
CSE373, Winter 2020L16:A*, Design Decisions

A* Search and Design Decisions
CSE 373 Winter 2020

Instructor: Hannah C. Tang

Teaching Assistants:

Aaron Johnston Ethan Knutson Nathan Lipiarski

Amanda Park Farrell Fileas Sam Long

Anish Velagapudi Howard Xiao Yifan Bai

Brian Chan Jade Watkins Yuma Tou

Elena Spasova Lea Quan

CSE373, Winter 2020L16:A*, Design Decisions

Announcements

❖ Midterm is this Friday

▪ If your student number ends in an odd number, go to KNE 210

▪ If your student ends in an even number, go to KNE 220

▪ Workshops and review session will be focused on your midterm
questions – bring your questions and practice midterms!

▪ Review session Thursday night: 4:30-6:30 @ ARC 147

❖ HW6 is released

▪ Yes, HW5 and HW6 are both currently released

▪ Please prefix your Piazza posts with “HW5: …” or “HW6: …”

❖ 20sp instructors want current students to TA next quarter!

▪ Check Piazza or course webpage for more details

3

CSE373, Winter 2020L16:A*, Design Decisions

Feedback from Reading Quiz

❖ If we add diagonals, is it still the Manhattan distance? What is
the Euclidean distance?

❖ I still need a walkthrough of Dijkstra’s

❖ Does Dijkstra’s still work if the grid had different weights?

4

CSE373, Winter 2020L16:A*, Design Decisions

Lecture Outline

❖ Dijkstra’s Algorithm, Reviewed

❖ A* Search

▪ Introducing A*

▪ A* Heuristics

❖ Design Decisions

5

CSE373, Winter 2020L16:A*, Design Decisions

Dijkstra’s Algorithm

6

dijkstras(Node s, Graph g) {

PriorityQueue unvisited;

unvisited.addAll(g.allNodes(), ∞)

unvisited.changePriority(s, 0);

Map<Node, Integer> distances;

Map<Node, Node> previousNode

while (! unvisited.isEmpty()) {

Node n = unvisited.removeMin();

for (Node i : n.neighbors) {

if (distances[i]

< distances[n]

+ g.edgeWeight(n, i)) {

continue;

} else {

distances[i] = distances[n]

+ g.edgeWeight(n, i);

unvisited.changePriority(i,

distances[i]);

previousNode[i] = n;

}}}}

❖ Demo:
https://docs.google.com/pr
esentation/d/1_bw2z1ggUk
quPdhl7gwdVBoTaoJmaZdp
kV6MoAgxlJc/pub?start=fals
e&loop=false&delayms=300
0

1

2

3

4

5

6

7

8

0s
t

2 2

3

3

1

3

https://docs.google.com/presentation/d/1_bw2z1ggUkquPdhl7gwdVBoTaoJmaZdpkV6MoAgxlJc/pub?start=false&loop=false&delayms=3000

CSE373, Winter 2020L16:A*, Design Decisions

pollev.com/uwcse373

❖ Which of the following statements are true?

▪ Dijkstra’s Algorithm becomes Breadth-first Search if all the edges have the
same weight

▪ Dijkstra’s can find the shortest path from the source to every node in the graph

▪ At each step of the algorithm, Dijkstra’s only considers the path length from
the source

A. True / True / True

B. True / True / False

C. False / True / True

D. False / True / False

E. False / False / False

F. I’m not sure …

7

CSE373, Winter 2020L16:A*, Design Decisions

Dijkstra’s Algorithm’s Flaws

❖ Demo: https://qiao.github.io/PathFinding.js/visual/

❖ If we want a single shortest path (instead of all shortest paths),
Dijkstra’s and BFS does unnecessary work

▪ The answer is still correct, but we did unnecessary computation

8

https://qiao.github.io/PathFinding.js/visual/

CSE373, Winter 2020L16:A*, Design Decisions

Lecture Outline

❖ Dijkstra’s Algorithm, Reviewed

❖ A* Search

▪ Introducing A*

▪ A* Heuristics

❖ Design Decisions

9

CSE373, Winter 2020L16:A*, Design Decisions

Single-Pair Shortest Path Problem

10

© Mapbox; © OpenStreetMap; Improve this map.

https://www.mapbox.com/about/maps/
https://www.openstreetmap.org/about/
https://www.mapbox.com/map-feedback/

CSE373, Winter 2020L16:A*, Design Decisions

Single-Pair Shortest Path: Dijkstra’s Algorithm

11

© Mapbox; © OpenStreetMap; Improve this map.

https://www.mapbox.com/about/maps/
https://www.openstreetmap.org/about/
https://www.mapbox.com/map-feedback/

CSE373, Winter 2020L16:A*, Design Decisions

Single-Pair Shortest Path: What We Want

❖ How should we hint to Dijkstra’s that we want it to
concentrate its search southward?

❖ BFS -> Dijkstra’s switched the Queue for a Priority Queue

▪ Can we change our idea of a “priority”? 12

© Mapbox; © OpenStreetMap; Improve this map.

https://www.mapbox.com/about/maps/
https://www.openstreetmap.org/about/
https://www.mapbox.com/map-feedback/

CSE373, Winter 2020L16:A*, Design Decisions

Introducing A* Search

❖ Idea:

▪ Visit vertices in order of d(Ravenna Park, v) + h(v, Japanese Garden),
where h(v, Japanese Garden) is an estimate of the distance from v to
our goal

▪ In other words, prefer a location v if:

• We already know the fastest way to reach v

• AND we suspect that v might be the fastest way to get to our goal

❖ Dijkstra’s only considers d(Ravenna Park, v)

❖ Demo: http://qiao.github.io/PathFinding.js/visual/

13

http://qiao.github.io/PathFinding.js/visual/

CSE373, Winter 2020L16:A*, Design Decisions

A* Demo

❖ Source = 0; Destination = 6

❖ Use the following estimates:

❖ Demo:
https://docs.google.com/presentation
/d/177bRUTdCa60fjExdr9eO04NHm0
MRfPtCzvEup1iMccM/edit

14

Vertex ID h(v, dest)

0 1

1 3

2 15

3 2

4 5

5 ∞

6 0

1

2

3

4

5

6
0s

5
2

1

15

3

2

11

5

1

1

4

0

∞

1∞

∞

∞

∞

∞

https://docs.google.com/presentation/d/177bRUTdCa60fjExdr9eO04NHm0MRfPtCzvEup1iMccM/edit

CSE373, Winter 2020L16:A*, Design Decisions

Dijkstra’s Algorithm vs A* Search

15

astar(Node s, Node t, Graph g) {

PriorityQueue unvisited;

unvisited.addAll(g.allNodes(), ∞)

unvisited.changePriority(s, 0);

Map<Node, Integer> distances;

Map<Node, Node> previousNode

while (! unvisited.isEmpty()) {

Node n = unvisited.removeMin();

for (Node i : n.neighbors) {

if (distances[i]

< distances[n]

+ g.edgeWeight(n, i)) {

continue;

} else {

distances[i] = distances[n]

+ g.edgeWeight(n, i);

unvisited.changePriority(i,

distances[i] + h(i, t));

previousNode[i] = n;

}}}}

dijkstras(Node s, Graph g) {

PriorityQueue unvisited;

unvisited.addAll(g.allNodes(), ∞)

unvisited.changePriority(s, 0);

Map<Node, Integer> distances;

Map<Node, Node> previousNode

while (! unvisited.isEmpty()) {

Node n = unvisited.removeMin();

for (Node i : n.neighbors) {

if (distances[i]

< distances[n]

+ g.edgeWeight(n, i)) {

continue;

} else {

distances[i] = distances[n]

+ g.edgeWeight(n, i);

unvisited.changePriority(i,

distances[i]);

previousNode[i] = n;

}}}}

CSE373, Winter 2020L16:A*, Design Decisions

Lecture Outline

❖ Dijkstra’s Algorithm, Reviewed

❖ A* Search

▪ Introducing A*

▪ A* Heuristics

❖ Design Decisions

16

CSE373, Winter 2020L16:A*, Design Decisions

Heuristics

❖ We call this “estimate function” a heuristic

▪ Definition: a solution or choice or judgement that is “good enough”
for a purpose, but which could be optimized

▪ In other words: it doesn’t have to be perfect

❖ What is a good heuristic for this map?

17

CSE373, Winter 2020L16:A*, Design Decisions

Euclidean and Manhattan Distances

❖ Assume the entire map can be represented as a grid

❖ Manhattan distance: Δx + Δy

❖ Euclidean distance: sqrt(Δx2 + Δy2)

18

CSE373, Winter 2020L16:A*, Design Decisions

pollev.com/uwcse373

❖ Will A* Search return the correct shortest path if h(v, dest) = 10 for
every v in the graph?

A. Always

B. Sometimes

C. Never

D. Not enough information

E. I’m not sure …

19

CSE373, Winter 2020L16:A*, Design Decisions

But What If We Have a Lousy Heuristic?

❖ h(v, dest) = 0

▪ That’s just Dijkstra’s

❖ h(v, dest) = 1,000,000

▪ Still just Dijkstra’s

❖ h(Montlake Bridge, dest) = 1,000,000

▪ Inconsistent results!

20

CSE373, Winter 2020L16:A*, Design Decisions

Good Heuristics are Hard!

❖ You’ll frequently hear that “A* Search is hard”

▪ As we’ve seen, A* Search is an incremental update to Dijkstra’s

▪ What’s hard with A* Search is designing a good heuristic

❖ In this class, we’ll give you a (good) heuristic for HuskyMaps

▪ Hint: Manhattan and Euclidean distances are both good heuristics

❖ If you take an AI class, you’ll learn all about designing heuristics

▪ Sneak preview: good heuristics have the following characteristics:

• h(v, dest) <= true distance from v to destination (“admissible”)

• h(v, dest) <= dist(v, w) + h(w, dest) (“consistent”)

21

CSE373, Winter 2020L16:A*, Design Decisions

Lecture Outline

❖ Dijkstra’s Algorithm, Reviewed

❖ A* Search

▪ Introducing A*

▪ A* Heuristics

❖ Design Decisions

22

CSE373, Winter 2020L16:A*, Design Decisions

Two Key Skills

❖ In Software Engineering, two important skills to have are:

▪ Identifying the requirements (ie, selecting an ADT)

▪ Making tradeoffs (ie, selecting the data structure for that ADT)

❖ So let’s review the ADTs’ functionality and the performance
characteristics of each data structure

23

CSE373, Winter 2020L16:A*, Design Decisions

List Functionality

❖ Possible Implementations:

▪ ArrayList

▪ LinkedList

24

List ADT. A collection storing an

ordered sequence of

elements.

• Each element is accessible by a

zero-based index.

• A list has a size defined as the

number of elements in the list.

• Elements can be added to the

front, back, or any index in the list.

• Optionally, elements can be

removed from the front, back, or

any index in the list.

CSE373, Winter 2020L16:A*, Design Decisions

List Performance Tradeoffs

25

ArrayList LinkedList

addFront linear constant

removeFront linear constant

addBack constant* linear

removeBack constant linear

get(idx) const linear

put(idx) linear linear

* constant for most invocations

CSE373, Winter 2020L16:A*, Design Decisions

Stack and Queue Functionality

❖ Possible Implementations:

▪ ArrayStack, LinkedStack

26

Queue ADT. A collection storing an

ordered sequence of elements.

• A queue has a size defined as the

number of elements in the

queue.

• Elements can only be added to

one end and removed from the

other (“FIFO”)

Stack ADT. A collection storing an

ordered sequence of elements.

• A stack has a size defined as the

number of elements in the stack.

• Elements can only be added and

removed from the top (“LIFO”)

❖ Possible Implementations:

▪ ArrayQueue, LinkedQueue

CSE373, Winter 2020L16:A*, Design Decisions

Stack and Queue Performance Tradeoffs

❖ Stack (LIFO):

❖ Queue (FIFO):

27

ArrayStack LinkedStack

push constant* constant

pop constant constant

* constant for most invocations

Array Queue (v2) LinkedQueue (v2)

enqueue constant* constant

dequeue constant constant

* constant for most invocations

CSE373, Winter 2020L16:A*, Design Decisions

Deque Functionality

❖ Possible Implementations:

▪ ArrayDeque, LinkedDeque

28

Deque ADT. A collection storing an

ordered sequence of elements.

• Each element is accessible by a

zero-based index.

• A deque has a size defined as the

number of elements in the deque.

• Elements can be added to the

front or back.

• Optionally, elements can be

removed from the front or back.

CSE373, Winter 2020L16:A*, Design Decisions

Deque Performance Tradeoffs

29

CircularArrayDeque LinkedDeque

addFirst constant* constant

removeFirst constant constant

addLast constant* constant

removeLast constant constant

* constant for most invocations

CSE373, Winter 2020L16:A*, Design Decisions

Set and Map Functionality

❖ Possible Implementations:

▪ Unbalanced BST

▪ LLRB Tree

▪ B-Tree (eg, 2-3 Tree)

▪ Hash Tables

30

Set ADT. A collection of values.

• A set has a size defined as the

number of elements in the set.

• You can add and remove values.

• Each value is accessible via a “get”

or “contains” operation.

Map ADT. A collection of keys, each

associated with a value.

• A map has a size defined as the

number of elements in the map.

• You can add and remove (key,

value) pairs.

• Each value is accessible by its key

via a “get” or “contains” operation.

CSE373, Winter 2020L16:A*, Design Decisions

Set and Map Performance Tradeoffs

31

Find Add Remove

Resizing Separate
Chaining Hash Table

(worst case)
Q ∈ Θ(N) Q ∈ Θ(N) Q ∈ Θ(N)

Resizing Separate
Chaining Hash Table

(best/average cases) +

Θ(1) Θ(1)* Θ(1)*

LLRB Tree h ∈ Θ(log N) h ∈ Θ(log N) h ∈ Θ(log N)

B-Tree h ∈ Θ(log N) h ∈ Θ(log N) h ∈ Θ(log N)

BST h ∈ Θ(N) h ∈ Θ(N) h ∈ Θ(N)

LinkedList Θ(N) Θ(N) Θ(N)

CSE373, Winter 2020L16:A*, Design Decisions

Priority Queue Functionality

❖ Possible Implementations:

▪ Balanced BST with “max” pointer

▪ Binary Heap

▪ (and a ton of others we didn’t discuss)

32

Priority Queue ADT. A collection

of values.

• A PQ has a size defined as the

number of elements in the set.

• You can add values.

• You cannot access or remove

arbitrary values, only the max

value.

CSE373, Winter 2020L16:A*, Design Decisions

Priority Queue Performance Tradeoffs

33

Balanced BST
(worst case)

Binary Heap
(worst case)

add O(log N) O(log N)**

max O(1)* O(1)

removeMax O(log N) O(log N)

* If we keep a pointer to the largest element in the BST
** Average case is constant

CSE373, Winter 2020L16:A*, Design Decisions

Graph Functionality

34

Graph ADT. A collection of vertices

and the edges connecting them.

• We can query for vertices

connected to, or edges leaving

from, a vertex v

• Edges are specified as pairs of

vertices

• We can add/remove edges from the

graph

❖ Possible Implementations:

▪ Adjacency Matrix

▪ Edge Set

▪ Adjacency List

CSE373, Winter 2020L16:A*, Design Decisions

Graph Performance Tradeoffs

getAllEdgesFrom(v) hasEdge(v, w) getAllEdges()

Adjacency
Matrix

Θ(V) Θ(1) Θ(V2)

Edge Set Θ(E) Θ(E) Θ(E)

Adjacency List O(V) Θ(degree(v)) Θ(E + V)

CSE373, Winter 2020L16:A*, Design Decisions

tl;dr

❖ Dijkstra’s is great for all-pairs shortest path

❖ A* is great for single-pair shortest path

▪ But you need to be careful about picking a good heuristic

36

