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Announcements

❖ HW7 released; due Fri, Feb 28

▪ HW7 exercises a different set of skills: reading/understanding a large codebase 
and figuring out where to plug in

▪ Read the spec carefully; HW7 substantially longer than last quarter’s because 
we added a ton of hints
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Feedback from Reading Quiz

❖ When do we use Disjoint Sets?

❖ Can we make union() constant time?

❖ How did you choose the values for the ids?
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Lecture Outline

❖ Disjoint Set ADT

❖ QuickFind Data Structure

❖ QuickUnion Data Structure

❖ WeightedQuickUnion Data Structure

▪ Path Compression
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Disjoint Sets ADT

❖ The Disjoint Sets ADT has two 
operations:

▪ find(e): gets the id of the element’s set

▪ union(e1, e2): combines the set 
containing e1 with the set containing e2

❖ Example: ability to travel to drive to a 
country

▪ union(france, germany)

▪ union(spain, france)

▪ find(spain) == find(germany)?

▪ union(england, france)
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Disjoint Sets ADT. A 

collection of 

elements and sets 

of those elements.

• An element can only 

belong to a single set.

• Each set is identified by a 

unique id.

• Sets can be combined/ 

connected/ unioned.
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Disjoint Sets ADT

❖ The Disjoint Sets ADT has two operations:

▪ find(e): gets the id of the element’s set

▪ union(e1, e2): combines the set containing e1 with the set containing 
e2

❖ Applications include percolation theory (computational 
chemistry) and …. Kruskal’s algorithm

❖ Simplifying assumptions

▪ We can map elements to indices quickly (see reading)

▪ We know all the items in advance; they’re all disconnected initially
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An Observation …

❖ Today’s lecture on the data structures which implement the 
Disjoint Sets ADT is an interesting case study in data structure 
design and iterative design improvements

▪ Dust off your metacognitive skills and pay attention to what stays the 
same and what changes between our 3 options
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Lecture Outline

❖ Disjoint Set ADT

❖ QuickFind Data Structure

❖ QuickUnion Data Structure

❖ WeightedQuickUnion Data Structure

▪ Path Compression
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QuickFind (review)

find(A) == 123

find(B) == 123

find(A) == find(B)

find(C) != find(D)

union(C, D)
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QuickFind (review)

find(A) == 123

find(B) == 123

find(A) == find(B)

find(C) != find(D)

union(C, D)
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Disjoint Sets: Runtime

❖ Feedback from reading quiz: “can we make union() constant 
time?”

find union

QuickFind Θ(1) Θ(N)
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Lecture Outline

❖ Disjoint Set ADT

❖ QuickFind Data Structure

❖ QuickUnion Data Structure

❖ WeightedQuickUnion Data Structure

▪ Path Compression
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QuickUnion Data Structure

❖ Fundamental idea:

▪ QuickFind tracks each element’s ID

▪ QuickFind tracks each element’s parent.  Only the root has an ID
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QuickUnion: Representation

❖ Like the binary heap, we can represent QuickUnion as an array

▪ Note: we represent ids as negative numbers to clarify that they’re 
not indices
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QuickUnion: Union

❖ How does this data structure implement the union operation?
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pollev.com/uwcse373

❖ What are QuickUnion’s runtimes?

▪ (do not include the runtime for the find() call that union() requires)

A. Θ(N) / Θ(1)

B. Θ(N) / O(1)

C. O(N) / Θ(1)

D. O(N) / O(1)

E. I’m not sure …

find union
excludes find

QuickFind Θ(1) Θ(N)

QuickUnion
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Worst-case QuickUnion

union(A, B)

union(B, C)

union(C, D)

union(D, E)

union(E, F)

union(F, G)

…
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🤔 If only I could keep these trees (semi-?)balanced
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Lecture Outline

❖ Disjoint Set ADT

❖ QuickFind Data Structure

❖ QuickUnion Data Structure

❖ WeightedQuickUnion Data Structure

▪ Path Compression
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WeightedQuickUnion
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❖ QuickUnion always picked the 
same argument (the second 
argument) to become the child in 
the unioned structure

❖ QuickUnion only found the root of 
the second argument

❖ Instead, let’s:

▪ Pick the smaller tree to be the new 
child

▪ Add the new child to the root
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WeightedQuickUnion: Union
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WeightedQuickUnion: Union
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WeightedQuickUnion: Representation

❖ Need to store the number of nodes (or “weight”) of each 
tree

❖ Don’t need to store the root’s ID; we can hash the 
element as needed

❖ Now we can store the weight there instead!

▪ However, we still use negative values to indicate they’re not 
indices
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WeightedQuickUnion: Performance

❖ union()’s runtime is still dependent on find()’s runtime, which 
is a function of the tree’s height

❖ What’s the worst-case height for WeightedQuickUnion?
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union(e1, e2):

find(e1)

find(e2)

move lighter root under heavier root
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WeightedQuickUnion: Performance

❖ Consider the worst case where the tree height grows as fast as 
possible
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WeightedQuickUnion: Performance

❖ Consider the worst case where the tree height grows as fast as 
possible
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WeightedQuickUnion: Performance

❖ Consider the worst case where the tree height grows as fast as 
possible
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WeightedQuickUnion: Performance

❖ Consider the worst case where the tree height grows as fast as 
possible
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WeightedQuickUnion: Performance

❖ Consider the worst case where the tree height grows as fast as 
possible
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WeightedQuickUnion: Performance

❖ Consider the worst case where the tree height grows as fast as 
possible
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WeightedQuickUnion: Performance

❖ Consider the worst case where the tree height grows as fast as 
possible

❖ Worst case tree height is Θ(log N)
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Why Weights Instead of Heights?

❖ We used the number of items in a tree to decide upon the root

❖ Why not use the height of the tree?

▪ HeightedQuickUnion’s runtime is asymptotically the same: Θ(log(N))

▪ It’s easier to track weights than heights
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WeightedQuickUnion Runtime

❖ There’s one final optimization we can make: path compression

find union
excludes 
find(s)

union
includes find(s)

QuickFind Θ(1) Θ(N) N/A

QuickUnion h = O(N) Θ(1) O(N)

WeightedQuickUnion h = Θ(log N) Θ(1) Θ(log N)
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Lecture Outline

❖ Disjoint Set ADT

❖ QuickFind Data Structure

❖ QuickUnion Data Structure

❖ WeightedQuickUnion Data Structure

▪ Path Compression
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Modifying Data Structures To Preserve Invariants

❖ Thus far, the modifications we’ve studied are designed to 
preserve invariants (aka “repair the data structure”)

▪ Tree rotations: preserve LLRB tree invariants (eg, a right-leaning red 
edge)

▪ Promoting keys / splitting leaves: preserve B-tree invariants (eg, L+1 
keys stored in a leaf node)

❖ Notably, the modifications don’t improve runtime between 
identical method calls

▪ If bst.find(x) takes 2 µs, we expect future calls to take ~2 µs

▪ If we call bst.find(x) M times, the total runtime should be 2*M µs
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Modifying Data Structures for Future Gains

❖ Path compression is entirely different: we are modifying the 
tree structure to improve future performance

▪ If wquWithPathCompression.find(x) takes 2 µs, we expect future 
calls to take <2 µs

▪ If we call wquWithPathCompression.find(x) M times, the total 
runtime should be <2*M µs (and possibly even << 2*M µs)
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Path Compression: Idea

❖ This is the worst-case topology if we use WeightedQuickUnion

❖ Idea: When we do find(15), move all visited nodes under the 
root

▪ Additional cost is insignificant (same order of growth)
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Path Compression: Example

❖ This is the worst-case topology if we use WeightedQuickUnion

❖ Idea: When we do find(15), move all visited nodes under the 
root

▪ Doesn’t meaningfully change runtime for this invocation of find(15), 
but subsequent find(15)s (and subsequent find(14)s and find(12)s and 
…) will be faster
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Path Compression: Details and Runtime

❖ Run path compression on every find()!

▪ Including the find()s that are invoked as part of a union()

❖ Understanding the performance of M>1 operations requires 
amortized analysis 

❖ We won’t go into it here, but we’ve seen it before

▪ It’s how we assert that appending to an array is “O(1) on average” if 
we double whenever we resize
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Path Compression: Runtime

❖ M find()s on WeightedQuickUnion requires takes Θ(M log N)

❖ … but M find()s on WeightedQuickUnionWithPathCompression 
takes O(M log*N)!

▪ log*n is the “iterated log”: the number of times you need to apply log 
to n before it’s <=1

▪ Note: log* is a loose bound
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Path Compression: Runtime

❖ Path compression results in find()s and union()s that are very 
very close to (amortized) constant time

▪ log* is less than 5 for any realistic input

▪ If M find()s/union()s on N nodes is O(M log*N)
and log*N ≈ 5, then find()/union()s amortizes
to O(1)!  🤯

N log* N

1 0

2 1

4 2

16 3

65536 4

265536 5

216

Number of atoms in the 
known universe is 2256ish
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tl;dr

❖ Disjoint Sets ADT implementations:

❖ Kruskal’s Algorithm: O(V * union + E * find) = O(V + E logV)

find union
excludes 
find(s)

union
includes find(s)

QuickFind Θ(1) Θ(N) N/A

QuickUnion h = O(N) Θ(1) O(N)

WeightedQuickUnion h = Θ(log N) Θ(1) Θ(log N)

WQU + Path 
Compression

h = O(1)* O(1)* O(1)*

* amortized


