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Announcements
❖ HW7 coming soon 

▪ HW6 and HW7 will be out concurrently; please prefix Piazza posts with “HW6: 
…” or “HW7: …”

▪ HW7 exercises a different set of skills: reading/understanding a large codebase 
and figuring out where to plug in

▪ Read the spec carefully; HW7 substantially longer than last quarter’s because 
we added a ton of hints

❖ 20sp instructors want current students to TA next quarter!

▪ Check Piazza or course webpage for more details

❖ Did you find the midterm review session useful?  Come to a workshop!

▪ Wed 2:30-3:20 and Fri 11:30-12:20 @ CSE 203

❖ Cite your sources.  PLEASE.  It’s a crucial habit to get into.
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Feedback from Reading Quiz

❖ I don’t understand the cut property and/or how it relates to 
MSTs

❖ Will we be studying non-greedy algorithms later?

❖ How is a MST different from a weighted tree?
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pollev.com/uwcse373

How’d the midterm go?

A. Crushed it

B. Tough, but I think it went ok

C. Coulda done better

D. Ugh

E. 😭

F. I’m not sure …
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Lecture Outline

❖ Introduction to Minimum Spanning Trees

❖ Prim’s Algorithm

❖ Kruskal’s Algorithm

❖ Applications of MSTs
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Problem Statement

❖ Your friend at the electric company needs to connect all these 
cities to the power plant

❖ She knows the cost to lay wires between any pair of cities and 
wants the cheapest way to ensure electricity gets to every city

❖ Assume:

▪ All edge weights are positive

▪ The graph is undirected
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Solution Statement

❖ We need a set of edges such that:

▪ Every vertex touches at least one edges (“the edges span the graph”)

▪ The graph using just those edges is connected

▪ The total weight of these edges is minimized

❖ Claim: The set of edges we pick never forms a cycle. Why?

▪ V-1 edges is the exact number of edges
to connect all vertices

▪ Taking away 1 edge breaks
connectiveness 

▪ Adding 1 edge makes a cycle
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pollev.com/uwcse373

❖ Which of these are trees?

A. Tree / Not-Tree / Not-Tree

B. Tree / Tree / Not-Tree

C. Tree / Not-Tree / Tree

D. Tree / Tree / Tree

E. I’m not sure …
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Review (AGAIN?!?!): The Tree Data Structure

❖ A Tree is a collection of nodes; each node has <= 1 parent and 

>= 0 children

▪ Root node: the “top” of the tree and the

only node with no parent

▪ Leaf node: a node with no children

▪ Edge: the connection between a parent

and child two nodes

▪ There is exactly one path between

any pair of nodes

10

A tree is a connected 
acyclic graph!
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Solution Statement (v2)

❖ We need a set of edges such that Minimum Spanning Tree:

▪ Every vertex touches at least one edges (“the edges span the graph”)

▪ The graph using just those edges is connected

▪ The total weight of these edges is minimized
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Lecture Outline

❖ Minimum Spanning Trees

❖ Prim’s Algorithm

❖ Kruskal’s Algorithm

❖ Applications of MSTs
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Cycle Property

❖ Given any cycle, the heaviest edge along it must NOT be in the 
MST
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Cut Property

❖ Given any cut, the minimum-weight crossing edge must be IN 
the MST

▪ A cut is a partitioning of the vertices into two sets

▪ (other crossing edges can also be in the MST)
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🤔 If only we knew of an algorithm that repeatedly divided 
the vertices into two sets and chose the minimum edge 

between the two sets …
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Graph Algorithms We Know

❖ DFS

▪ Point-to-point connectivity verification

❖ BFS

▪ All-pairs shortest paths in an unweighted graph

❖ Dijkstra’s

▪ All-pairs shortest paths in a weighted graph

❖ A* Search

▪ Point-to-point shortest path in a weighted graph

16Demos: https://qiao.github.io/PathFinding.js/visual/

https://qiao.github.io/PathFinding.js/visual/
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Dijkstra’s Review

❖ Dijkstra’s grows the set of
“vertices for which we know
the shortest path from s”

❖ Dijkstra’s visits vertices in
order of distance from the
source

❖ Dijkstra’s relaxes an edge
based on its distance from
the source
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dijkstras(Node s, Graph g) {

PriorityQueue unvisited;

unvisited.addAll(g.allNodes(), ∞)

unvisited.changePriority(s, 0);

Map<Node, Integer> distances;

Map<Node, Node> previousNode

while (! unvisited.isEmpty()) {

Node n = unvisited.removeMin();

for (Node i : n.neighbors) {

if (distances[i]

< distances[n]  

+ g.edgeWeight(n, i)) {

continue;

} else {

distances[i] = distances[n] 

+ g.edgeWeight(n, i);

unvisited.changePriority(i,

distances[i]);

previousNode[i] = n;

}}}}
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Adapting Dijkstra’s Algorithm

❖ MSTs don’t have a “source vertex”

▪ Replace “vertices for which we know the shortest path from s” with 
“vertices in the MST-under-construction”

▪ Visit vertices in order of distance from MST-under-construction

▪ Relax an edge based on its distance from source

❖ Note:

▪ Prim’s algorithm was developed in 1930 by Votěch Jarník, then 
independently rediscovered by Robert Prim in 1957 and Dijkstra in 
1959.  It’s sometimes called Jarník’s, Prim-Jarník, or DJP
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Prim’s Algorithm

19

dijkstras(Node s, Graph g) {

PriorityQueue unvisited;

unvisited.addAll(g.allNodes(), ∞)

unvisited.changePriority(s, 0);

Map<Node, Integer> distances;

Map<Node, Node> previousNode

while (! unvisited.isEmpty()) {

Node n = unvisited.removeMin();

for (Node i : n.neighbors) {

if (distances[i]

< distances[n]  

+ g.edgeWeight(n, i)) {

continue;

} else {

distances[i] = distances[n] 

+ g.edgeWeight(n, i);

unvisited.changePriority(i,

distances[i]);

previousNode[i] = n;

}}}}

prims(Node s, Graph g) {

PriorityQueue unvisited;

unvisited.addAll(g.allNodes(), ∞)

unvisited.changePriority(s, 0);

Map<Node, Integer> distances;

Map<Node, Node> previousNode

while (! unvisited.isEmpty()) {

Node n = unvisited.removeMin();

for (Node i : n.neighbors) {

if (distances[i]

< g.edgeWeight(n, i)) {

continue;

} else {

distances[i] =

g.edgeWeight(n, i);

unvisited.changePriority(i,

g.edgeWeight(n, i));

previousNode[i] = n;

}}}}
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Your Turn
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prims(Node s, Graph g) {

PriorityQueue unvisited;

unvisited.addAll(g.allNodes(), ∞)

unvisited.changePriority(s, 0);

Map<Node, Integer> distances;

Map<Node, Node> previousNode

while (! unvisited.isEmpty()) {

Node n = unvisited.removeMin();

for (Node i : n.neighbors) {

if (distances[i]

< g.edgeWeight(n, i)) {

continue;

} else {

distances[i] = 

g.edgeWeight(n, i);

unvisited.changePriority(i,

distances[i]);

previousNode[i] = n;

}}}}
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Prim’s Demos and Visualizations

❖ Dijkstra’s Visualization

▪ https://www.youtube.com/watch?v=1oiQ0hrVwJk

▪ Dijkstra’s proceeds radially from its source, because it chooses edges 
by path length from source

❖ Prim’s Visualization

▪ https://www.youtube.com/watch?v=6uq0cQZOyoY

▪ Prim’s jumps around the graph (the fringe), because it chooses edges 
by edge weight (there’s no source)

❖ Demo: 
https://docs.google.com/presentation/d/1GPizbySYMsUhnXSX
KvbqV4UhPCvrt750MiqPPgU-
eCY/present?ueb=true&slide=id.g9a60b2f52_0_205
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https://www.youtube.com/watch?v=1oiQ0hrVwJk
https://www.youtube.com/watch?v=6uq0cQZOyoY
https://docs.google.com/presentation/d/1GPizbySYMsUhnXSXKvbqV4UhPCvrt750MiqPPgU-eCY/present?ueb=true&slide=id.g9a60b2f52_0_205
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Prim’s Algorithm: Runtime

❖ Assuming a binary heap implementation

❖ Runtime: O(V log V + V log V + E log V) = O(V log V + E log V)

# Operations Cost per 
operation

Total Cost

PQ add V O(log V) O(V log V)

PQ removeMin V O(log V) O(V log V)

PQ changePriority E O(log V) O(E log V)
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Lecture Outline

❖ Minimum Spanning Trees

❖ Prim’s Algorithm

❖ Kruskal’s Algorithm

❖ Applications of MSTs

23



CSE373, Winter 2020L17: Minimum Spanning Trees

A Different Approach

❖ Prim’s thinks vertex by vertex

▪ Eg, add the closest vertex to the currently reachable set

❖ What if you think edge by edge instead?

▪ Eg, start from the lightest edge; add it if it connects new things to each other 
(don’t add it if it would create a cycle)
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Your Turn

❖ Can you find an MST in this graph by considering edges in 
sorted order?
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Kruskal’s Algorithm

❖ Visualization:
https://www.youtube.com/watch?v=ggLyKfBTABo

❖ Conceptual demo: 
https://docs.google.com/presentation/d/1RhRSYs9Jbc335P24p7vR-
6PLXZUl-
1EmeDtqieL9ad8/present?ueb=true&slide=id.g375bbf9ace_0_645
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kruskals(Graph g) {

msts = {}

for (n in g.allNodes()) {

msts.add(makeMST(n));

}

finalMST = {};

for ((u, v) in sort(g.allEdges()) {

uMST = msts.find(u);

vMST = msts.find(v);

if (uMST != vMST) {

finalMST.add(u, v);

msts.union(uMST, vMST);

}}}

https://www.youtube.com/watch?v=ggLyKfBTABo
https://docs.google.com/presentation/d/1RhRSYs9Jbc335P24p7vR-6PLXZUl-1EmeDtqieL9ad8/present?ueb=true&slide=id.g375bbf9ace_0_645
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Kruskal’s Algorithm: Runtime

❖ Assuming an unknown data structure for “msts”, Kruskal’s 
runtime looks like:

❖ Runtime: O(V * union + E * find)

# Operations Cost per 
operation

Total Cost

add V ?

find 2E ?

union V-1 ?
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Lecture Outline

❖ Minimum Spanning Trees

❖ Prim’s Algorithm

❖ Kruskal’s Algorithm

❖ Applications of MSTs
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Applications of MSTs

❖ Handwriting recognition 

▪ http://dspace.mit.edu/bitstrea
m/handle/1721.1/16727/4355
1593-MIT.pdf;sequence=2

❖ Medical imaging

▪ e.g. arrangement of nuclei in 
cancer cells

For more, see: http://www.ics.uci.edu/~eppstein/gina/mst.html

http://dspace.mit.edu/bitstream/handle/1721.1/16727/43551593-MIT.pdf;sequence=2
http://www.ics.uci.edu/~eppstein/gina/mst.html
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tl;dr

❖ Minimum Spanning Trees are a subgraph that “covers” all the 
vertices but not all the edges

▪ Lots of cool applications!

❖ Two algorithms for finding MSTs:

▪ Prim’s and Kruskal’s

▪ Prim’s is reasonably fast greedy algorithm that looks like Dijkstra’s

▪ Same with Kruskal’s, but we need another data structure before we 
can complete it
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