
CSE373, Winter 2020L18: Disjoint Sets

Disjoint Sets
CSE 373 Winter 2020

Instructor: Hannah C. Tang

Teaching Assistants:

Aaron Johnston Ethan Knutson Nathan Lipiarski

Amanda Park Farrell Fileas Sam Long

Anish Velagapudi Howard Xiao Yifan Bai

Brian Chan Jade Watkins Yuma Tou

Elena Spasova Lea Quan

CSE373, Winter 2020L18: Disjoint Sets

Announcements

❖ HW7 released; due Fri, Feb 28

▪ HW7 exercises a different set of skills: reading/understanding a large codebase
and figuring out where to plug in

▪ Read the spec carefully; HW7 substantially longer than last quarter’s because
we added a ton of hints

3

CSE373, Winter 2020L18: Disjoint Sets

Feedback from Reading Quiz

❖ When do we use Disjoint Sets?

❖ Can we make union() constant time?

❖ How did you choose the values for the ids?

4

CSE373, Winter 2020L18: Disjoint Sets

Lecture Outline

❖ Disjoint Set ADT

❖ QuickFind Data Structure

❖ QuickUnion Data Structure

❖ WeightedQuickUnion Data Structure

▪ Path Compression

5

CSE373, Winter 2020L18: Disjoint Sets

Disjoint Sets ADT

❖ The Disjoint Sets ADT has two
operations:

▪ find(e): gets the id of the element’s set

▪ union(e1, e2): combines the set
containing e1 with the set containing e2

❖ Example: ability to travel to drive to a
country

▪ union(france, germany)

▪ union(spain, france)

▪ find(spain) == find(germany)?

▪ union(england, france)

6

Disjoint Sets ADT. A

collection of

elements and sets

of those elements.

• An element can only

belong to a single set.

• Each set is identified by a

unique id.

• Sets can be combined/

connected/ unioned.

CSE373, Winter 2020L18: Disjoint Sets

Disjoint Sets ADT

❖ The Disjoint Sets ADT has two operations:

▪ find(e): gets the id of the element’s set

▪ union(e1, e2): combines the set containing e1 with the set containing
e2

❖ Applications include percolation theory (computational
chemistry) and …. Kruskal’s algorithm

❖ Simplifying assumptions

▪ We can map elements to indices quickly (see reading)

▪ We know all the items in advance; they’re all disconnected initially

7

CSE373, Winter 2020L18: Disjoint Sets

An Observation …

❖ Today’s lecture on the data structures which implement the
Disjoint Sets ADT is an interesting case study in data structure
design and iterative design improvements

▪ Dust off your metacognitive skills and pay attention to what stays the
same and what changes between our 3 options

8

CSE373, Winter 2020L18: Disjoint Sets

Lecture Outline

❖ Disjoint Set ADT

❖ QuickFind Data Structure

❖ QuickUnion Data Structure

❖ WeightedQuickUnion Data Structure

▪ Path Compression

9

CSE373, Winter 2020L18: Disjoint Sets

QuickFind (review)

find(A) == 123

find(B) == 123

find(A) == find(B)

find(C) != find(D)

union(C, D)

10

A 0

B 1

C 2

D 3

E 4

F 5

G 6

A B C E
D F

G

CSE373, Winter 2020L18: Disjoint Sets

QuickFind (review)

find(A) == 123

find(B) == 123

find(A) == find(B)

find(C) != find(D)

union(C, D)

11

A 0

B 1

C 2

D 3

E 4

F 5

G 6

A B C E D F

G

CSE373, Winter 2020L18: Disjoint Sets

Disjoint Sets: Runtime

❖ Feedback from reading quiz: “can we make union() constant
time?”

find union

QuickFind Θ(1) Θ(N)

CSE373, Winter 2020L18: Disjoint Sets

Lecture Outline

❖ Disjoint Set ADT

❖ QuickFind Data Structure

❖ QuickUnion Data Structure

❖ WeightedQuickUnion Data Structure

▪ Path Compression

13

CSE373, Winter 2020L18: Disjoint Sets

QuickUnion Data Structure

❖ Fundamental idea:

▪ QuickFind tracks each element’s ID

▪ QuickFind tracks each element’s parent. Only the root has an ID

14

A B C E
D F

G

D (456)

F

G (789)

A (123)

CB

E

find(A) == 123

find(B) == 123

find(A) == find(B)

find(C) != find(D)

CSE373, Winter 2020L18: Disjoint Sets

QuickUnion: Representation

❖ Like the binary heap, we can represent QuickUnion as an array

▪ Note: we represent ids as negative numbers to clarify that they’re
not indices

15

A B C E
D F

G

D (456)

F

G (789)

A (123)

CB

E

-123 0 0 -456 2 3 -789int[] parents

0 1 2 3 4 5 6

CSE373, Winter 2020L18: Disjoint Sets

QuickUnion: Union

❖ How does this data structure implement the union operation?

16

G (789)

union(F, C):

find(C)

move under F

D (456)

F

A

CB

E

3 0 0 -456 2 3 -789int[] parents

0 1 2 3 4 5 6

-123 0 0 -456 2 3 -789int[] parents

0 1 2 3 4 5 6

D (456)

F

G (789)

A (123)

CB

E

CSE373, Winter 2020L18: Disjoint Sets

pollev.com/uwcse373

❖ What are QuickUnion’s runtimes?

▪ (do not include the runtime for the find() call that union() requires)

A. Θ(N) / Θ(1)

B. Θ(N) / O(1)

C. O(N) / Θ(1)

D. O(N) / O(1)

E. I’m not sure …

find union
excludes find

QuickFind Θ(1) Θ(N)

QuickUnion

CSE373, Winter 2020L18: Disjoint Sets

Worst-case QuickUnion

union(A, B)

union(B, C)

union(C, D)

union(D, E)

union(E, F)

union(F, G)

…

18

B

Worst-case Structure

A

C

D

E

F

G

…

🤔 If only I could keep these trees (semi-?)balanced

CSE373, Winter 2020L18: Disjoint Sets

Lecture Outline

❖ Disjoint Set ADT

❖ QuickFind Data Structure

❖ QuickUnion Data Structure

❖ WeightedQuickUnion Data Structure

▪ Path Compression

19

CSE373, Winter 2020L18: Disjoint Sets

WeightedQuickUnion

20

C

A

B

union(A, B)

union(B, C)

union(C, D)

union(D, E)

union(E, F)

union(F, G)

…

D

E

F

G

?

❖ QuickUnion always picked the
same argument (the second
argument) to become the child in
the unioned structure

❖ QuickUnion only found the root of
the second argument

❖ Instead, let’s:

▪ Pick the smaller tree to be the new
child

▪ Add the new child to the root

CSE373, Winter 2020L18: Disjoint Sets

WeightedQuickUnion: Union

21

C

A

B

union(A, B)

union(B, C)

union(C, D)

union(D, E)

union(E, F)

union(F, G)

…

❖ Pick the smaller tree to be the
new child

❖ Add the new child to the root

D

E

F

G

?

CSE373, Winter 2020L18: Disjoint Sets

WeightedQuickUnion: Union

22

C

A

B D E F G

union(A, B)

union(B, C)

union(C, D)

union(D, E)

union(E, F)

union(F, G)

…

❖ Pick the smaller tree to be the
new child

❖ Add the new child to the root

CSE373, Winter 2020L18: Disjoint Sets

WeightedQuickUnion: Representation

❖ Need to store the number of nodes (or “weight”) of each
tree

❖ Don’t need to store the root’s ID; we can hash the
element as needed

❖ Now we can store the weight there instead!

▪ However, we still use negative values to indicate they’re not
indices

23

A 0

B 1

C 2

D 3

E 4

F 5

G 6

-4 0 0 -2 2 3 -1

0 1 2 3 4 5 6

D

F

G

A

CB

E

int[] parents

CSE373, Winter 2020L18: Disjoint Sets

WeightedQuickUnion: Performance

❖ union()’s runtime is still dependent on find()’s runtime, which
is a function of the tree’s height

❖ What’s the worst-case height for WeightedQuickUnion?

24

union(e1, e2):

find(e1)

find(e2)

move lighter root under heavier root

CSE373, Winter 2020L18: Disjoint Sets

WeightedQuickUnion: Performance

❖ Consider the worst case where the tree height grows as fast as
possible

0

N H

1 0

CSE373, Winter 2020L18: Disjoint Sets

WeightedQuickUnion: Performance

❖ Consider the worst case where the tree height grows as fast as
possible

0

1

N H

1 0

2 1

CSE373, Winter 2020L18: Disjoint Sets

WeightedQuickUnion: Performance

❖ Consider the worst case where the tree height grows as fast as
possible

0

1

2

3

N H

1 0

2 1

4 ?

CSE373, Winter 2020L18: Disjoint Sets

WeightedQuickUnion: Performance

❖ Consider the worst case where the tree height grows as fast as
possible

0

1 2

3

N H

1 0

2 1

4 2

CSE373, Winter 2020L18: Disjoint Sets

WeightedQuickUnion: Performance

❖ Consider the worst case where the tree height grows as fast as
possible

0

1 2

3

4

5 6

7

N H

1 0

2 1

4 2

8 ?

CSE373, Winter 2020L18: Disjoint Sets

WeightedQuickUnion: Performance

❖ Consider the worst case where the tree height grows as fast as
possible

0

1 2

3

N H

1 0

2 1

4 2

8 34

5 6

7

CSE373, Winter 2020L18: Disjoint Sets

WeightedQuickUnion: Performance

❖ Consider the worst case where the tree height grows as fast as
possible

❖ Worst case tree height is Θ(log N)

0

1 2

3

N H

1 0

2 1

4 2

8 3

16 4

4

5 6

7

8

9 10

11

12

13 14

15

CSE373, Winter 2020L18: Disjoint Sets

Why Weights Instead of Heights?

❖ We used the number of items in a tree to decide upon the root

❖ Why not use the height of the tree?

▪ HeightedQuickUnion’s runtime is asymptotically the same: Θ(log(N))

▪ It’s easier to track weights than heights

1 2

0

4

6

53 8

9

7+ 1 2

0

4 653

8

9

7

CSE373, Winter 2020L18: Disjoint Sets

WeightedQuickUnion Runtime

❖ There’s one final optimization we can make: path compression

find union
excludes
find(s)

union
includes find(s)

QuickFind Θ(1) Θ(N) N/A

QuickUnion h = O(N) Θ(1) O(N)

WeightedQuickUnion h = Θ(log N) Θ(1) Θ(log N)

CSE373, Winter 2020L18: Disjoint Sets

Lecture Outline

❖ Disjoint Set ADT

❖ QuickFind Data Structure

❖ QuickUnion Data Structure

❖ WeightedQuickUnion Data Structure

▪ Path Compression

34

CSE373, Winter 2020L18: Disjoint Sets

Modifying Data Structures To Preserve Invariants

❖ Thus far, the modifications we’ve studied are designed to
preserve invariants (aka “repair the data structure”)

▪ Tree rotations: preserve LLRB tree invariants (eg, a right-leaning red
edge)

▪ Promoting keys / splitting leaves: preserve B-tree invariants (eg, L+1
keys stored in a leaf node)

❖ Notably, the modifications don’t improve runtime between
identical method calls

▪ If bst.find(x) takes 2 µs, we expect future calls to take ~2 µs

▪ If we call bst.find(x) M times, the total runtime should be 2*M µs

35

CSE373, Winter 2020L18: Disjoint Sets

Modifying Data Structures for Future Gains

❖ Path compression is entirely different: we are modifying the
tree structure to improve future performance

▪ If wquWithPathCompression.find(x) takes 2 µs, we expect future
calls to take <2 µs

▪ If we call wquWithPathCompression.find(x) M times, the total
runtime should be <2*M µs (and possibly even << 2*M µs)

36

CSE373, Winter 2020L18: Disjoint Sets

Path Compression: Idea

❖ This is the worst-case topology if we use WeightedQuickUnion

❖ Idea: When we do find(15), move all visited nodes under the
root

▪ Additional cost is insignificant (same order of growth)

0

1 2

3

4

5 6

7

8

9 10

11

12

13 14

15

CSE373, Winter 2020L18: Disjoint Sets

Path Compression: Example

❖ This is the worst-case topology if we use WeightedQuickUnion

❖ Idea: When we do find(15), move all visited nodes under the
root

▪ Doesn’t meaningfully change runtime for this invocation of find(15),
but subsequent find(15)s (and subsequent find(14)s and find(12)s and
…) will be faster

0

1 2

3

4

5 6

7

8

9 10

11

12

13

14 15

CSE373, Winter 2020L18: Disjoint Sets

Path Compression: Details and Runtime

❖ Run path compression on every find()!

▪ Including the find()s that are invoked as part of a union()

❖ Understanding the performance of M>1 operations requires
amortized analysis

❖ We won’t go into it here, but we’ve seen it before

▪ It’s how we assert that appending to an array is “O(1) on average” if
we double whenever we resize

0

1 2 3 4

5

6

7

8

9

10 11 12

13

14 15

CSE373, Winter 2020L18: Disjoint Sets

Path Compression: Runtime

❖ M find()s on WeightedQuickUnion requires takes Θ(M log N)

❖ … but M find()s on WeightedQuickUnionWithPathCompression
takes O(M log*N)!

▪ log*n is the “iterated log”: the number of times you need to apply log
to n before it’s <=1

▪ Note: log* is a loose bound

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CSE373, Winter 2020L18: Disjoint Sets

Path Compression: Runtime

❖ Path compression results in find()s and union()s that are very
very close to (amortized) constant time

▪ log* is less than 5 for any realistic input

▪ If M find()s/union()s on N nodes is O(M log*N)
and log*N ≈ 5, then find()/union()s amortizes
to O(1)! 🤯

N log* N

1 0

2 1

4 2

16 3

65536 4

265536 5

216

Number of atoms in the
known universe is 2256ish

CSE373, Winter 2020L18: Disjoint Sets

tl;dr

❖ Disjoint Sets ADT implementations:

❖ Kruskal’s Algorithm: O(V * union + E * find) = O(V + E logV)

find union
excludes
find(s)

union
includes find(s)

QuickFind Θ(1) Θ(N) N/A

QuickUnion h = O(N) Θ(1) O(N)

WeightedQuickUnion h = Θ(log N) Θ(1) Θ(log N)

WQU + Path
Compression

h = O(1)* O(1)* O(1)*

* amortized

