Disjoint Sets CSE 373 Winter 2020

Instructor: Hannah C. Tang

Teaching Assistants:

Aaron Johnston	Ethan Knutson
Amanda Park	Farrell Fileas
Anish Velagapudi	Howard Xiao
Brian Chan	Jade Watkins
Elena Spasova	Lea Quan

Nathan Lipiarski Sam Long Yifan Bai Yuma Tou

Announcements

- HW7 released; due Fri, Feb 28
 - HW7 exercises a different set of skills: reading/understanding a large codebase and figuring out where to plug in
 - Read the spec carefully; HW7 substantially longer than last quarter's because we added a ton of hints

Feedback from Reading Quiz

- When do we use Disjoint Sets?
- Can we make union() constant time?
- How did you choose the values for the ids?

Lecture Outline

- bisjoint Set ADT
 bisjoint Set
 bisjoint
 bisjoint
- QuickFind Data Structure
- QuickUnion Data Structure
- WeightedQuickUnion Data Structure
 - Path Compression

Disjoint Sets ADT

Disjoint Sets ADT. A

collection of elements and sets of those elements.

- An element can only belong to a single set.
- Each set is identified by a unique id.
- Sets can be combined/ connected/ unioned.

- The Disjoint Sets ADT has two operations:
 - find(e): gets the id of the element's set
 - union(e1, e2): combines the set containing e1 with the set containing e2
- Example: ability to travel to drive to a country
 - union(france, germany)
 - union(spain, france)
 - find(spain) == find(germany)?
 - union(england, france)

Disjoint Sets ADT

- The Disjoint Sets ADT has two operations:
 - find(e): gets the id of the element's set
 - union(e1, e2): combines the set containing e1 with the set containing e2
- Applications include percolation theory (computational chemistry) and Kruskal's algorithm
- Simplifying assumptions
 - We can map elements to indices quickly (see reading)
 - We know all the items in advance; they're all disconnected initially

An Observation ...

- Today's lecture on the data structures which implement the Disjoint Sets ADT is an interesting case study in data structure design and iterative design improvements
 - Dust off your metacognitive skills and pay attention to what stays the same and what changes between our 3 options

Lecture Outline

- Disjoint Set ADT
- * QuickFind Data Structure
- QuickUnion Data Structure
- WeightedQuickUnion Data Structure
 - Path Compression

QuickFind (review)

~	U
В	1
С	2
D	3
Е	4
F	5
G	6

t[] ids	123	123	123	456	123	456	789
	0	1	2	3	4	5	6

union(C, D)

QuickFind (review)

find(A)	==	123
find(B)	==	123
find(A)	==	find(B)
find(C)	! =	find(D)

union(C, D)

А	0
В	1
С	2
D	3
Е	4
F	5
G	6

int[] ids	123	123	123	456	123	456	789
	0	1	2	3	4	5	6
int[] ids	456	456	456	456	456	456	789
	0	1	2	3	4	5	6

Disjoint Sets: Runtime

Feedback from reading quiz: "can we make union() constant time?"

	find	union
QuickFind	Θ(1)	Θ(N)

Lecture Outline

- Disjoint Set ADT
- QuickFind Data Structure
- * QuickUnion Data Structure
- WeightedQuickUnion Data Structure
 - Path Compression

QuickUnion Data Structure

- Fundamental idea:
 - QuickFind tracks each element's ID
 - QuickFind tracks each element's *parent*. Only the root has an ID

QuickUnion: Representation

- * Like the binary heap, we can represent QuickUnion as an array
 - Note: we represent ids as negative numbers to clarify that they're not indices

QuickUnion: Union

* How does this data structure implement the union operation?

pollev.com/uwcse373

- What are QuickUnion's runtimes?
 - (do not include the runtime for the find() call that union() requires)

	find	union excludes find
QuickFind	Θ(1)	Θ(N)
QuickUnion		

- Α. Θ(Ν) / Θ(1)
- B. Θ(N) / O(1)
- c. O(N) / O(1)
 - D. O(N) / O(1)
 - E. I'm not sure ...

Worst-case QuickUnion

Worst-case Structure

🛞 If only I could keep these trees (semi-?)balanced

Lecture Outline

- Disjoint Set ADT
- QuickFind Data Structure
- QuickUnion Data Structure
- * WeightedQuickUnion Data Structure
 - Path Compression

WeightedQuickUnion

- QuickUnion always picked the same argument (the second argument) to become the child in the unioned structure
- QuickUnion only found the root of the second argument
- Instead, let's:
 - Pick the smaller tree to be the new child
 - Add the new child to the root

WeightedQuickUnion: Union

- Pick the smaller tree to be the new child
- * Add the new child to the root

WeightedQuickUnion: Union

- Pick the smaller tree to be the new child
- * Add the new child to the root

WeightedQuickUnion: Representation

- Need to store the number of nodes (or "weight") of each tree
- Α 0 Don't need to store the root's ID; we can hash the B 1 element as needed 2 С Now we can store the weight there instead! 3 D However, we still use negative values to indicate they're not Ε 4 indices

 union()'s runtime is still dependent on find()'s runtime, which is a function of the tree's height

What's the worst-case height for WeightedQuickUnion?

N	Н
1	0

N	Н
1	0
2	1

Ν	Н
1	0
2	1
4	?

Ν	Н
1	0
2	1
4	2

Ν	Н
1	0
2	1
4	2
8	?

Ν	Н
1	0
2	1
4	2
8	3

- Consider the worst case where the tree height grows as fast as possible
- н Ν Worst case tree height is Θ(log N)

Why Weights Instead of Heights?

- We used the number of items in a tree to decide upon the root
- Why not use the height of the tree?
 - HeightedQuickUnion's runtime is asymptotically the same: O(log(N))
 - It's easier to track weights than heights

WeightedQuickUnion Runtime

	find	union excludes find(s)	union includes find(s)
QuickFind	Θ(1)	Θ(N)	N/A
QuickUnion	h = O(N)	Θ(1)	O(N)
WeightedQuickUnion	$h = \Theta(\log N)$	Θ(1)	Θ(log N)

There's one final optimization we can make: path compression

Lecture Outline

- Disjoint Set ADT
- QuickFind Data Structure
- QuickUnion Data Structure
- WeightedQuickUnion Data Structure
 - Path Compression

Modifying Data Structures To Preserve Invariants

- Thus far, the modifications we've studied are designed to preserve invariants (aka "repair the data structure")
 - Tree rotations: preserve LLRB tree invariants (eg, a right-leaning red edge)
 - Promoting keys / splitting leaves: preserve B-tree invariants (eg, L+1 keys stored in a leaf node)
- Notably, the modifications don't improve runtime between identical method calls
 - If bst.find(x) takes 2 μs, we expect future calls to take ~2 μs
 - If we call bst.find(x) M times, the total runtime should be 2*M μs

Modifying Data Structures for Future Gains

- Path compression is entirely different: we are modifying the tree structure to *improve future performance*
 - If wquWithPathCompression.find(x) takes 2 μs, we expect future calls to take <2 μs
 - If we call wquWithPathCompression.find(x) M times, the total runtime should be <2*M μs (and possibly even << 2*M μs)

Path Compression: Idea

This is the worst-case topology if we use WeightedQuickUnion

- Idea: When we do find(15), move all visited nodes under the root
 - Additional cost is insignificant (same order of growth)

Path Compression: Example

This is the worst-case topology if we use WeightedQuickUnion

- Idea: When we do find(15), move all visited nodes under the root
 - Doesn't meaningfully change runtime for *this* invocation of find(15), but subsequent find(15)s (and subsequent find(14)s and find(12)s and ...) will be faster

Path Compression: Details and Runtime

- Run path compression on every find()!
 - Including the find()s that are invoked as part of a union()

- Understanding the performance of M>1 operations requires amortized analysis
- We won't go into it here, but we've seen it before
 - It's how we assert that appending to an array is "O(1) on average" if we double whenever we resize

Path Compression: Runtime

M find()s on WeightedQuickUnion requires takes Θ(M log N)

- * ... but M find()s on WeightedQuickUnionWithPathCompression takes O(M log*N)!
 - log*n is the "iterated log": the number of times you need to apply log to n before it's <=1</p>
 - Note: log* is a loose bound

Path Compression: Runtime

- Path compression results in find()s and union()s that are very very close to (amortized) constant time
 - Iog* is less than 5 for any realistic input
 - If M find()s/union()s on N nodes is O(M log*N) and $\log^* N \approx 5$, then find()/union()s amortizes to O(1)! 💮

tl;dr

Disjoint Sets ADT implementations:

	find	union excludes find(s)	union includes find(s)
QuickFind	Θ(1)	Θ(N)	N/A
QuickUnion	h = O(N)	Θ(1)	O(N)
WeightedQuickUnion	$h = \Theta(\log N)$	Θ(1)	Θ(log N)
WQU + Path Compression	h = O(1)*	O(1)*	O(1)*

* amortized

Kruskal's Algorithm: O(V * union + E * find) = O(V + E logV)