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Announcements

❖ Midterm is this Friday

▪ If your student number ends in an odd number, go to KNE 210

▪ If your student ends in an even number, go to KNE 220

▪ Workshops and review session will be focused on your midterm 
questions – bring your questions and practice midterms!

▪ Review session Thursday night: 4:30-6:30 @ ARC 147

❖ HW6 is released

▪ Yes, HW5 and HW6 are both currently released

▪ Please prefix your Piazza posts with “HW5: …” or “HW6: …”

❖ 20sp instructors want current students to TA next quarter!

▪ Check Piazza or course webpage for more details
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Feedback from Reading Quiz

❖ If we add diagonals, is it still the Manhattan distance?  What is 
the Euclidean distance?

❖ I still need a walkthrough of Dijkstra’s

❖ Does Dijkstra’s still work if the grid had different weights?
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Lecture Outline

❖ Dijkstra’s Algorithm, Reviewed

❖ A* Search

▪ Introducing A*

▪ A* Heuristics

❖ Design Decisions
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Dijkstra’s Algorithm
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dijkstras(Node s, Graph g) {

PriorityQueue unvisited;

unvisited.addAll(g.allNodes(), ∞)

unvisited.changePriority(s, 0);

Map<Node, Integer> distances;

Map<Node, Node> previousNode

while (! unvisited.isEmpty()) {

Node n = unvisited.removeMin();

for (Node i : n.neighbors) {

if (distances[i]

< distances[n]  

+ g.edgeWeight(n, i)) {

continue;

} else {

distances[i] = distances[n] 

+ g.edgeWeight(n, i);

unvisited.changePriority(i,

distances[i]);

previousNode[i] = n;

}}}}

❖ Demo: 
https://docs.google.com/pr
esentation/d/1_bw2z1ggUk
quPdhl7gwdVBoTaoJmaZdp
kV6MoAgxlJc/pub?start=fals
e&loop=false&delayms=300
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https://docs.google.com/presentation/d/1_bw2z1ggUkquPdhl7gwdVBoTaoJmaZdpkV6MoAgxlJc/pub?start=false&loop=false&delayms=3000
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pollev.com/uwcse373

❖ Which of the following statements are true?

▪ Dijkstra’s Algorithm becomes Breadth-first Search if all the edges have the 
same weight

▪ Dijkstra’s can find the shortest path from the source to every node in the graph

▪ At each step of the algorithm, Dijkstra’s only considers the path length from 
the source

A. True / True / True

B. True / True / False

C. False / True / True

D. False / True / False

E. False / False / False

F. I’m not sure …
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Dijkstra’s Algorithm’s Flaws

❖ Demo: https://qiao.github.io/PathFinding.js/visual/

❖ If we want a single shortest path (instead of all shortest paths), 
Dijkstra’s and BFS does unnecessary work

▪ The answer is still correct, but we did unnecessary computation
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Lecture Outline

❖ Dijkstra’s Algorithm, Reviewed

❖ A* Search

▪ Introducing A*

▪ A* Heuristics

❖ Design Decisions
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Single-Pair Shortest Path Problem
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Single-Pair Shortest Path: Dijkstra’s Algorithm
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Single-Pair Shortest Path: What We Want

❖ How should we hint to Dijkstra’s that we want it to 
concentrate its search southward?

❖ BFS -> Dijkstra’s switched the Queue for a Priority Queue

▪ Can we change our idea of a “priority”? 12

© Mapbox; © OpenStreetMap; Improve this map.

https://www.mapbox.com/about/maps/
https://www.openstreetmap.org/about/
https://www.mapbox.com/map-feedback/
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Introducing A* Search

❖ Idea:

▪ Visit vertices in order of d(Ravenna Park, v) + h(v, Japanese Garden), 
where h(v, Japanese Garden) is an estimate of the distance from v to 
our goal

▪ In other words, prefer a location v if:

• We already know the fastest way to reach v

• AND we suspect that v might be the fastest way to get to our goal

❖ Dijkstra’s only considers d(Ravenna Park, v)

❖ Demo: http://qiao.github.io/PathFinding.js/visual/
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A* Demo

❖ Source = 0; Destination = 6

❖ Use the following estimates:

❖ Demo: 
https://docs.google.com/presentation
/d/177bRUTdCa60fjExdr9eO04NHm0
MRfPtCzvEup1iMccM/edit
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Dijkstra’s Algorithm vs A* Search
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astar(Node s, Node t, Graph g) {

PriorityQueue unvisited;

unvisited.addAll(g.allNodes(), ∞)

unvisited.changePriority(s, 0);

Map<Node, Integer> distances;

Map<Node, Node> previousNode

while (! unvisited.isEmpty()) {

Node n = unvisited.removeMin();

for (Node i : n.neighbors) {

if (distances[i]

< distances[n]  

+ g.edgeWeight(n, i)) {

continue;

} else {

distances[i] = distances[n] 

+ g.edgeWeight(n, i);

unvisited.changePriority(i,

distances[i] + h(i, t));

previousNode[i] = n;

}}}}

dijkstras(Node s, Graph g) {

PriorityQueue unvisited;

unvisited.addAll(g.allNodes(), ∞)

unvisited.changePriority(s, 0);

Map<Node, Integer> distances;

Map<Node, Node> previousNode

while (! unvisited.isEmpty()) {

Node n = unvisited.removeMin();

for (Node i : n.neighbors) {

if (distances[i]

< distances[n]  

+ g.edgeWeight(n, i)) {

continue;

} else {

distances[i] = distances[n] 

+ g.edgeWeight(n, i);

unvisited.changePriority(i,

distances[i]);

previousNode[i] = n;

}}}}
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Heuristics

❖ We call this “estimate function” a heuristic

▪ Definition: a solution or choice or judgement that is “good enough” 
for a purpose, but which could be optimized

▪ In other words: it doesn’t have to be perfect

❖ What is a good heuristic for this map?
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Euclidean and Manhattan Distances

❖ Assume the entire map can be represented as a grid

❖ Manhattan distance: Δx + Δy

❖ Euclidean distance: sqrt(Δx2 + Δy2)
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pollev.com/uwcse373

❖ Will A* Search return the correct shortest path if h(v, dest) = 10 for 
every v in the graph?

A. Always

B. Sometimes

C. Never

D. Not enough information

E. I’m not sure …
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But What If We Have a Lousy Heuristic?

❖ h(v, dest) = 0

▪ That’s just Dijkstra’s

❖ h(v, dest) = 1,000,000

▪ Still just Dijkstra’s

❖ h(Montlake Bridge, dest) = 1,000,000

▪ Inconsistent results!
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Good Heuristics are Hard!

❖ You’ll frequently hear that “A* Search is hard”

▪ As we’ve seen, A* Search is an incremental update to Dijkstra’s

▪ What’s hard with A* Search is designing a good heuristic

❖ In this class, we’ll give you a (good) heuristic for HuskyMaps

▪ Hint: Manhattan and Euclidean distances are both good heuristics

❖ If you take an AI class, you’ll learn all about designing heuristics

▪ Sneak preview: good heuristics have the following characteristics:

• h(v, dest) <= true distance from v to destination    (“admissible”)

• h(v, dest) <= dist(v, w) + h(w, dest) (“consistent”)

21



CSE373, Winter 2020L16:A*, Design Decisions

Lecture Outline

❖ Dijkstra’s Algorithm, Reviewed
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Two Key Skills

❖ In Software Engineering, two important skills to have are:

▪ Identifying the requirements (ie, selecting an ADT)

▪ Making tradeoffs (ie, selecting the data structure for that ADT)

❖ So let’s review the ADTs’ functionality and the performance 
characteristics of each data structure
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List Functionality

❖ Possible Implementations:

▪ ArrayList

▪ LinkedList

24

List ADT. A collection storing an 

ordered sequence of 

elements.

• Each element is accessible by a 

zero-based index.

• A list has a size defined as the 

number of elements in the list.

• Elements can be added to the 

front, back, or any index in the list.

• Optionally, elements can be 

removed from the front, back, or 

any index in the list.
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List Performance Tradeoffs
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ArrayList LinkedList

addFront linear constant

removeFront linear constant

addBack constant* linear

removeBack constant linear

get(idx) const linear

put(idx) linear linear

* constant for most invocations



CSE373, Winter 2020L16:A*, Design Decisions

Stack and Queue Functionality

❖ Possible Implementations:

▪ ArrayStack, LinkedStack
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Queue ADT. A collection storing an 

ordered sequence of elements.

• A queue has a size defined as the 

number of elements in the 

queue.

• Elements can only be added to 

one end and removed from the 

other (“FIFO”)

Stack ADT. A collection storing an 

ordered sequence of elements.

• A stack has a size defined as the 

number of elements in the stack.

• Elements can only be added and 

removed from the top (“LIFO”)

❖ Possible Implementations:

▪ ArrayQueue, LinkedQueue
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Stack and Queue Performance Tradeoffs

❖ Stack (LIFO):

❖ Queue (FIFO):
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ArrayStack LinkedStack

push constant* constant

pop constant constant

* constant for most invocations

Array Queue (v2) LinkedQueue (v2)

enqueue constant* constant

dequeue constant constant

* constant for most invocations
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Deque Functionality

❖ Possible Implementations:

▪ ArrayDeque, LinkedDeque
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Deque ADT. A collection storing an 

ordered sequence of elements.

• Each element is accessible by a 

zero-based index.

• A deque has a size defined as the 

number of elements in the deque.

• Elements can be added to the 

front or back.

• Optionally, elements can be 

removed from the front or back.
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Deque Performance Tradeoffs

29

CircularArrayDeque LinkedDeque

addFirst constant* constant

removeFirst constant constant

addLast constant* constant

removeLast constant constant

* constant for most invocations
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Set and Map Functionality

❖ Possible Implementations:

▪ Unbalanced BST

▪ LLRB Tree

▪ B-Tree (eg, 2-3 Tree)

▪ Hash Tables
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Set ADT. A collection of values.

• A set has a size defined as the 

number of elements in the set.

• You can add and remove values.

• Each value is accessible via a “get” 

or “contains” operation.

Map ADT. A collection of keys, each 

associated with a value.

• A map has a size defined as the 

number of elements in the map.

• You can add and remove (key, 

value) pairs.

• Each value is accessible by its key 

via a “get” or “contains” operation.
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Set and Map Performance Tradeoffs
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Find Add Remove

Resizing Separate 
Chaining Hash Table

(worst case)
Q ∈ Θ(N) Q ∈ Θ(N) Q ∈ Θ(N)

Resizing Separate 
Chaining Hash Table

(best/average cases) +

Θ(1) Θ(1)* Θ(1)*

LLRB Tree h ∈ Θ(log N) h ∈ Θ(log N) h ∈ Θ(log N)

B-Tree h ∈ Θ(log N) h ∈ Θ(log N) h ∈ Θ(log N)

BST h ∈ Θ(N) h ∈ Θ(N) h ∈ Θ(N)

LinkedList Θ(N) Θ(N) Θ(N)
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Priority Queue Functionality

❖ Possible Implementations:

▪ Balanced BST with “max” pointer

▪ Binary Heap

▪ (and a ton of others we didn’t discuss)
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Priority Queue ADT. A collection 

of values.

• A PQ has a size defined as the 

number of elements in the set.

• You can add values.

• You cannot access or remove 

arbitrary values, only the max 

value.



CSE373, Winter 2020L16:A*, Design Decisions

Priority Queue Performance Tradeoffs
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Balanced BST
(worst case)

Binary Heap
(worst case)

add O(log N) O(log N)**

max O(1)* O(1)

removeMax O(log N) O(log N)

* If we keep a pointer to the largest element in the BST
** Average case is constant
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Graph Functionality
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Graph ADT. A collection of vertices 

and the edges connecting them.

• We can query for vertices 

connected to, or edges leaving 

from, a vertex v

• Edges are specified as pairs of 

vertices

• We can add/remove edges from the 

graph

❖ Possible Implementations:

▪ Adjacency Matrix

▪ Edge Set

▪ Adjacency List



CSE373, Winter 2020L16:A*, Design Decisions

Graph Performance Tradeoffs

getAllEdgesFrom(v) hasEdge(v, w) getAllEdges()

Adjacency 
Matrix

Θ(V) Θ(1) Θ(V2)

Edge Set Θ(E) Θ(E) Θ(E)

Adjacency List O(V) Θ(degree(v)) Θ(E + V)
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tl;dr

❖ Dijkstra’s is great for all-pairs shortest path

❖ A* is great for single-pair shortest path

▪ But you need to be careful about picking a good heuristic
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