A* Search and Design Decisions

 CSE 373 Winter 2020Instructor: Hannah C. Tang

Teaching Assistants:

Aaron Johnston
Amanda Park
Anish Velagapudi
Brian Chan
Elena Spasova

Ethan Knutson
Farrell Fileas
Howard Xiao
Jade Watkins
Lea Quan

Nathan Lipiarski
Sam Long
Yifan Bai
Yuma Tou

Announcements

* Midterm is this Friday
- If your student number ends in an odd number, go to KNE 210
- If your student ends in an even number, go to KNE $2 \underline{2} 0$
- Workshops and review session will be focused on your midterm questions - bring your questions and practice midterms!
- Review session Thursday night: 4:30-6:30 @ ARC 147
* HW6 is released
- Yes, HW5 and HW6 are both currently released
- Please prefix your Piazza posts with "HW5: ..." or "HW6: ..."
* 20sp instructors want current students to TA next quarter!
- Check Piazza or course webpage for more details

Feedback from Reading Quiz

* If we add diagonals, is it still the Manhattan distance? What is the Euclidean distance?
* I still need a walkthrough of Dijkstra's
* Does Dijkstra's still work if the grid had different weights?

Lecture Outline

* Dijkstra's Algorithm, Reviewed
* A* Search
- Introducing A*
- A* Heuristics
* Design Decisions

Dijkstra's Algorithm

* Demo: https://docs.google.com/pr esentation/d/1 bw2z1ggUk quPdhl7gwdVBoTaoJmaZdp kV6MoAgxlJc/pub?start=fals e\&loop=false\&delayms=300 $\underline{0}$


```
dijkstras(Node s, Graph g) {
    PriorityQueue unvisited;
    unvisited.addAll(g.allNodes(), \infty)
    unvisited.changePriority(s, 0) ;
    Map<Node, Integer> distances;
    Map<Node, Node> previousNode
    while (! unvisited.isEmpty()) {
        Node n = unvisited.removeMin();
        for (Node i : n.neighbors) {
        if (distances[i]
        < distances[n]
                + g.edgeWeight(n, i)) {
            continue;
        } else {
            distances[i] = distances[n]
                + g.edgeWeight(n, i);
            unvisited.changePriority(i,
                distances[i]);
            previousNode[i] = n;
        } } } }
```


(I1) Poll Everywhere

* Which of the following statements are true?
- Dijkstra's Algorithm becomes Breadth-first Search if all the edges have the same weight
- Dijkstra's can find the shortest path from the source to every node in the graph
- At each step of the algorithm, Dijkstra's only considers the path length from the source

True / True / True
B. True / True / False
c. False / True / True
D. False / True / False
E. False / False / False
F. I'm not sure ...

Dijkstra's Algorithm's Flaws

* Demo: https://qiao.github.io/PathFinding.js/visual/
* If we want a single shortest path (instead of all shortest paths), Dijkstra's and BFS does unnecessary work
- The answer is still correct, but we did unnecessary computation

Lecture Outline

* Dijkstra’s Algorithm, Reviewed
* A* Search
- Introducing A*
- A* Heuristics
* Design Decisions

Single-Pair Shortest Path Problem

Single-Pair Shortest Path: Dijkstra’s Algorithm

Single-Pair Shortest Path: What We Want

* How should we hint to Dijkstra's that we want it to concentrate its search southward?
* BFS -> Dijkstra's switched the Queue for a Priority Queue
- Can we change our idea of a "priority"?

Introducing A* Search

* Idea:
- Visit vertices in order of d(Ravenna Park, $1 /+\mathrm{h}(\mathrm{v}$, Japanese Garden) where $h(v$, Japanese Garden) is an estimate of the distance from v to our goal
- In other words, prefer a location vif:
- We already know the fastest way to reach v
- AND we suspect that v might be the fastest way to get to our goal
* Dijkstra's only considers d(Ravenna Park, v)
* Demo: http://qiao.github.io/PathFinding.js/visual/

A* Demo

* Source = 0; Destination = 6
* Use the following estimates:

Vertex ID	$h(v$, dest $)$
0	1
1	3
2	15
3	2
4	5
5	∞
6	0

* Demo:
https://docs.google.com/presentation /d/177bRUTdCa60fjExdr9eO04NHm0
MRfPtCzvEup1iMccM/edit

Dijkstra's Algorithm vs A* Search

```
dijkstras(Node s, Graph g)
    PriorityQueue unvisited;
    unvisited.addAll(g.allNodes(), \infty)
    unvisited.changePriority(s, 0);
    Map<Node, Integer> distances;
    Map<Node, Node> previousNode
    while (! unvisited.isEmpty()) {
        Node n = unvisited.removeMin();
        for (Node i : n.neighbors) {
        if (distances[i]
            < distances[n]
                + g.edgeWeight(n, i)) {
                continue;
        } else {
                distances[i] = distances[n]
                + g.edgeWeight(n, i);
                unvisited.changePriority(i,
                distances[i]);
                previousNode[i] = n;
            } } } }
```

```
astar(Node s, Node t, Graph g) {
    PriorityQueue unvisited;
    unvisited.addAll(g.allNodes(), \infty)
    unvisited.changePriority(s, 0);
    Map<Node, Integer> distances;
    Map<Node, Node> previousNode
    while (! unvisited.isEmpty())
        Node n = unvisited.removeMin();
        for (Node i : n.neighbors) {
            if (distances[i]
                < distances[n]
                    + g.edgeWeight(n, i)) {
        continue;
            } else {
        distances[i] = distances[n]
            + g.edgeWeight(n, i);
        unvisited.changePriority(1)
            distances[i] + h(i, t));
        previousNode[i]
        } } } }
```


Lecture Outline

* Dijkstra’s Algorithm, Reviewed
* A* Search
- Introducing A*
- A* Heuristics
* Design Decisions

Heuristics

* We call this "estimate function" a heuristic
- Definition: a solution or choice or judgement that is "good enough" for a purpose, but which could be optimized
- In other words: it doesn't have to be perfect
*What is a good heuristic for this map?

Euclidean and Manhattan Distances

* Assume the entire map can be represented as a grid
*Manhattan distance: $\Delta x+\Delta y$

* Euclidean distance: $\operatorname{sqrt}\left(\Delta \mathrm{x}^{2}+\Delta \mathrm{y}^{2}\right)$

(II) Poll Everywhere

* Will A* Search return the correct shortest path if $h(v$, dest $)=10$ for every v in the graph?
A. Always
B. Sometimes
c. Never
D. Not enough information
E. I'm not sure ...

But What If We Have a Lousy Heuristic?

* $\mathrm{h}(\mathrm{v}, \mathrm{dest})=0$
- That's just Dijkstra's
* $\mathrm{h}(\mathrm{v}$, dest $)=1,000,000$
- Still just Dijkstra’s
$\% \mathrm{~h}($ Montlake Bridge, dest) $=1,000,000$
- Inconsistent results!

Good Heuristics are Hard!

* You'll frequently hear that " A * Search is hard"
- As we've seen, A* Search is an incremental update to Dijkstra's
- What's hard with A* Search is designing a good heuristic
* In this class, we'll give you a (good) heuristic for HuskyMaps
- Hint: Manhattan and Euclidean distances are both good heuristics
* If you take an AI class, you'll learn all about designing heuristics
- Sneak preview: good heuristics have the following characteristics:
- $\mathrm{h}(\mathrm{v}$, dest) <= true distance from v to destination ("admissible")
- $\mathrm{h}(\mathrm{v}$, dest) <= dist(v, w) + $\mathrm{h}(\mathrm{w}$, dest) ("consistent")

Lecture Outline

* Dijkstra's Algorithm, Reviewed
* A* Search
- Introducing A*
- A* Heuristics
* Design Decisions

Two Key Skills

* In Software Engineering, two important skills to have are:
- Identifying the requirements (ie, selecting an ADT)
- Making tradeoffs (ie, selecting the data structure for that ADT)
* So let's review the ADTs' functionality and the performance characteristics of each data structure

List Functionality

List ADT. A collection storing an ordered sequence of elements.

- Each element is accessible by a zero-based index.
- A list has a size defined as the number of elements in the list.
- Elements can be added to the front, back, or any index in the list.
- Optionally, elements can be removed from the front, back, or any index in the list.
* Possible Implementations:
- ArrayList
- LinkedList

List Performance Tradeoffs

	ArrayList	LinkedList
addFront	linear	constant
removeFront	linear	constant
addBack	constant*	linear
removeBack	constant	linear
get(idx)	const	linear
put(idx)	linear	linear
		$*$ constant for most invocations

Stack and Queue Functionality

Stack ADT. A collection storing an ordered sequence of elements.

- A stack has a size defined as the number of elements in the stack.
- Elements can only be added and removed from the top ("LIFO")
* Possible Implementations:
- ArrayStack, LinkedStack

Queue ADT. A collection storing an ordered sequence of elements.

- A queue has a size defined as the number of elements in the queue.
- Elements can only be added to one end and removed from the other ("FIFO")
* Possible Implementations:
- ArrayQueue, LinkedQueue

Stack and Queue Performance Tradeoffs

* Stack (LIFO):

	ArrayStack	LinkedStack
push	constant*	constant
pop	constant	constant
		* constant for most invocations

* Queue (FIFO):

	Array Queue (v2)	LinkedQueue (v2)
enqueue	constant*	constant
dequeue	constant	constant

Deque Functionality

Deque ADT. A collection storing an ordered sequence of elements.

- Each element is accessible by a zero-based index.
- A deque has a size defined as the number of elements in the deque.
- Elements can be added to the front or back.
- Optionally, elements can be removed from the front or back.
* Possible Implementations:
- ArrayDeque, LinkedDeque

Deque Performance Tradeoffs

	CircularArrayDeque	LinkedDeque
addFirst	constant* *	constant
removeFirst	constant	constant
addLast	constant*	constant
removeLast	constant	constant

* constant for most invocations

Set and Map Functionality

Set ADT. A collection of values.

- A set has a size defined as the number of elements in the set.
- You can add and remove values.
- Each value is accessible via a "get" or "contains" operation.

Map ADT. A collection of keys, each associated with a value.

- A map has a size defined as the number of elements in the map.
- You can add and remove (key, value) pairs.
- Each value is accessible by its key via a "get" or "contains" operation.
* Possible Implementations:
- Unbalanced BST
- LLRB Tree
- B-Tree (eg, 2-3 Tree)
- Hash Tables

Set and Map Performance Tradeoffs

	Find	Add	Remove
Resizing Separate Chaining Hash Table (worst case)	$\mathrm{Q} \in \Theta(\mathrm{N})$	$\mathrm{Q} \in \Theta(\mathrm{N})$	$\mathrm{Q} \in \Theta(\mathrm{N})$
Resizing Separate Chaining Hash Table (best/average cases)	$\Theta(1)$	$\Theta(1)^{*}$	$\Theta(1)^{*}$
LLRB Tree	$h \in \Theta(\log N)$	$h \in \Theta(\log N)$	$h \in \Theta(\log N)$
B-Tree	$h \in \Theta(\log N)$	$h \in \Theta(\log N)$	$h \in \Theta(\log N)$
BST	$h \in \Theta(N)$	$h \in \Theta(N)$	$h \in \Theta(N)$
LinkedList	$\Theta(N)$	$\Theta(N)$	$\Theta(N)$

Priority Queue Functionality

Priority Queue ADT. A collection of values.

- A PQ has a size defined as the number of elements in the set.
- You can add values.
- You cannot access or remove arbitrary values, only the max value.
* Possible Implementations:
" Balanced BST with "max" pointer
- Binary Heap
- (and a ton of others we didn't discuss)

Priority Queue Performance Tradeoffs

	Balanced BST (worst case)	Binary Heap (worst case)
add	$\mathrm{O}(\log \mathrm{N})$	O($\log \mathrm{N})^{* *}$
max	$\mathrm{O}(1)^{*}$	$\mathrm{O}(1)$
removeMax	$\mathrm{O}(\log \mathrm{N})$	$\mathrm{O}(\log \mathrm{N})$
* If we keep a pointer to the largest element in the BST ** Average case is constan		

Graph Functionality

Graph ADT. A collection of vertices and the edges connecting them.

- We can query for vertices connected to, or edges leaving from, a vertex v
- Edges are specified as pairs of vertices
- We can add/remove edges from the graph
* Possible Implementations:
- Adjacency Matrix
- Edge Set
- Adjacency List

Graph Performance Tradeoffs

	getAllEdgesFrom(v)	hasEdge(v, w)	getAllEdges()
Adjacency Matrix	$\theta(\mathrm{V})$	$\Theta(1)$	$\Theta\left(\mathrm{V}^{2}\right)$
Edge Set	$\theta(E)$	$\theta(E)$	$\theta(E)$
Adjacency List	O (V)	Θ (degree(v))	$\Theta(E+V)$

tl;dr

* Dijkstra's is great for all-pairs shortest path
* A* is great for single-pair shortest path
- But you need to be careful about picking a good heuristic

