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Announcements

❖ Homework 5: k-d trees is released and due next Friday

▪ This is the first of our “hard” homeworks

▪ Suggestion: pretend it’s due Tuesday so you don’t panic while 
prepping for midterm.  Start early!

▪ Hint: start with a version that doesn’t prune; then implement a 
version that chooses good/bad sides; then finally a pruning version

❖ Midterm is also next Friday

▪ If your student number ends in an odd number, go to KNE 210

▪ If your student ends in an even number, go to KNE 220

▪ We’ve released a practice midterm

▪ Review session Thursday night: 4:30-6:30 @ ARC 147
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Feedback from the Reading Quiz

❖ The reading didn’t mention weighted/unweighted graphs

❖ I’m still confused about pre-, in- and post-order graphs

❖ It’s interesting how we can finally use a queue to implement 
BFS

▪ Why does BFS matter?  It’s also really confusing
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Lecture Outline

❖ Tree Traversals

❖ Introduction to Graphs

▪ Definitions

▪ Graph Problems

❖ Graph Traversals: DFS
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Review: The Tree Data Structure

❖ A Tree is a collection of nodes; each node has <= 1 parent and 

>= 0 children

▪ Root node: the “top” of the tree and the

only node with no parent

▪ Leaf node: a node with no children

▪ Edge: the connection between a parent

and child

▪ There is exactly one path between

any pair of nodes
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class Node<Value> {

Value v;

List<Node> children;

}
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Edges Purple

Green Red
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Review: Trees We’ve Seen

❖ Binary Search Trees

▪ And one of its balanced 

variants: the Left-Leaning Red-

Black Tree

❖ B-Trees

▪ Specifically, a 2-3 Tree

❖ Binary Heaps
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Tree Applications

❖ Trees are a more general concept

▪ Organization charts

▪ Family lineages* including 
phylogenetic trees

▪ MOH Training Manual for 
Management of Malaria.

*: Not all family lineages are trees!
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Tree Traversals

❖ Thus far, we’ve talked about 
searching a tree.  Let’s back up 
and talk about traversing a tree

❖ A traversal:

▪ Iterates over every node in a tree 
in some defined ordering

▪ “Processes” or “visits” its contents

❖ There are several types of tree 
traversals
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Tree Traversal Types

❖ Level Order Traversal aka Breadth-First Traversal

❖ Depth-First Traversal

▪ Pre-order Traversal

▪ In-order Traversal

▪ Post-order Traversal
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Level-Order / Breadth-First Traversal

❖ Traverse and visit top-to-bottom, left-to-right

▪ Like reading in English

❖ Looks like how we converted our binary heap (ie, a complete 
tree) to its array representation

❖ Needs a supporting data structure
to implement

▪ See next lecture!
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Depth-First Traversal

❖ Basic idea: traverse “deep nodes” (eg, A) before shallow ones 
(eg, F)

❖ Remember that traversing a node is different than 
visiting/processing a node
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Depth-First: Pre-Order

❖ Pre-order “visits” the node 
before traversing its children

▪ DBACFEG
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preOrder(BSTNode x) {

if (x == null)

return;

process(x.key)

preOrder(x.left)

preOrder(x.right)

}
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Depth-First: In-Order

❖ Pre-order “visits” the node 
before traversing its children

▪ DBACFEG

❖ In-order traverses the left 
child, visits the node, then 
traverses the right child

▪ ABCDEF
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preOrder(BSTNode x) {

if (x == null)

return;

process(x.key)

preOrder(x.left)

preOrder(x.right)

}

inOrder(BSTNode x) {

if (x == null)

return;

inOrder(x.left)

process(x.key)

inOrder(x.right)

}
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Depth-First: Post-Order

❖ Pre-order “visits” the node 
before traversing its children

▪ DBACFEG

❖ In-order traverses the left 
child, “visits” the node, then 
traverses the right child

▪ ABCDEF

❖ Post-order traverses its 
children before “visiting” 
the node

▪ ACBEGFD
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preOrder(BSTNode x) {

if (x == null)

return;

process(x.key)

preOrder(x.left)

preOrder(x.right)

}

inOrder(BSTNode x) {

if (x == null)

return;

inOrder(x.left)

process(x.key)

inOrder(x.right)

}
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postOrder(BSTNode x) {

if (x == null)

return;

postOrder(x.left)

postOrder(x.right)

process(x.key)

}
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A Useful Visual Trick for Depth-First Traversals

❖ (Useful for humans, not 
algorithms)

❖ Trace a path around the
graph, from the top going 
counter-clockwise

▪ Pre-order: “Visit” when you pass the 
LEFT side of a node

▪ In-order: “Visit” when you pass the 
BOTTOM of a node

▪ Post-order: “Visit” when you pass 
the RIGHT side of a node.
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Traversal Applications (1 of 2)

❖ Pre-order Traversal for printing directory listing
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Traversal Applications (2 of 2)

❖ Post-order Traversal for calculating directory size
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postOrder(BSTNode x) {

if (x == null)

return 0;

int total = 0;

for (BSTNode c : x.children())

total += postOrder(c)

total += x.fileSize();

return total;
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Lecture Outline

❖ Tree Traversals

❖ Introduction to Graphs

▪ Definitions

▪ Graph Problems

❖ Graph Traversals: DFS
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Trees are Hierarchical!

❖ Trees are fantastic for representing strict hierarchical 
relationships

▪ Not every relationship is hierarchical

▪ Eg: (Proposed) Light rail map

❖ This is not a tree: contains cycles!
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Review (AGAIN?!?!): The Tree Data Structure

❖ A Tree is a collection of nodes; each node has <= 1 parent and 

>= 0 children

▪ Root node: the “top” of the tree and the

only node with no parent

▪ Leaf node: a node with no children

▪ Edge: the connection between a parent

and child

▪ There is exactly one path between

any pair of nodes
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class Node<Value> {

Value v;

List<Node> children;

}
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The Graph Data Structure
❖ A Graph is a collection of nodes, and zero or more edges 

connecting two nodes

▪ All trees are graphs!

❖ A Simple Graph has no self-loops
or parallel edges

▪ In a simple graph, E is O(V2)

▪ Unless otherwise stated, all graphs
in this course are simple

22

Self-loopParallel



CSE373, Winter 2020L14: Traversals and Graphs

Graph Terminology (1 of 2)

Figure from Algorithms 4th Edition

❖ Graph:

▪ Set of vertices aka nodes

▪ Set of edges: pairs of vertices

▪ Vertices with an edge between 
them are adjacent

▪ Vertices or edges may have 
optional labels

• Numeric edge labels are sometimes 
called weights
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Graph Terminology (2 of 2)

Figure from Algorithms 4th Edition

❖ Two vertices are connected if 
there is a path between them

▪ If all the vertices are connected, we 
say the graph is connected

▪ The number of edges leaving a 
vertex is its degree

❖ A path is a sequence of vertices 
connected by edges

▪ A simple path is a path without 
repeated vertices

▪ A cycle is a path whose first and last 
edges are the same

• A graph with a cycle is cyclic
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Directed vs Undirected; Acyclic vs Cyclic
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Labeled and Weighted Graphs
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pollev.com/uwcse373

This schematic map of the Paris Métro is a graph.  It exhibits the following 
characteristics:

A. Undirected / Connected / Cyclic / Vertex-labeled

B. Directed / Connected / Cyclic / Vertex-labeled

C. Undirected / Connected / Cyclic / Edge-labeled

D. Directed / Connected / Cyclic / Edge-labeled

E. I’m not sure …
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Lecture Outline

❖ Tree Traversals

❖ Introduction to Graphs

▪ Definitions

▪ Graph Problems

❖ Graph Traversals: DFS
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ST

Graph Queries

❖ There are lots of interesting 
questions we can ask about a graph:

▪ What is the shortest route from S to T? 
What is the longest without cycles?

▪ Are there cycles?

▪ Is there a tour you can take that only 
uses each node (station) exactly once?

▪ Is there a tour that uses each edge 
exactly once?
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Graph Queries More Theoretically
❖ Some well known graph problems and their common names:

▪ s-t Path. Is there a path between vertices s and t?

▪ Connectivity. Is the graph connected?

▪ Biconnectivity. Is there a vertex whose removal disconnects the 
graph?

▪ Shortest s-t Path. What is the shortest path between vertices s and t?

▪ Cycle Detection. Does the graph contain any cycles?

▪ Euler Tour. Is there a cycle that uses every edge exactly once?

▪ Hamilton Tour. Is there a cycle that uses every vertex exactly once?

▪ Planarity. Can you draw the graph on paper with no crossing edges?

▪ Isomorphism. Are two graphs the same graph (in disguise)?

❖ Often can’t tell how difficult a graph problem is without very 
deep consideration.
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Graph Problem Difficulty

❖ Some well known graph problems:

▪ Euler Tour: Is there a cycle that uses every edge exactly once?

▪ Hamilton Tour: Is there a cycle that uses every vertex exactly once?

❖ Difficulty can be deceiving

▪ An efficient Euler tour algorithm O(# edges) was found as early as 
1873 [Link].

▪ Despite decades of intense study, no efficient algorithm for a 
Hamilton tour exists. Best algorithms are exponential time.

❖ Graph problems are among the most mathematically rich areas 
of CS theory

https://ethkim.github.io/TA/251/eulerian.pdf
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Lecture Outline

❖ Tree Traversals

❖ Introduction to Graphs

▪ Definitions

▪ Graph Problems

❖ Graph Traversals: DFS
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s-t Connectivity Problem

❖ s-t connectivity problem

▪ Given source vertex s and a target 
vertex t, does there exist a path 
between s and t?

❖ Try to come up with an algorithm 
for connected(s, t)
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s-t Connectivity Problem: Proposed Solution
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connected(Node s, Node t) {

if (s == t) {

return true;

} else {

for (Node n : s.neighbors) {

if (connected(n, t)) {

return true;

}

}

return false;

}

}
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pollev.com/uwcse373

❖ What is wrong with the proposed algorithm?
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connected(Node s, Node t) {

if (s == t) {

return true;

} else {

for (Node n : s.neighbors) {

if (connected(n, t)) {

return true;
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return false;

}
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s-t Connectivity Problem

❖ What is wrong with the proposed algorithm?

▪ Does 0 == 7?  No; if(connected(1, 7) return true;

▪ Does 1 == 7?  No; if(connected(0, 7) return true;

▪ Does 0 == 7?
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connected(Node s, Node t) {

if (s == t) {

return true;

} else {

for (Node n : s.neighbors) {

if (connected(n, t)) {

return true;

}

}

return false;

}

}
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s-t Connectivity Problem: Depth-First Search

❖ Mark each node as visited!
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connected(Node s, Node t) {

if (s == t) {

return true;

} else {

s.visited = true;

for (Node n : s.neighbors) {

if (n.visited) {

continue;

}

if (connected(n, t)) {

return true;

}

}

return false;

}

}
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Is this a pre-order traversal or a 
post-order traversal?

Do in-order traversals exist for 
graphs?
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s-t Connectivity Problem: Depth-First Search

❖ Demo: 
https://docs.google.com/presentation/d/1OHRI7Q_f8hlwjRJc8
NPBUc1cMu5KhINH1xGXWDfs_dA/present?ueb=true&slide=id
.g76e0dad85_2_380

❖ Is this a pre-order traversal or a post-order traversal?

▪ Do in-order traversals exist for graphs?
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https://docs.google.com/presentation/d/1OHRI7Q_f8hlwjRJc8NPBUc1cMu5KhINH1xGXWDfs_dA/present?ueb=true&slide=id.g76e0dad85_2_380
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tl;dr

❖ Traversals are an order in which you visit/process vertices

❖ Trees have level-order traversals and 3 depth-first traversals

❖ Graphs are a more general idea than a tree

▪ Key terms: Directed/Undirected, Cyclic/Acylic, Path, Cycle

▪ Traversals are a common tool for solving almost all graph problems

• DFS pre-order, DFS post-order, BFS (next lecture!)
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