
CSE373, Winter 2020L17: Minimum Spanning Trees

Minimum Spanning Trees
CSE 373 Winter 2020

Instructor: Hannah C. Tang

Teaching Assistants:

Aaron Johnston Ethan Knutson Nathan Lipiarski

Amanda Park Farrell Fileas Sam Long

Anish Velagapudi Howard Xiao Yifan Bai

Brian Chan Jade Watkins Yuma Tou

Elena Spasova Lea Quan

CSE373, Winter 2020L17: Minimum Spanning Trees

Announcements
❖ HW7 coming soon

▪ HW6 and HW7 will be out concurrently; please prefix Piazza posts with “HW6:
…” or “HW7: …”

▪ HW7 exercises a different set of skills: reading/understanding a large codebase
and figuring out where to plug in

▪ Read the spec carefully; HW7 substantially longer than last quarter’s because
we added a ton of hints

❖ 20sp instructors want current students to TA next quarter!

▪ Check Piazza or course webpage for more details

❖ Did you find the midterm review session useful? Come to a workshop!

▪ Wed 2:30-3:20 and Fri 11:30-12:20 @ CSE 203

❖ Cite your sources. PLEASE. It’s a crucial habit to get into.

3

CSE373, Winter 2020L17: Minimum Spanning Trees

Feedback from Reading Quiz

❖ I don’t understand the cut property and/or how it relates to
MSTs

❖ Will we be studying non-greedy algorithms later?

❖ How is a MST different from a weighted tree?

4

CSE373, Winter 2020L17: Minimum Spanning Trees

pollev.com/uwcse373

How’d the midterm go?

A. Crushed it

B. Tough, but I think it went ok

C. Coulda done better

D. Ugh

E. 😭

F. I’m not sure …

5

CSE373, Winter 2020L17: Minimum Spanning Trees

Lecture Outline

❖ Introduction to Minimum Spanning Trees

❖ Prim’s Algorithm

❖ Kruskal’s Algorithm

❖ Applications of MSTs

6

CSE373, Winter 2020L17: Minimum Spanning Trees

Problem Statement

❖ Your friend at the electric company needs to connect all these
cities to the power plant

❖ She knows the cost to lay wires between any pair of cities and
wants the cheapest way to ensure electricity gets to every city

❖ Assume:

▪ All edge weights are positive

▪ The graph is undirected

7

A

B

D

E

C

3
6

11
1

4

5

8

9
107

2

CSE373, Winter 2020L17: Minimum Spanning Trees

Solution Statement

❖ We need a set of edges such that:

▪ Every vertex touches at least one edges (“the edges span the graph”)

▪ The graph using just those edges is connected

▪ The total weight of these edges is minimized

❖ Claim: The set of edges we pick never forms a cycle. Why?

▪ V-1 edges is the exact number of edges
to connect all vertices

▪ Taking away 1 edge breaks
connectiveness

▪ Adding 1 edge makes a cycle

8

A

B

D

E

C

3
6

1

4

2

CSE373, Winter 2020L17: Minimum Spanning Trees

pollev.com/uwcse373

❖ Which of these are trees?

A. Tree / Not-Tree / Not-Tree

B. Tree / Tree / Not-Tree

C. Tree / Not-Tree / Tree

D. Tree / Tree / Tree

E. I’m not sure …

9

A

B

D

E
C

3
2

1

4

A

B

D

E
C

2

1

4

A

B

D

E
C

3
2

1

4

5

CSE373, Winter 2020L17: Minimum Spanning Trees

Review (AGAIN?!?!): The Tree Data Structure

❖ A Tree is a collection of nodes; each node has <= 1 parent and

>= 0 children

▪ Root node: the “top” of the tree and the

only node with no parent

▪ Leaf node: a node with no children

▪ Edge: the connection between a parent

and child two nodes

▪ There is exactly one path between

any pair of nodes

10

A tree is a connected
acyclic graph!

Nodes

Edges Purple

Green Red

Blue Indigo OrangeYellow

Pink

CSE373, Winter 2020L17: Minimum Spanning Trees

Solution Statement (v2)

❖ We need a set of edges such that Minimum Spanning Tree:

▪ Every vertex touches at least one edges (“the edges span the graph”)

▪ The graph using just those edges is connected

▪ The total weight of these edges is minimized

11

A

B

D

E

C

3
6

1

4

2

A

B

D

E

C

3

4

9
107

CSE373, Winter 2020L17: Minimum Spanning Trees

Lecture Outline

❖ Minimum Spanning Trees

❖ Prim’s Algorithm

❖ Kruskal’s Algorithm

❖ Applications of MSTs

12

CSE373, Winter 2020L17: Minimum Spanning Trees

B
C

A

2

4

3
1

D

Cycle Property

❖ Given any cycle, the heaviest edge along it must NOT be in the
MST

13

CSE373, Winter 2020L17: Minimum Spanning Trees

B
C

A

2

4

3
1

D

Cut Property

❖ Given any cut, the minimum-weight crossing edge must be IN
the MST

▪ A cut is a partitioning of the vertices into two sets

▪ (other crossing edges can also be in the MST)

14

🤔 If only we knew of an algorithm that repeatedly divided
the vertices into two sets and chose the minimum edge

between the two sets …

B
C

A

2

4

3
1

D

CSE373, Winter 2020L17: Minimum Spanning Trees

Graph Algorithms We Know

❖ DFS

▪ Point-to-point connectivity verification

❖ BFS

▪ All-pairs shortest paths in an unweighted graph

❖ Dijkstra’s

▪ All-pairs shortest paths in a weighted graph

❖ A* Search

▪ Point-to-point shortest path in a weighted graph

16Demos: https://qiao.github.io/PathFinding.js/visual/

https://qiao.github.io/PathFinding.js/visual/

CSE373, Winter 2020L17: Minimum Spanning Trees

Dijkstra’s Review

❖ Dijkstra’s grows the set of
“vertices for which we know
the shortest path from s”

❖ Dijkstra’s visits vertices in
order of distance from the
source

❖ Dijkstra’s relaxes an edge
based on its distance from
the source

17

dijkstras(Node s, Graph g) {

PriorityQueue unvisited;

unvisited.addAll(g.allNodes(), ∞)

unvisited.changePriority(s, 0);

Map<Node, Integer> distances;

Map<Node, Node> previousNode

while (! unvisited.isEmpty()) {

Node n = unvisited.removeMin();

for (Node i : n.neighbors) {

if (distances[i]

< distances[n]

+ g.edgeWeight(n, i)) {

continue;

} else {

distances[i] = distances[n]

+ g.edgeWeight(n, i);

unvisited.changePriority(i,

distances[i]);

previousNode[i] = n;

}}}}

B
C

A

2

4

3
1

D

CSE373, Winter 2020L17: Minimum Spanning Trees

Adapting Dijkstra’s Algorithm

❖ MSTs don’t have a “source vertex”

▪ Replace “vertices for which we know the shortest path from s” with
“vertices in the MST-under-construction”

▪ Visit vertices in order of distance from MST-under-construction

▪ Relax an edge based on its distance from source

❖ Note:

▪ Prim’s algorithm was developed in 1930 by Votěch Jarník, then
independently rediscovered by Robert Prim in 1957 and Dijkstra in
1959. It’s sometimes called Jarník’s, Prim-Jarník, or DJP

18

CSE373, Winter 2020L17: Minimum Spanning Trees

Prim’s Algorithm

19

dijkstras(Node s, Graph g) {

PriorityQueue unvisited;

unvisited.addAll(g.allNodes(), ∞)

unvisited.changePriority(s, 0);

Map<Node, Integer> distances;

Map<Node, Node> previousNode

while (! unvisited.isEmpty()) {

Node n = unvisited.removeMin();

for (Node i : n.neighbors) {

if (distances[i]

< distances[n]

+ g.edgeWeight(n, i)) {

continue;

} else {

distances[i] = distances[n]

+ g.edgeWeight(n, i);

unvisited.changePriority(i,

distances[i]);

previousNode[i] = n;

}}}}

prims(Node s, Graph g) {

PriorityQueue unvisited;

unvisited.addAll(g.allNodes(), ∞)

unvisited.changePriority(s, 0);

Map<Node, Integer> distances;

Map<Node, Node> previousNode

while (! unvisited.isEmpty()) {

Node n = unvisited.removeMin();

for (Node i : n.neighbors) {

if (distances[i]

< g.edgeWeight(n, i)) {

continue;

} else {

distances[i] =

g.edgeWeight(n, i);

unvisited.changePriority(i,

g.edgeWeight(n, i));

previousNode[i] = n;

}}}}

CSE373, Winter 2020L17: Minimum Spanning Trees

Your Turn

20

A

B

D

E

C

3
6

11
1

4

5

8

9
107

2
prims(Node s, Graph g) {

PriorityQueue unvisited;

unvisited.addAll(g.allNodes(), ∞)

unvisited.changePriority(s, 0);

Map<Node, Integer> distances;

Map<Node, Node> previousNode

while (! unvisited.isEmpty()) {

Node n = unvisited.removeMin();

for (Node i : n.neighbors) {

if (distances[i]

< g.edgeWeight(n, i)) {

continue;

} else {

distances[i] =

g.edgeWeight(n, i);

unvisited.changePriority(i,

distances[i]);

previousNode[i] = n;

}}}}

Node distances previous
Node

A

B

C

D

E

F

CSE373, Winter 2020L17: Minimum Spanning Trees

Prim’s Demos and Visualizations

❖ Dijkstra’s Visualization

▪ https://www.youtube.com/watch?v=1oiQ0hrVwJk

▪ Dijkstra’s proceeds radially from its source, because it chooses edges
by path length from source

❖ Prim’s Visualization

▪ https://www.youtube.com/watch?v=6uq0cQZOyoY

▪ Prim’s jumps around the graph (the fringe), because it chooses edges
by edge weight (there’s no source)

❖ Demo:
https://docs.google.com/presentation/d/1GPizbySYMsUhnXSX
KvbqV4UhPCvrt750MiqPPgU-
eCY/present?ueb=true&slide=id.g9a60b2f52_0_205

21

https://www.youtube.com/watch?v=1oiQ0hrVwJk
https://www.youtube.com/watch?v=6uq0cQZOyoY
https://docs.google.com/presentation/d/1GPizbySYMsUhnXSXKvbqV4UhPCvrt750MiqPPgU-eCY/present?ueb=true&slide=id.g9a60b2f52_0_205

CSE373, Winter 2020L17: Minimum Spanning Trees

Prim’s Algorithm: Runtime

❖ Assuming a binary heap implementation

❖ Runtime: O(V log V + V log V + E log V) = O(V log V + E log V)

Operations Cost per
operation

Total Cost

PQ add V O(log V) O(V log V)

PQ removeMin V O(log V) O(V log V)

PQ changePriority E O(log V) O(E log V)

CSE373, Winter 2020L17: Minimum Spanning Trees

Lecture Outline

❖ Minimum Spanning Trees

❖ Prim’s Algorithm

❖ Kruskal’s Algorithm

❖ Applications of MSTs

23

CSE373, Winter 2020L17: Minimum Spanning Trees

A Different Approach

❖ Prim’s thinks vertex by vertex

▪ Eg, add the closest vertex to the currently reachable set

❖ What if you think edge by edge instead?

▪ Eg, start from the lightest edge; add it if it connects new things to each other
(don’t add it if it would create a cycle)

CSE373, Winter 2020L17: Minimum Spanning Trees

Your Turn

❖ Can you find an MST in this graph by considering edges in
sorted order?

25

A

B

D

E

C

3
6

11
1

4

5

8

9
107

2

A

B

D

E

C

3
6

1

4

2

CSE373, Winter 2020L17: Minimum Spanning Trees

Kruskal’s Algorithm

❖ Visualization:
https://www.youtube.com/watch?v=ggLyKfBTABo

❖ Conceptual demo:
https://docs.google.com/presentation/d/1RhRSYs9Jbc335P24p7vR-
6PLXZUl-
1EmeDtqieL9ad8/present?ueb=true&slide=id.g375bbf9ace_0_645

26

kruskals(Graph g) {

msts = {}

for (n in g.allNodes()) {

msts.add(makeMST(n));

}

finalMST = {};

for ((u, v) in sort(g.allEdges()) {

uMST = msts.find(u);

vMST = msts.find(v);

if (uMST != vMST) {

finalMST.add(u, v);

msts.union(uMST, vMST);

}}}

https://www.youtube.com/watch?v=ggLyKfBTABo
https://docs.google.com/presentation/d/1RhRSYs9Jbc335P24p7vR-6PLXZUl-1EmeDtqieL9ad8/present?ueb=true&slide=id.g375bbf9ace_0_645

CSE373, Winter 2020L17: Minimum Spanning Trees

Kruskal’s Algorithm: Runtime

❖ Assuming an unknown data structure for “msts”, Kruskal’s
runtime looks like:

❖ Runtime: O(V * union + E * find)

Operations Cost per
operation

Total Cost

add V ?

find 2E ?

union V-1 ?

CSE373, Winter 2020L17: Minimum Spanning Trees

Lecture Outline

❖ Minimum Spanning Trees

❖ Prim’s Algorithm

❖ Kruskal’s Algorithm

❖ Applications of MSTs

28

CSE373, Winter 2020L17: Minimum Spanning Trees

Applications of MSTs

❖ Handwriting recognition

▪ http://dspace.mit.edu/bitstrea
m/handle/1721.1/16727/4355
1593-MIT.pdf;sequence=2

❖ Medical imaging

▪ e.g. arrangement of nuclei in
cancer cells

For more, see: http://www.ics.uci.edu/~eppstein/gina/mst.html

http://dspace.mit.edu/bitstream/handle/1721.1/16727/43551593-MIT.pdf;sequence=2
http://www.ics.uci.edu/~eppstein/gina/mst.html

CSE373, Winter 2020L17: Minimum Spanning Trees

tl;dr

❖ Minimum Spanning Trees are a subgraph that “covers” all the
vertices but not all the edges

▪ Lots of cool applications!

❖ Two algorithms for finding MSTs:

▪ Prim’s and Kruskal’s

▪ Prim’s is reasonably fast greedy algorithm that looks like Dijkstra’s

▪ Same with Kruskal’s, but we need another data structure before we
can complete it

30

