Disjoint Sets
 CSE 373 Winter 2020

Instructor: Hannah C. Tang

Teaching Assistants:
Aaron Johnston
Ethan Knutson
Amanda Park
Anish Velagapudi
Brian Chan
Elena Spasova
Farrell Fileas
Howard Xiao
Jade Watkins
Nathan Lipiarski
Sam Long
Yifan Bai
Yuma Tou

Announcements

* HW7 released; due Fri, Feb 28
- HW7 exercises a different set of skills: reading/understanding a large codebase and figuring out where to plug in
- Read the spec carefully; HW7 substantially longer than last quarter's because we added a ton of hints

Feedback from Reading Quiz

* When do we use Disjoint Sets?
* Can we make union() constant time?
* How did you choose the values for the ids?

Lecture Outline

* Disjoint Set ADT
* QuickFind Data Structure
* QuickUnion Data Structure
* WeightedQuickUnion Data Structure
- Path Compression

Disjoint Sets ADT

Disjoint Sets ADT. A

collection of elements and sets of those elements.

- An element can only belong to a single set.
- Each set is identified by a unique id.
- Sets can be combined/ connected/ unioned.
* The Disjoint Sets ADT has two operations:
- find(e): gets the id of the element's set
- union(e1, e2): combines the set containing e1 with the set containing e2
* Example: ability to travel to drive to a country
- union(france, germany)
- union(spain, france)
- find(spain) == find(germany)?
- union(england, france)

Disjoint Sets ADT

* The Disjoint Sets ADT has two operations:
- find(e): gets the id of the element's set
- union(e1, e2): combines the set containing e1 with the set containing e2
* Applications include percolation theory (computational chemistry) and Kruskal's algorithm
* Simplifying assumptions
- We can map elements to indices quickly (see reading)
- We know all the items in advance; they're all disconnected initially

An Observation

* Today's lecture on the data structures which implement the Disjoint Sets ADT is an interesting case study in data structure design and iterative design improvements
- Dust off your metacognitive skills and pay attention to what stays the same and what changes between our 3 options

Lecture Outline

* Disjoint Set ADT
* QuickFind Data Structure
* QuickUnion Data Structure
* WeightedQuickUnion Data Structure
- Path Compression

QuickFind (review)

QuickFind (review)

A B C E D F

find (A) == 123
find(B) == 123
find(A) == find(B)
find (C) ! = find (D)
union (C, D)

A	0
B	1
C	2
D	3
E	4
F	5
G	6

int[] ids	123	123	123	456	123	456	789
	0	1	2	3	4	5	6

int[] ids | 456 | 456 | 456 | 456 | 456 | 456 | 789 | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | | | | | | | | | 3 | 3 | 4 | 5 | 6 |

Disjoint Sets: Runtime

* Feedback from reading quiz: "can we make union() constant time?"

	find	union
QuickFind	$\Theta(1)$	$\Theta(N)$

Lecture Outline

* Disjoint Set ADT
* QuickFind Data Structure
* QuickUnion Data Structure
* WeightedQuickUnion Data Structure
- Path Compression

QuickUnion Data Structure

* Fundamental idea:
- QuickFind tracks each element's ID
- QuickFind tracks each element's parent. Only the root has an ID

QuickUnion: Representation

* Like the binary heap, we can represent QuickUnion as an array
- Note: we represent ids as negative numbers to clarify that they're not indices

QuickUnion: Union

* How does this data structure implement the union operation?

(II) Poll Everywhere

* What are QuickUnion's runtimes?
- (do not include the runtime for the find() call that union() requires)

	find	union excludes find
QuickFind	$\Theta(1)$	$\Theta(N)$
QuickUnion		

A. $\quad \Theta(N) / \Theta(1)$
в. $\quad \Theta(N) / O(1)$
c. $O(N) / \Theta(1)$
D. $\quad \mathrm{O}(\mathrm{N}) / \mathrm{O}(1)$
E. I'm not sure ...

Worst-case QuickUnion

Worst-case Structure
(3) If only I could keep these trees (semi-?)balanced

Lecture Outline

* Disjoint Set ADT
* QuickFind Data Structure
* QuickUnion Data Structure
* WeightedQuickUnion Data Structure
- Path Compression

WeightedQuickUnion

* QuickUnion always picked the same argument (the second argument) to become the child in the unioned structure
* QuickUnion only found the root of the second argument
* Instead, let's:
- Pick the smaller tree to be the new child
- Add the new child to the root

```
union(A, B)
union(B, C)
union(C, D)
union(D, E)
union(E, F)
union(F, G)
...
```


WeightedQuickUnion: Union

* Pick the smaller tree to be the new child
* Add the new child to the root

WeightedQuickUnion: Union

* Pick the smaller tree to be the new child

* Add the new child to the root

WeightedQuickUnion: Representation

* Need to store the number of nodes (or "weight") of each tree
* Don't need to store the root's ID; we can hash the

A	0
B	1
C	2
D	3

- However, we still use negative values to indicate they're not indices

G 6
int[] parents

WeightedQuickUnion: Performance

* union()'s runtime is still dependent on find()'s runtime, which is a function of the tree's height

```
union (e1, e2):
find(e1)
find(e2)
move lighter root under heavier root
calls inside unitan!
```

*What's the worst-case height for WeightedQuickUnion?

WeightedQuickUnion: Performance

* Consider the worst case where the tree height grows as fast as possible

N	H
1	0

\square

WeightedQuickUnion: Performance

* Consider the worst case where the tree height grows as fast as possible

N	H
1	0
2	1

WeightedQuickUnion: Performance

* Consider the worst case where the tree height grows as fast as possible

N	H
1	0
2	1
4	$?$

WeightedQuickUnion: Performance

* Consider the worst case where the tree height grows as fast as possible

N	H
1	0
2	1
4	2

WeightedQuickUnion: Performance

* Consider the worst case where the tree height grows as fast as possible

N	H
1	0
2	1
4	2
8	$?$

WeightedQuickUnion: Performance

* Consider the worst case where the tree height grows as fast as possible

N	H
1	0
2	1
4	2
8	3

WeightedQuickUnion: Performance

* Consider the worst case where the tree height grows as fast as possible
* Worst case tree height is $\Theta(\log N)$

Why Weights Instead of Heights?

* We used the number of items in a tree to decide upon the root
* Why not use the height of the tree?
- HeightedQuickUnion's runtime is asymptotically the same: $\Theta(\log (N))$
- It's easier to track weights than heights

WeightedQuickUnion Runtime

	find	union excludes find(s)	union includes find(s)
QuickFind	$\Theta(1)$	$\Theta(N)$	N / A
QuickUnion	$h=O(N)$	$\Theta(1)$	$O(N)$
WeightedQuickUnion	$h=\Theta(\log N)$	$\Theta(1)$	$\Theta(\log N)$

* There's one final optimization we can make: path compression

Lecture Outline

* Disjoint Set ADT
* QuickFind Data Structure
* QuickUnion Data Structure
* WeightedQuickUnion Data Structure
- Path Compression

Modifying Data Structures To Preserve Invariants

* Thus far, the modifications we've studied are designed to preserve invariants (aka "repair the data structure")
- Tree rotations: preserve LLRB tree invariants (eg, a right-leaning red edge)
- Promoting keys / splitting leaves: preserve B-tree invariants (eg, L+1 keys stored in a leaf node)
* Notably, the modifications don't improve runtime between identical method calls
- If bst.find(x) takes $2 \mu \mathrm{~s}$, we expect future calls to take $\sim 2 \mu \mathrm{~s}$
- If we call bst.find(x) M times, the total runtime should be $2^{*} \mathrm{M} \mu \mathrm{s}$

Modifying Data Structures for Future Gains

* Path compression is entirely different: we are modifying the tree structure to improve future performance
- If wquWithPathCompression.find(x) takes $2 \mu \mathrm{~s}$, we expect future calls to take $<2 \mu \mathrm{~s}$
- If we call wquWithPathCompression.find(x) M times, the total runtime should be $<2 * M \mu$ (and possibly even $\ll 2 * M \mu s$)

Path Compression: Idea

* This is the worst-case topology if we use WeightedQuickUnion

* Idea: When we do find(15), move all visited nodes under the root
- Additional cost is insignificant (same order of growth)

Path Compression: Example

* This is the worst-case topology if we use WeightedQuickUnion

* Idea: When we do find(15), move all visited nodes under the root
- Doesn't meaningfully change runtime for this invocation of find(15), but subsequent find(15)s (and subsequent find(14)s and find(12)s and ...) will be faster

Path Compression: Details and Runtime

* Run path compression on every find()!
- Including the find()s that are invoked as part of a union()

* Understanding the performance of $\mathrm{M}>1$ operations requires amortized analysis
* We won't go into it here, but we've seen it before
- It's how we assert that appending to an array is "O(1) on average" if we double whenever we resize

Path Compression: Runtime

* M find()s on WeightedQuickUnion requires takes $\Theta(\mathrm{M} \log \mathrm{N})$

* ... but M find()s on WeightedQuickUnionWithPathCompression takes $\mathrm{O}(\mathrm{M} \log * \mathrm{~N})$!
- $\log ^{*} \mathrm{n}$ is the "iterated $\log ^{\prime}$ " the number of times you need to apply log to n before it's <=1
- Note: log* is a loose bound

Path Compression: Runtime

* Path compression results in find()s and union()s that are very very close to (amortized) constant time
- log* is less than 5 for any realistic input
- If M find() $\mathrm{s} / \mathrm{union}() \mathrm{s}$ on N nodes is $\mathrm{O}\left(\mathrm{M} \log ^{*} \mathrm{~N}\right.$) and $\log ^{*} N \approx 5$, then find ()$/$ union()s amortizes to $O(1)$!

en find()/union()s amortiz	1	0
	2	1
	4	2
2^{16}	16	3
Number of atoms in the	- 65536	4
known universe is 2^{256} ish	265536	5

tl;dr

* Disjoint Sets ADT implementations:

	find	union excludes find(s)	union includes find(s)
QuickFind	$\Theta(1)$	$\Theta(N)$	N / A
QuickUnion	$\mathrm{h}=\mathrm{O}(\mathrm{N})$	$\Theta(1)$	$\mathrm{O}(\mathrm{N})$
WeightedQuickUnion	$\mathrm{h}=\Theta(\log \mathrm{N})$	$\Theta(1)$	$\Theta(\log \mathrm{N})$
WQU + Path Compression	$\mathrm{h}=\mathrm{O}(1)^{*}$	$\mathrm{O}(1)^{*}$	$\mathrm{O}(1)^{*}$

. Kruskal's Algorithm: $\mathrm{O}\left(\mathrm{V}^{*}\right.$ union +E * find $)=\mathrm{O}(\mathrm{V}+\mathrm{E} \log \mathrm{V})$

