Disjoint Sets
CSE 373 Winter 2020

Instructor: Hannah C. Tang

Teaching Assistants:
- Aaron Johnston
- Amanda Park
- Anish Velagapudi
- Brian Chan
- Elena Spasova
- Ethan Knutson
- Farrell Fileas
- Howard Xiao
- Jade Watkins
- Lea Quan
- Nathan Lipiarski
- Sam Long
- Yifan Bai
- Yuma Tou
Announcements

❖ HW7 released; due Fri, Feb 28
 ▪ HW7 exercises a different set of skills: reading/understanding a large codebase and figuring out where to plug in
 ▪ **Read the spec carefully;** HW7 substantially longer than last quarter’s because we added **a ton of hints**
Feedback from Reading Quiz

❖ When do we use Disjoint Sets?

❖ Can we make union() constant time?

❖ How did you choose the values for the ids?
Lecture Outline

❖ Disjoint Set ADT

❖ QuickFind Data Structure

❖ QuickUnion Data Structure

❖ WeightedQuickUnion Data Structure
 ▪ Path Compression
Disjoint Sets ADT

- The Disjoint Sets ADT has two operations:
 - `find(e)`: gets the id of the element’s set
 - `union(e1, e2)`: combines the set containing e1 with the set containing e2

- Example: ability to travel to drive to a country
 - `union(france, germany)`
 - `union(spain, france)`
 - `find(spain) == find(germany)?`
 - `union(england, france)`

Disjoint Sets ADT. A collection of elements and sets of those elements.

- An element can only belong to a single set.
- Each set is identified by a unique id.
- Sets can be combined/connected/unioned.
Disjoint Sets ADT

- The Disjoint Sets ADT has two operations:
 - find(e): gets the id of the element’s set
 - union(e1, e2): combines the set containing e1 with the set containing e2

- Applications include percolation theory (computational chemistry) and Kruskal’s algorithm

- Simplifying assumptions
 - We can map elements to indices quickly (see reading)
 - We know all the items in advance; they’re all disconnected initially
An Observation ...

❖ Today’s lecture on the data structures which implement the Disjoint Sets ADT is an interesting case study in data structure design and iterative design improvements
 ▪ Dust off your metacognitive skills and pay attention to what stays the same and what changes between our 3 options
Lecture Outline

❖ Disjoint Set ADT

❖ QuickFind Data Structure

❖ QuickUnion Data Structure

❖ WeightedQuickUnion Data Structure
 ▪ Path Compression
QuickFind (review)

find(A) == 123
find(B) == 123
find(A) == find(B)
find(C) != find(D)

union(C, D)
QuickFind (review)

```
find(A) == 123
find(B) == 123
find(A) == find(B)
find(C) != find(D)
union(C, D)
```

```
A  B  C  E  D  F
G
```

```
<table>
<thead>
<tr>
<th>id</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>123</td>
<td>123</td>
<td>123</td>
<td>456</td>
<td>123</td>
<td>456</td>
<td>456</td>
<td>789</td>
</tr>
</tbody>
</table>

int[] ids:

<table>
<thead>
<tr>
<th>id</th>
<th>123</th>
<th>123</th>
<th>123</th>
<th>456</th>
<th>123</th>
<th>456</th>
<th>456</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>123</td>
<td>123</td>
<td>123</td>
<td>456</td>
<td>123</td>
<td>456</td>
<td>789</td>
</tr>
<tr>
<td>1</td>
<td>456</td>
<td>456</td>
<td>456</td>
<td>456</td>
<td>456</td>
<td>456</td>
<td>456</td>
</tr>
<tr>
<td>2</td>
<td>456</td>
<td>456</td>
<td>456</td>
<td>456</td>
<td>456</td>
<td>456</td>
<td>456</td>
</tr>
<tr>
<td>3</td>
<td>456</td>
<td>456</td>
<td>456</td>
<td>456</td>
<td>456</td>
<td>456</td>
<td>456</td>
</tr>
<tr>
<td>4</td>
<td>456</td>
<td>456</td>
<td>456</td>
<td>456</td>
<td>456</td>
<td>456</td>
<td>456</td>
</tr>
<tr>
<td>5</td>
<td>456</td>
<td>456</td>
<td>456</td>
<td>456</td>
<td>456</td>
<td>456</td>
<td>456</td>
</tr>
<tr>
<td>6</td>
<td>456</td>
<td>456</td>
<td>456</td>
<td>456</td>
<td>456</td>
<td>456</td>
<td>456</td>
</tr>
<tr>
<td>7</td>
<td>456</td>
<td>456</td>
<td>456</td>
<td>456</td>
<td>456</td>
<td>456</td>
<td>456</td>
</tr>
<tr>
<td>8</td>
<td>456</td>
<td>456</td>
<td>456</td>
<td>456</td>
<td>456</td>
<td>456</td>
<td>456</td>
</tr>
<tr>
<td>9</td>
<td>456</td>
<td>456</td>
<td>456</td>
<td>456</td>
<td>456</td>
<td>456</td>
<td>456</td>
</tr>
<tr>
<td>10</td>
<td>456</td>
<td>456</td>
<td>456</td>
<td>456</td>
<td>456</td>
<td>456</td>
<td>456</td>
</tr>
<tr>
<td>11</td>
<td>456</td>
<td>456</td>
<td>456</td>
<td>456</td>
<td>456</td>
<td>456</td>
<td>456</td>
</tr>
<tr>
<td>12</td>
<td>456</td>
<td>456</td>
<td>456</td>
<td>456</td>
<td>456</td>
<td>456</td>
<td>456</td>
</tr>
<tr>
<td>13</td>
<td>456</td>
<td>456</td>
<td>456</td>
<td>456</td>
<td>456</td>
<td>456</td>
<td>456</td>
</tr>
<tr>
<td>14</td>
<td>456</td>
<td>456</td>
<td>456</td>
<td>456</td>
<td>456</td>
<td>456</td>
<td>456</td>
</tr>
<tr>
<td>15</td>
<td>456</td>
<td>456</td>
<td>456</td>
<td>456</td>
<td>456</td>
<td>456</td>
<td>456</td>
</tr>
</tbody>
</table>
```
Disjoint Sets: Runtime

- Feedback from reading quiz: “can we make union() constant time?”

<table>
<thead>
<tr>
<th></th>
<th>find</th>
<th>union</th>
</tr>
</thead>
<tbody>
<tr>
<td>QuickFind</td>
<td>Θ(1)</td>
<td>Θ(N)</td>
</tr>
</tbody>
</table>
Lecture Outline

❖ Disjoint Set ADT

❖ QuickFind Data Structure

❖ QuickUnion Data Structure

❖ WeightedQuickUnion Data Structure
 ▪ Path Compression
QuickUnion Data Structure

- Fundamental idea:
 - QuickFind tracks each element’s ID
 - QuickFind tracks each element’s parent. Only the root has an ID

```
find(A) == 123
find(B) == 123
find(A) == find(B)
find(C) != find(D)
```
QuickUnion: Representation

- Like the binary heap, we can represent QuickUnion as an array
 - Note: we represent ids as negative numbers to clarify that they’re not indices

```
int[] parents = {-123, 0, 0, -456, 2, 3, -789};
```

```
A (123)  B
      |    
      v    
    C     E
       |    
      v    
    D (456)  F
       |    
      v    
    G (789)
```
QuickUnion: Union

How does this data structure implement the union operation?

```
union(F, C):
    find(C)
    move under F
```

Note: One find() inside union().
What are QuickUnion’s runtimes?
 (do not include the runtime for the find() call that union() requires)

<table>
<thead>
<tr>
<th></th>
<th>find</th>
<th>union excludes find</th>
</tr>
</thead>
<tbody>
<tr>
<td>QuickFind</td>
<td>Θ(1)</td>
<td>Θ(N)</td>
</tr>
<tr>
<td>QuickUnion</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A. Θ(N) / Θ(1)
B. Θ(N) / O(1)
C. O(N) / Θ(1)
D. O(N) / O(1)
E. I’m not sure ...
Worst-case QuickUnion

union(A, B)
union(B, C)
union(C, D)
union(D, E)
union(E, F)
union(F, G)
...

🤔 If only I could keep these trees (semi-)balanced
Lecture Outline

❖ Disjoint Set ADT

❖ QuickFind Data Structure

❖ QuickUnion Data Structure

❖ WeightedQuickUnion Data Structure
 ▪ Path Compression
WeightedQuickUnion

- QuickUnion always picked the same argument (the second argument) to become the child in the unioned structure.

- QuickUnion only found the root of the second argument.

- Instead, let’s:
 - Pick the smaller tree to be the new child.
 - Add the new child to the root.
WeightedQuickUnion: Union

- Pick the smaller tree to be the new child
- Add the new child to the root

```
union(A, B)
union(B, C)
union(C, D)
union(D, E)
union(E, F)
union(F, G)
...```
WeightedQuickUnion: Union

- Pick the smaller tree to be the new child
- Add the new child to the root
WeightedQuickUnion: Representation

❖ Need to store the *number of nodes* (or “weight”) of each tree

❖ Don’t need to store the root’s ID; we can hash the element as needed

❖ Now we can store the weight there instead!
  ▪ However, we still use negative values to indicate they’re not indices

![Diagram of a tree with elements and their corresponding weights]

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>int[] parents</th>
</tr>
</thead>
<tbody>
<tr>
<td>-4 0 0 -2 2 3</td>
</tr>
<tr>
<td>0 1 2 3 4 5</td>
</tr>
<tr>
<td>6</td>
</tr>
</tbody>
</table>
WeightedQuickUnion: Performance

- union()’s runtime is still dependent on find()’s runtime, which is a function of the tree’s height

```python
union(e1, e2):
 find(e1)
 find(e2)
 move lighter root under heavier root
```

- What’s the worst-case height for WeightedQuickUnion?
WeightedQuickUnion: Performance

- Consider the worst case where the tree height grows as fast as possible

<table>
<thead>
<tr>
<th>N</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
WeightedQuickUnion: Performance

- Consider the worst case where the tree height grows as fast as possible

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

```
0
 1
```
WeightedQuickUnion: Performance

- Consider the worst case where the tree height grows as fast as possible

<table>
<thead>
<tr>
<th>N</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>?</td>
</tr>
</tbody>
</table>
WeightedQuickUnion: Performance

- Consider the worst case where the tree height grows as fast as possible

<table>
<thead>
<tr>
<th>N</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>
WeightedQuickUnion: Performance

- Consider the worst case where the tree height grows as fast as possible

```
N H
1 0
2 1
4 2
8 ?
```
**WeightedQuickUnion: Performance**

- Consider the worst case where the tree height grows as fast as possible

<table>
<thead>
<tr>
<th>N</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
</tr>
</tbody>
</table>
WeightedQuickUnion: Performance

- Consider the worst case where the tree height grows as fast as possible

- Worst case tree height is $\Theta(\log N)$
Why Weights Instead of Heights?

- We used the number of items in a tree to decide upon the root

- Why not use the height of the tree?
  - HeightedQuickUnion’s runtime is asymptotically the same: $\Theta(\log(N))$
  - It’s easier to track weights than heights
WeightedQuickUnion Runtime

<table>
<thead>
<tr>
<th></th>
<th>find</th>
<th>union excludes find(s)</th>
<th>union includes find(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>QuickFind</td>
<td>$\Theta(1)$</td>
<td>$\Theta(N)$</td>
<td>N/A</td>
</tr>
<tr>
<td>QuickUnion</td>
<td>$h = O(N)$</td>
<td>$\Theta(1)$</td>
<td>$O(N)$</td>
</tr>
<tr>
<td>WeightedQuickUnion</td>
<td>$h = \Theta(\log N)$</td>
<td>$\Theta(1)$</td>
<td>$\Theta(\log N)$</td>
</tr>
</tbody>
</table>

- There’s one final optimization we can make: path compression
Lecture Outline

❖ Disjoint Set ADT

❖ QuickFind Data Structure

❖ QuickUnion Data Structure

❖ WeightedQuickUnion Data Structure
  ▪ Path Compression
Modifying Data Structures To Preserve Invariants

❖ Thus far, the modifications we’ve studied are designed to *preserve invariants* (aka “repair the data structure”)
  ▪ **Tree rotations**: preserve LLRB tree invariants (eg, a right-leaning red edge)
  ▪ **Promoting keys / splitting leaves**: preserve B-tree invariants (eg, L+1 keys stored in a leaf node)

❖ Notably, the modifications don’t improve runtime between identical method calls
  ▪ If bst.find(x) takes 2 µs, we expect future calls to take ~2 µs
  ▪ If we call bst.find(x) M times, the total runtime should be 2*M µs
Modifying Data Structures for Future Gains

- Path compression is entirely different: we are modifying the tree structure to *improve future performance*
  - If `wquWithPathCompression.find(x)` takes 2 µs, we expect future calls to take <2 µs
  - If we call `wquWithPathCompression.find(x)` M times, the total runtime should be <2*M µs (and possibly even << 2*M µs)
Path Compression: Idea

❖ This is the worst-case topology if we use WeightedQuickUnion

❖ Idea: When we do find(15), move all visited nodes under the root
  ▪ Additional cost is insignificant (same order of growth)
Path Compression: Example

- This is the worst-case topology if we use WeightedQuickUnion

- Idea: When we do find(15), move all visited nodes under the root
  - Doesn’t meaningfully change runtime for this invocation of find(15), but subsequent find(15)s (and subsequent find(14)s and find(12)s and ...) will be faster
Path Compression: Details and Runtime

- Run path compression on every find()!
  - Including the find()s that are invoked as part of a union()

- Understanding the performance of $M > 1$ operations requires *amortized analysis*

- We won’t go into it here, but we’ve seen it before
  - It’s how we assert that appending to an array is “O(1) on average” if we double whenever we resize
Path Compression: Runtime

- M find()s on WeightedQuickUnion requires takes $\Theta(M \log N)$

... but M find()s on WeightedQuickUnionWithPathCompression takes $O(M \log^* N)$!

- $\log^* n$ is the “iterated log”: the number of times you need to apply log to $n$ before it’s $\leq 1$
- Note: $\log^*$ is a loose bound
Path Compression: Runtime

- Path compression results in find()s and union()s that are very very close to (amortized) constant time
  - $\log^*$ is less than 5 for any realistic input
  - If $M$ find()s/union()s on $N$ nodes is $O(M \log^* N)$ and $\log^* N \approx 5$, then find()/union()s amortizes to $O(1)$!

<table>
<thead>
<tr>
<th>$N$</th>
<th>$\log^* N$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>16</td>
<td>3</td>
</tr>
<tr>
<td>$65536$</td>
<td>4</td>
</tr>
<tr>
<td>$2^{65536}$</td>
<td>5</td>
</tr>
</tbody>
</table>

Number of atoms in the known universe is $2^{256}$ish
tl;dr

Disjoint Sets ADT implementations:

<table>
<thead>
<tr>
<th></th>
<th>find</th>
<th>union excludes find(s)</th>
<th>union includes find(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>QuickFind</td>
<td>$\Theta(1)$</td>
<td>$\Theta(N)$</td>
<td>N/A</td>
</tr>
<tr>
<td>QuickUnion</td>
<td>$h = O(N)$</td>
<td>$\Theta(1)$</td>
<td>$O(N)$</td>
</tr>
<tr>
<td>WeightedQuickUnion</td>
<td>$h = \Theta(\log N)$</td>
<td>$\Theta(1)$</td>
<td>$\Theta(\log N)$</td>
</tr>
<tr>
<td>WQU + Path Compression</td>
<td>$h = O(1)^*$</td>
<td>$O(1)^*$</td>
<td>$O(1)^*$</td>
</tr>
</tbody>
</table>

* amortized

Kruskal’s Algorithm: $O(V \times \text{union} + E \times \text{find}) = O(V + E \log V)$