Please consult the posted sample solution before submitting a 
regrade request
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Feedback from the Reading Quiz

❖ Why is contains O(NL) for a hash table?

▪ Consider the worst case, where all strings collide in a single bucket. 
That means scanning through N strings.

▪ It takes time to compare strings – we have to go character by 
character!

▪ For each string, there may be L characters to examine.

❖ How does DataIndexedCharMap relate to a trie?

▪ We need a mapping from a character to the corresponding child in 
each node of the trie

❖ How to pronounce trie?
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Learning Objectives

❖ By the end of today’s lecture, you should be able to:

▪ Identify when a Trie can be used, and what useful properties 

it provides

▪ Describe common Trie implementations and how they affect  

the amount of space required

▪Write code for prefix algorithms to run over a Trie
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Lecture Outline

❖ Tries

▪ When does a Trie make sense?

❖ Implementing a Trie

▪ How do we find the next child?

❖ Advanced Implementations: Dealing with Sparsity

▪ Hash Tables, BSTs, Ternary Search Tries

❖ Prefix Operations

▪ Finding keys with a given prefix
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The Trie: A Specialized Data Structure
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Tries are a character-by-character set-of-strings implementation.
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An Abstract Trie
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This trie stores the set of strings:
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Each level of the tree represents an 
index, and the children represent 
possible characters at that index.

How to deal with a and awls?

• Mark which nodes complete strings 
(shown in blue)

awls, a, sad,

same, sap, sam
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Searching in Tries
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contains(“sam”): true, blue. hit.

contains(“sa”): false, white. miss.

contains(“a”): true, blue. hit.

contains(“saq”): false, fell off. miss.

Two ways to have a search miss.

1. If the final node is not blue (not a key).

2. If we fall off the tree.
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pollev.com/uwcse373
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Given a trie with N keys, what is the runtime for 
contains given a key of length L?

A. Θ(log 𝐿)

B. Θ(𝐿)

C. Θ(log𝑁)

D. Θ(𝑁)

E. Θ 𝑁 + 𝐿

F. We’re not sure
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In this trie:

N = 6

For contains(“same”):

L = 4
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Lecture Outline

❖ Tries

▪ When does a Trie make sense?

❖ Implementing a Trie

▪ How do we find the next child?

❖ Advanced Implementations: Dealing with Sparsity

▪ Hash Tables, BSTs, Ternary Search Tries

❖ Prefix Operations

▪ Finding keys with a given prefix
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Simple Trie Implementation
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Design 1

public class TrieSet {

private static final int R = 128; // ASCII

private Node root;

private static class Node {

private char ch;

private boolean isKey;

private DataIndexedCharMap<Node> next;

private Node(char c, boolean b, int R) {

ch = c; isKey = b;

next = new DataIndexedCharMap<Node>(R);

}

}

}
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Simple Trie Node Implementation
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Design 1

private static class Node {

private char ch;

private boolean isKey;

private DataIndexedCharMap<Node> next;

...

}

ch a

isKey true

next

items

0 1 2 3 4 5 6
...

121 122 123 124 125 126 127

Node

DataIndexedCharMap

ch y

isKey true

next

items

Node

DataIndexedCharMap

128 links, mostly null

a

y
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Simple Trie Node Implementation
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Design 1

ch a

isKey true

next

items

0 1 2 3 4 5 6
...

121 122 123 124 125 126 127

Node

DataIndexedCharMap

ch y

isKey true

next

items

Node

DataIndexedCharMap

a

y

a

y

y

...

128 links, mostly null

private static class Node {

private char ch;

private boolean isKey;

private DataIndexedCharMap<Node> next;

...

}
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Simple Trie Implementation
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public class TrieSet {

private static final int R = 128; // ASCII

private Node root;

private static class Node {

private char ch;

private boolean isKey;

private DataIndexedCharMap<Node> next;

private Node(char c, boolean b, int R) {

ch = c; isKey = b;

next = new DataIndexedCharMap<Node>(R);

}

}

}

Design 1
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Removing Redundancy
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public class TrieSet {

private static final int R = 128; // ASCII

private Node root;

private static class Node {

private char ch;

private boolean isKey;

private DataIndexedCharMap<Node> next;

private Node(char c, boolean b, int R) {

ch = c; isKey = b;

next = new

DataIndexedCharMap<Node>(R);

}

}

}

Design 1.5
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pollev.com/uwcse373
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Does the structure of a trie depend on the order 
in which strings are inserted?

A. Yes

B. No

C. We’re not sure

a s
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Trie Runtimes
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Key Type contains(x) add(x)

Balanced BST Comparable Θ(log𝑁) Θ(log𝑁)

Hash Table Hashable Θ(1)* Θ 1 *†

Data-Indexed 
Array

Char Θ(1) Θ(1)

Trie (Design 1.5) String Θ(1) Θ(1)

Typical runtime when treating length of keys as a constant

* :  Assuming items are evenly spread
† :  Indicates “on average”

- When our keys are strings, Tries give us slightly better performance on 
contains and add.

- However, DataIndexedCharMap wastes a ton of memory storing R links 
per node.

Takeaways:

Design 1.5
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Lecture Outline

❖ Tries

▪ When does a Trie make sense?

❖ Implementing a Trie

▪ How do we find the next child?

❖ Advanced Implementations: Dealing with Sparsity

▪ Hash Tables, BSTs, Ternary Search Tries

❖ Prefix Operations

▪ Finding keys with a given prefix
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v1.5: DataIndexedCharMap
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Abstract Trie

Design 1.5
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v2.0: Hash-Table-Based Trie
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Abstract Trie

Design 2
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v3.0: BST-Based Trie
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(ad)

(c)

isKey = false

isKey = true

isKey = true

isKey = false

‘c’

‘a’

‘d’

Each trie node keeps 
track of its own BST

a

d

c

Abstract Trie

Design 3
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v3.0: BST-Based Trie
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(ad)

(c)

isKey = false

isKey = true

isKey = true

isKey = false

‘c’

‘a’

‘d’

2. “Internal” children
(another character option)

In this design, we now have 
two different types of “child” 
nodes:

1. “Trie” children
(advance a character)

But both are essentially child references – could we simplify this design?

Design 3
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v4.0: Ternary Search Trie (TST)
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a

d c

”Internal” left child
(lesser character at same 

index) 

a

d

c

Abstract Trie Ternary Search Trie

”Internal” right child
(greater character at 

same index)
“Trie” child

(advance to next string 
index)

index 0

index 1

index 0

index 1

Design 4
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pollev.com/uwcse373

Which node is associated with the key “CAC”?
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Tries in COS 226 (Sedgewick, Wayne/Princeton)
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Follow links corresponding to each character in the key.

❖ If less, take left link; if greater, take right link.

❖ If equal, take the middle link and move to the next key character.

Search hit. Final node is blue (isKey == true).

Search miss. Reach a null link or final node is white (isKey == false).

27

Searching in a TST Design 4
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pollev.com/uwcse373
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Does the structure of a TST depend on the order 
in which strings are inserted?

A. Yes

B. No

C. We’re not sure
a

d c
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Lecture Outline

❖ Tries

▪ When does a Trie make sense?

❖ Implementing a Trie

▪ How do we find the next child?

❖ Advanced Implementations: Dealing with Sparsity

▪ Hash Tables, BSTs, Ternary Search Tries

❖ Prefix Operations

▪ Finding keys with a given prefix
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String-Specific Operations
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Theoretical asymptotic speed improvement 
is nice.

But the main appeal of tries is their efficient 
prefix matching!

Prefix match.

keysWithPrefix("sa")

Longest prefix.

longestPrefixOf("sample")

In this section, we’ll use the abstract trie
representation.

Abstract Trie
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Collecting Trie Keys
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Describe in English an algorithm to collect all the keys in a trie.

collect(): 

["a","awls","sad","sam","same","sap"]

1. Create an empty list of results x.

2. For character c in root.next.keys():

Call colHelp(c, x, root.next.get(c)).

3. Return x.

colHelp(String s, List<String> x, Node n)

1. ???

Abstract Trie

sa

w
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Collecting Trie Keys
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Describe in English an algorithm to collect all the keys in a trie.

collect(): 

["a","awls","sad","sam","same","sap"]

1. Create an empty list of results x.

2. For character c in root.next.keys():

Call colHelp(c, x, root.next.get(c)).

3. Return x.

colHelp(String s, List<String> x, Node n)

1. If n.isKey, then x.add(s).

2. For character c in n.next.keys():
Call colHelp(s + c, x, n.next.get(c)).

Abstract Trie

sa

w
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colHelp("a", x,      )

colHelp("aw", x,      )

colHelp("awl", x,      )

colHelp("awls", x,      )
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collect(): []collect(): [

"a",

]

collect(): [

"a",

"awls",

]

Collecting Trie Keys

colHelp(String s, List<String> x, Node n)

1. If n.isKey, then x.add(s).

2. For character c in n.next.keys():
Call colHelp(s + c, x, n.next.get(c)).

Abstract Trie
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Collecting Trie Keys

colHelp(String s, List<String> x, Node n)

1. If n.isKey, then x.add(s).

2. For character c in n.next.keys():
Call colHelp(s + c, x, n.next.get(c)).

Abstract Trie
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collect(): [

"a",

"awls",

"sad",

"sam",

"same",

"sap"

]
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Prefix Operations with Tries Abstract Trie

Describe in English an algorithm for 
keysWithPrefix.

keysWithPrefix("sa"): 

["sad","sam","same","sap"]
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1. Find the node α corresponding to 
the string (in green).

2. Create an empty list x.
3. For character c in α.next.keys():

Call colHelp("sa" + c, x, α.next.get(c)).
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tl;dr

❖ Tries can be used for storing strings (sequential data)

❖ Real-world performance is often better than a hash table or 
search tree

❖ Many different implementations

▪ Could store DataIndexedCharMaps/Hash Tables/BSTs within nodes, 
or combine overall structure to get a TST

❖ Tries enable very efficient prefix operations like 
keysWithPrefix

36
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Extra: Autocomplete with Tries Abstract Trie

Autocomplete should return the most 
relevant results.

One way: a Trie-based Map<String, 
Relevance>.

When a user types in a string 
"hello",

1. Call 
keysWithPrefix("hello").

2. Return the 10 strings with the 
highest relevance.
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Extra: Autocomplete with Tries Abstract Trie

One approach to find top 3 
matches with prefix “s”:

1. Call 
keysWithPrefix("s").

sad, smog, spit, spite, spy

2. Return the 3 keys with 
highest value.

spit, spite, sad

This algorithm is slow. Why?
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Improving Autocomplete

Very short queries, e.g. "s", 
will require checking billions 
of results.

But we only need to keep the 
top 10.

Prune the search space. Each 
node stores its own relevance 
as well as the max relevance 
of its descendents.
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Extra: Autocomplete with Tries


