
CSE373, Winter 2020L14: Traversals and Graphs

Traversals and Graphs
CSE 373 Winter 2020

Instructor: Hannah C. Tang

Teaching Assistants:

Aaron Johnston Ethan Knutson Nathan Lipiarski

Amanda Park Farrell Fileas Sam Long

Anish Velagapudi Howard Xiao Yifan Bai

Brian Chan Jade Watkins Yuma Tou

Elena Spasova Lea Quan

CSE373, Winter 2020L14: Traversals and Graphs

Announcements

❖ Homework 5: k-d trees is released and due next Friday

▪ This is the first of our “hard” homeworks

▪ Suggestion: pretend it’s due Tuesday so you don’t panic while
prepping for midterm. Start early!

▪ Hint: start with a version that doesn’t prune; then implement a
version that chooses good/bad sides; then finally a pruning version

❖ Midterm is also next Friday

▪ If your student number ends in an odd number, go to KNE 210

▪ If your student ends in an even number, go to KNE 220

▪ We’ve released a practice midterm

▪ Review session Thursday night: 4:30-6:30 @ ARC 147

3

CSE373, Winter 2020L14: Traversals and Graphs

Feedback from the Reading Quiz

❖ The reading didn’t mention weighted/unweighted graphs

❖ I’m still confused about pre-, in- and post-order graphs

❖ It’s interesting how we can finally use a queue to implement
BFS

▪ Why does BFS matter? It’s also really confusing

4

CSE373, Winter 2020L14: Traversals and Graphs

Lecture Outline

❖ Tree Traversals

❖ Introduction to Graphs

▪ Definitions

▪ Graph Problems

❖ Graph Traversals: DFS

5

CSE373, Winter 2020L14: Traversals and Graphs

Review: The Tree Data Structure

❖ A Tree is a collection of nodes; each node has <= 1 parent and

>= 0 children

▪ Root node: the “top” of the tree and the

only node with no parent

▪ Leaf node: a node with no children

▪ Edge: the connection between a parent

and child

▪ There is exactly one path between

any pair of nodes

6

class Node<Value> {

Value v;

List<Node> children;

}

Nodes

Edges Purple

Green Red

Blue Indigo OrangeYellow

Pink

CSE373, Winter 2020L14: Traversals and Graphs

Review: Trees We’ve Seen

❖ Binary Search Trees

▪ And one of its balanced

variants: the Left-Leaning Red-

Black Tree

❖ B-Trees

▪ Specifically, a 2-3 Tree

❖ Binary Heaps

7

9

5 17

8 311

u

s v

y

x

w

a

s u w

r y zt

e

b g

m

v

d f

b g

o

n p

m

e

31

9 17

8 15

CSE373, Winter 2020L14: Traversals and Graphs

Tree Applications

❖ Trees are a more general concept

▪ Organization charts

▪ Family lineages* including
phylogenetic trees

▪ MOH Training Manual for
Management of Malaria.

*: Not all family lineages are trees!

CSE373, Winter 2020L14: Traversals and Graphs

Tree Traversals

❖ Thus far, we’ve talked about
searching a tree. Let’s back up
and talk about traversing a tree

❖ A traversal:

▪ Iterates over every node in a tree
in some defined ordering

▪ “Processes” or “visits” its contents

❖ There are several types of tree
traversals

9

words.txt

data

tiles cities.txt

d1_x0_y0.jpgd0_x1_y0.jpgd0_x0_y0.jpg

CSE373, Winter 2020L14: Traversals and Graphs

Tree Traversal Types

❖ Level Order Traversal aka Breadth-First Traversal

❖ Depth-First Traversal

▪ Pre-order Traversal

▪ In-order Traversal

▪ Post-order Traversal

10

A C

B

D

E

F

G

CSE373, Winter 2020L14: Traversals and Graphs

Level-Order / Breadth-First Traversal

❖ Traverse and visit top-to-bottom, left-to-right

▪ Like reading in English

❖ Looks like how we converted our binary heap (ie, a complete
tree) to its array representation

❖ Needs a supporting data structure
to implement

▪ See next lecture!

11

A C

B

D

E

F

G

CSE373, Winter 2020L14: Traversals and Graphs

Depth-First Traversal

❖ Basic idea: traverse “deep nodes” (eg, A) before shallow ones
(eg, F)

❖ Remember that traversing a node is different than
visiting/processing a node

12

CSE373, Winter 2020L14: Traversals and Graphs

Depth-First: Pre-Order

❖ Pre-order “visits” the node
before traversing its children

▪ DBACFEG

13
A C

B
D

E
F

G

preOrder(BSTNode x) {

if (x == null)

return;

process(x.key)

preOrder(x.left)

preOrder(x.right)

}

CSE373, Winter 2020L14: Traversals and Graphs

Depth-First: In-Order

❖ Pre-order “visits” the node
before traversing its children

▪ DBACFEG

❖ In-order traverses the left
child, visits the node, then
traverses the right child

▪ ABCDEF

14

preOrder(BSTNode x) {

if (x == null)

return;

process(x.key)

preOrder(x.left)

preOrder(x.right)

}

inOrder(BSTNode x) {

if (x == null)

return;

inOrder(x.left)

process(x.key)

inOrder(x.right)

}

A C

B
D

E
F

G

CSE373, Winter 2020L14: Traversals and Graphs

Depth-First: Post-Order

❖ Pre-order “visits” the node
before traversing its children

▪ DBACFEG

❖ In-order traverses the left
child, “visits” the node, then
traverses the right child

▪ ABCDEF

❖ Post-order traverses its
children before “visiting”
the node

▪ ACBEGFD

15

preOrder(BSTNode x) {

if (x == null)

return;

process(x.key)

preOrder(x.left)

preOrder(x.right)

}

inOrder(BSTNode x) {

if (x == null)

return;

inOrder(x.left)

process(x.key)

inOrder(x.right)

}

A C

B
D

E
F

G

postOrder(BSTNode x) {

if (x == null)

return;

postOrder(x.left)

postOrder(x.right)

process(x.key)

}

CSE373, Winter 2020L14: Traversals and Graphs

A Useful Visual Trick for Depth-First Traversals

❖ (Useful for humans, not
algorithms)

❖ Trace a path around the
graph, from the top going
counter-clockwise

▪ Pre-order: “Visit” when you pass the
LEFT side of a node

▪ In-order: “Visit” when you pass the
BOTTOM of a node

▪ Post-order: “Visit” when you pass
the RIGHT side of a node.

9

4

2

1

3

6

8

5

7

Example: post-order
4 7 8 5 2 9 6 3 1

CSE373, Winter 2020L14: Traversals and Graphs

Traversal Applications (1 of 2)

❖ Pre-order Traversal for printing directory listing

17

words.txt

data

tiles cities.txt

d1_x0_y0.jpgd0_x1_y0.jpgd0_x0_y0.jpg

data/

tiles/

d0_x0_y0.jpg

d0_x1_y0.jpg

d1_x0_y0.jpg

cities.txt

words.txt

CSE373, Winter 2020L14: Traversals and Graphs

Traversal Applications (2 of 2)

❖ Post-order Traversal for calculating directory size

18

words.txt

data

tiles cities.txt

d1_x0_y0.jpgd0_x1_y0.jpgd0_x0_y0.jpg

postOrder(BSTNode x) {

if (x == null)

return 0;

int total = 0;

for (BSTNode c : x.children())

total += postOrder(c)

total += x.fileSize();

return total;

}

256 256 256

65536 1024768

67328

CSE373, Winter 2020L14: Traversals and Graphs

Lecture Outline

❖ Tree Traversals

❖ Introduction to Graphs

▪ Definitions

▪ Graph Problems

❖ Graph Traversals: DFS

19

CSE373, Winter 2020L14: Traversals and Graphs

Trees are Hierarchical!

❖ Trees are fantastic for representing strict hierarchical
relationships

▪ Not every relationship is hierarchical

▪ Eg: (Proposed) Light rail map

❖ This is not a tree: contains cycles!

20

CSE373, Winter 2020L14: Traversals and Graphs

Review (AGAIN?!?!): The Tree Data Structure

❖ A Tree is a collection of nodes; each node has <= 1 parent and

>= 0 children

▪ Root node: the “top” of the tree and the

only node with no parent

▪ Leaf node: a node with no children

▪ Edge: the connection between a parent

and child

▪ There is exactly one path between

any pair of nodes

21

class Node<Value> {

Value v;

List<Node> children;

}

Nodes

Edges Purple

Green Red

Blue Indigo OrangeYellow

Pink

CSE373, Winter 2020L14: Traversals and Graphs

The Graph Data Structure
❖ A Graph is a collection of nodes, and zero or more edges

connecting two nodes

▪ All trees are graphs!

❖ A Simple Graph has no self-loops
or parallel edges

▪ In a simple graph, E is O(V2)

▪ Unless otherwise stated, all graphs
in this course are simple

22

Self-loopParallel

CSE373, Winter 2020L14: Traversals and Graphs

Graph Terminology (1 of 2)

Figure from Algorithms 4th Edition

❖ Graph:

▪ Set of vertices aka nodes

▪ Set of edges: pairs of vertices

▪ Vertices with an edge between
them are adjacent

▪ Vertices or edges may have
optional labels

• Numeric edge labels are sometimes
called weights

CSE373, Winter 2020L14: Traversals and Graphs

Graph Terminology (2 of 2)

Figure from Algorithms 4th Edition

❖ Two vertices are connected if
there is a path between them

▪ If all the vertices are connected, we
say the graph is connected

▪ The number of edges leaving a
vertex is its degree

❖ A path is a sequence of vertices
connected by edges

▪ A simple path is a path without
repeated vertices

▪ A cycle is a path whose first and last
edges are the same

• A graph with a cycle is cyclic

CSE373, Winter 2020L14: Traversals and Graphs

Directed vs Undirected; Acyclic vs Cyclic

a

b

d

c

a

b

d

c

e

a

b

d

c

a

b

d

c

Acyclic:

Cyclic:

Directed Undirected

CSE373, Winter 2020L14: Traversals and Graphs

Labeled and Weighted Graphs

26

Edge Labels

a

b

c

d

Vertex Labels

b

d

c

e

a

Edge Labels
(Edge Weights)

1

2

3

1

2

3

4

5

1

a

b

c

d

Vertex and Edge
Labels

CSE373, Winter 2020L14: Traversals and Graphs

pollev.com/uwcse373

This schematic map of the Paris Métro is a graph. It exhibits the following
characteristics:

A. Undirected / Connected / Cyclic / Vertex-labeled

B. Directed / Connected / Cyclic / Vertex-labeled

C. Undirected / Connected / Cyclic / Edge-labeled

D. Directed / Connected / Cyclic / Edge-labeled

E. I’m not sure …

CSE373, Winter 2020L14: Traversals and Graphs

Lecture Outline

❖ Tree Traversals

❖ Introduction to Graphs

▪ Definitions

▪ Graph Problems

❖ Graph Traversals: DFS

28

CSE373, Winter 2020L14: Traversals and Graphs

ST

Graph Queries

❖ There are lots of interesting
questions we can ask about a graph:

▪ What is the shortest route from S to T?
What is the longest without cycles?

▪ Are there cycles?

▪ Is there a tour you can take that only
uses each node (station) exactly once?

▪ Is there a tour that uses each edge
exactly once?

CSE373, Winter 2020L14: Traversals and Graphs

Graph Queries More Theoretically
❖ Some well known graph problems and their common names:

▪ s-t Path. Is there a path between vertices s and t?

▪ Connectivity. Is the graph connected?

▪ Biconnectivity. Is there a vertex whose removal disconnects the
graph?

▪ Shortest s-t Path. What is the shortest path between vertices s and t?

▪ Cycle Detection. Does the graph contain any cycles?

▪ Euler Tour. Is there a cycle that uses every edge exactly once?

▪ Hamilton Tour. Is there a cycle that uses every vertex exactly once?

▪ Planarity. Can you draw the graph on paper with no crossing edges?

▪ Isomorphism. Are two graphs the same graph (in disguise)?

❖ Often can’t tell how difficult a graph problem is without very
deep consideration.

CSE373, Winter 2020L14: Traversals and Graphs

Graph Problem Difficulty

❖ Some well known graph problems:

▪ Euler Tour: Is there a cycle that uses every edge exactly once?

▪ Hamilton Tour: Is there a cycle that uses every vertex exactly once?

❖ Difficulty can be deceiving

▪ An efficient Euler tour algorithm O(# edges) was found as early as
1873 [Link].

▪ Despite decades of intense study, no efficient algorithm for a
Hamilton tour exists. Best algorithms are exponential time.

❖ Graph problems are among the most mathematically rich areas
of CS theory

https://ethkim.github.io/TA/251/eulerian.pdf

CSE373, Winter 2020L14: Traversals and Graphs

Lecture Outline

❖ Tree Traversals

❖ Introduction to Graphs

▪ Definitions

▪ Graph Problems

❖ Graph Traversals: DFS

32

CSE373, Winter 2020L14: Traversals and Graphs

s-t Connectivity Problem

❖ s-t connectivity problem

▪ Given source vertex s and a target
vertex t, does there exist a path
between s and t?

❖ Try to come up with an algorithm
for connected(s, t)

33

1

2

3

4

5

6

7

8

0s
t

CSE373, Winter 2020L14: Traversals and Graphs

s-t Connectivity Problem: Proposed Solution

34

connected(Node s, Node t) {

if (s == t) {

return true;

} else {

for (Node n : s.neighbors) {

if (connected(n, t)) {

return true;

}

}

return false;

}

}

1

2

3

4

5

6

7

8

0s
t

CSE373, Winter 2020L14: Traversals and Graphs

pollev.com/uwcse373

❖ What is wrong with the proposed algorithm?

35

connected(Node s, Node t) {

if (s == t) {

return true;

} else {

for (Node n : s.neighbors) {

if (connected(n, t)) {

return true;

}

}

return false;

}

}

1

2

3

4

5

6

7

8

0s
t

CSE373, Winter 2020L14: Traversals and Graphs

s-t Connectivity Problem

❖ What is wrong with the proposed algorithm?

▪ Does 0 == 7? No; if(connected(1, 7) return true;

▪ Does 1 == 7? No; if(connected(0, 7) return true;

▪ Does 0 == 7?

36

connected(Node s, Node t) {

if (s == t) {

return true;

} else {

for (Node n : s.neighbors) {

if (connected(n, t)) {

return true;

}

}

return false;

}

}

1

2

3

4

5

6

7

8

0s
t

CSE373, Winter 2020L14: Traversals and Graphs

s-t Connectivity Problem: Depth-First Search

❖ Mark each node as visited!

37

connected(Node s, Node t) {

if (s == t) {

return true;

} else {

s.visited = true;

for (Node n : s.neighbors) {

if (n.visited) {

continue;

}

if (connected(n, t)) {

return true;

}

}

return false;

}

}

1

2

3

4

5

6

7

8

0s
t

Is this a pre-order traversal or a
post-order traversal?

Do in-order traversals exist for
graphs?

CSE373, Winter 2020L14: Traversals and Graphs

s-t Connectivity Problem: Depth-First Search

❖ Demo:
https://docs.google.com/presentation/d/1OHRI7Q_f8hlwjRJc8
NPBUc1cMu5KhINH1xGXWDfs_dA/present?ueb=true&slide=id
.g76e0dad85_2_380

❖ Is this a pre-order traversal or a post-order traversal?

▪ Do in-order traversals exist for graphs?

38

https://docs.google.com/presentation/d/1OHRI7Q_f8hlwjRJc8NPBUc1cMu5KhINH1xGXWDfs_dA/present?ueb=true&slide=id.g76e0dad85_2_380

CSE373, Winter 2020L14: Traversals and Graphs

tl;dr

❖ Traversals are an order in which you visit/process vertices

❖ Trees have level-order traversals and 3 depth-first traversals

❖ Graphs are a more general idea than a tree

▪ Key terms: Directed/Undirected, Cyclic/Acylic, Path, Cycle

▪ Traversals are a common tool for solving almost all graph problems

• DFS pre-order, DFS post-order, BFS (next lecture!)

39

