YA UNIVERSITY of WASHINGTON L13: Hash Tables CSE373, Winter 2020

Set and Map ADTs: Hash Tables

CSE 373 Winter 2020

Instructor: Hannah C. Tang

Teaching Assistants:

Aaron Johnston Ethan Knutson Nathan Lipiarski
Amanda Park Farrell Fileas Sam Long

Anish Velagapudi Howard Xiao Yifan Bai

Brian Chan Jade Watkins Yuma Tou

Elena Spasova Lea Quan

W UNIVERSITY of WASHINGTON L13: Hash Tables CSE373, Winter 2020

0 PO" E\Ie rYWhere pollev.com/uwcse373

« How long did HW4 take?

A 0-2 Hours
8. 2-4 Hours
c. 4-6Hours
p. 6-10 Hours

e. 10-14 Hours
r. 144+ Hours
c. | haven’t finished yet /| don’t want to say

YA UNIVERSITY of WASHINGTON L13: Hash Tables CSE373, Winter 2020

Announcements

« Homework 5: k-d trees is released and due next Friday
® This is the first of our “hard” homeworks

= Suggestion: pretend it’s due Tuesday so you don’t panic while
prepping for midterm. Start early!

= Hint: start with a version that doesn’t prune; then implement a
version that chooses good/bad sides; then finally a pruning version

« Midterm is also next Friday
= |f your student number ends in an odd number, go to KNE 210
= |f your student ends in an even number, go to KNE 220

YA UNIVERSITY of WASHINGTON L13: Hash Tables CSE373, Winter 2020

Feedback from the Reading Quiz

« Is it possible to hash data without prior knowledge of its
structure? To come up with a good hash function, it seems like
we would need to know appropriate features of the data ahead
of time to use as inputs to the hash function.

+» How do we deal with collisions?

« When will we get to hash tables?

YA UNIVERSITY of WASHINGTON L13: Hash Tables

Lecture Outline

«» Hash Tables Introduction

« Handling Collisions
= Separate Chaining
= Open Addressing

+ Java-specific Gotchas

CSE373, Winter 2020

W UNIVERSITY of WASHINGTON L13: Hash Tables

CSE373, Winter 2020

Review: Set and Map Data Structures

> We’'ve seen several data structures implementing the Set or Map ADT

» Search Trees give good performance —log N — as long as the tree is
reasonably balanced

® Which doesn’t occur with sorted or mostly-sorted input

® So we invented two new categories of search trees whose heights are
bounded:

- B-Trees, which grow from the root and have L >= 2 children
+ Balanced BSTs, which grow from the leaves but rotate to stay balanced

LLRB Tree Map h =O(log N) h= O(log N) h = O(log N)
B-Tree Map h =0(log N) h= O(log N) h=0(log N)
BST Map h = ©(N) h =0(N) h =0©(N)

LinkedList Map O(N) O(N) O(N)

YA UNIVERSITY of WASHINGTON L13: Hash Tables

CSE373, Winter 2020

Limits of Search-Tree-Based Sets and Maps

« We required items to be comparable
= “ls X <Y?”isn’t true of all types

® Can we avoid the comparable requirement?

+ Balanced search trees have excellent performance, but can we
do even better?

= O(log N) is amazing: 1 billion items is still only height ~30
= Can we get even better performance than O(log N)?

Basically: Can we do better than search trees?

YA UNIVERSITY of WASHINGTON L13: Hash Tables CSE373, Winter 2020

Yes, We Can!

« Thanks to hashing, we can convert objects to
large integers

« Thanks to Datalndexed{Integer, Word}Set, we 1 -
can use these large integers as array indices

WordToPriorityMap m;
m.add (“cat”, 100);
m.add (“bee”, 50);
m.add (“dog”, 200);

hashFunction (“cat”) ==<::>
hashFunction (“bee”)
hashFunction (“dog”) = 2525393088

YA UNIVERSITY of WASHINGTON L13: Hash Tables CSE373, Winter 2020

Yes, We Can! (this time for sure)

« We're mapping strings to an integer
® Hash the strings and use the hash value as an array

index 0 -
® To force our numbers to fit into a reasonably-sized 1 _
array, we’ll use the modulo operator (%)
2 100

WordToPriorityMap m; 3 50 3§>
m.add (“cat”, 100);
m.add (“bee”, 50); a4 -
m.add (“dog”, 200);

hashFunction (“cat”) == 2;

2 % 5 ==

hashFunction (“bee”) == 2525393088;
2525393088 $ 5 == 3

hashFunction (“dog”) == 9752423;

9752423 % 5 == s

W UNIVERSITY of WASHINGTON L13: Hash Tables CSE373, Winter 2020

0 PO" E\Ie rYWhere pollev.com/uwcse373

How should we handle the “bee” and “dog” collision at index 3?

O Somehow force “bee” and “dog” to share the same index
Overwrite “bee” with “dog”

c. Keep “bee” and ignore “dog”
Put “dog” in a different index, and somehow remember/find it later

Rebuild the hash table with a different size and/or hash function
I’m not sure ...

10

YA UNIVERSITY of WASHINGTON L13: Hash Tables CSE373, Winter 2020

Lecture Outline

«» Hash Tables Introduction
+ Handling Collisions
= Separate Chaining

= Open Addressing

+ Java-specific Gotchas

11

YA UNIVERSITY of WASHINGTON L13: Hash Tables

Yes, We Can! (third time’s the charm)

« We’re mapping strings to an integer

® Hash the strings and use the hash value as an array
index

® To force our numbers to fit into a reasonably-sized
array, we’ll use the modulo operator (%)

® Each entry in the array is an initially-empty linked list

WordToPriorityMap m;
m.add (“cat”, 100); 0
m.add (“bee”, 50);
m.add (“dog”, 200); 1

hashFunction (“cat”) == 2;

2 % 5 == 3
hashFunction (“bee”) == 2525393088;
2525393088 % 5 == 3 4
hashFunction (“dog”) == 9752423;

9752423 % 5 ==

CSE373, Winter 2020

= 100

— 50 ~» 200

12

YA UNIVERSITY of WASHINGTON L13: Hash Tables CSE373, Winter 2020

Separate Chaining

« Each index in our array is a “bucket”. When an item x hashes to
h:
= If bucket h is empty: create a new list containing x
= If bucket h is already a list: add x if it is not already present

+ Bucket h is a “separate chain” of all items with hash code h

2 = 100

3 —> 50 > 200

13

W UNIVERSITY of WASHINGTON L13: Hash Tables CSE373, Winter 2020

Separate Chaining: Performance

« The worst-case runtime is determined by the length of the

longest list o .

= Let’s call the length of this worst-case list “Q”
1 -

2 = 100

3 » 50 > 200

4 _

LLRB Tree h =0O(log N) h = ©(log N) h = ©(log N)

Separate Chaining
Hash Table

LinkedList Map ©(N) O(N) O(N)

Q=0(7??) Q=0(7??) Q=0(7?7?)

14

W UNIVERSITY of WASHINGTON L13: Hash Tables CSE373, Winter 2020

0 PO" E\Ie rYWhere pollev.com/uwcse373

For this hash table with 5 buckets, give the order of growth for Q with
respect to N

» Qis0(1) ° :_’j -
5. Qis O(log N) 1 _’_"_"_"D"D
~Qis O(N) 2 —] bl b

p. QisO(N log N) —

?
. I'mnot sure ... S [N R -
4 —_— > D »D

15

YA UNIVERSITY of WASHINGTON L13: Hash Tables CSE373, Winter 2020

Separate Chaining: Improving Performance for
best/average case
+ Suppose we have:

= A fixed number of buckets M
®= An increasing number of items N

« Even if the items are spread out evenly 2 ——> 100
(ie, bes erage cases), lists are of ;

» 50 > 200

= How can we improve our design to guarantee
that N/M is O(log N) or even O(1)?

16

YA UNIVERSITY of WASHINGTON L13: Hash Tables CSE373, Winter 2020

Separate Chaining: Improving Performance for
best/average case

+ Suppose we have:
" Anincreasing number of buckets M 0
®= An increasing number of items N

« Even if the items are spread out evenly 2 ——> 100
(ie, best and average cases), lists are of ; J 50] 200
length A = N/M

= = =
’

-L . loci
Make M a function of N
+ Example strategy: when N/M >= 1.5, double M
® This is called “resizing”
= N/M is called the “load factor” and is often abbreviated A

17

W UNIVERSITY of WASHINGTON L13: Hash Tables CSE373, Winter 2020

0 PO" E\Ie ryWhere pollev.com/uwcse373

<« Demo:
https://docs.google.com/presentation/d/1QevjelsyVO8Ea375VRhIf-o--
MIMDYB830xBbXnbQzZU/edit#slide=id.g52624185f6 2 2823

+ Where will the bucket go? H

A Index O
8. Index1
p. Index4
e, Index 7

. I’'m not sure. ...

18

https://docs.google.com/presentation/d/1QevjelsyVO8Ea375VRhIf-o--MIMDYB83OxBbXnbQZU/edit#slide=id.g52624185f6_2_2823

YA UNIVERSITY of WASHINGTON L13: Hash Tables CSE373, Winter 2020

Separate Chaining: Runtime Analysis for

best/average case
+~ Aslong as M € O(N), O(A) € (1)

« Assuming items are evenly spaced, lists
will be A items long, resulting in
O(A) € ©(1) runtimes — -

1 — B B _.D..D
« What’s the cost of a resize? 2 — P
= Resizing takes ©(N) time to 3 BNENE
redistribute all items — = =
4 — P
= However, most add operations L __’D

(specifically: A, ;M adds) will be ©(1)
<« Similar to our resizing arrays, as long as
we resize by a multiplicative factor the

average runtime will still be ©(1) 1

W UNIVERSITY of WASHINGTON L13: Hash Tables CSE373, Winter 2020

Separate Chaining: Performance

LLRB Tree h=0(log N) h=0(log N) h=0(log N)

Resizing Separate

Chaining Hash Table Q= 0O(N) Q=0(N) Q=0(N)
(worst case)

Resizing Separate

Chaining Hash Table A=0(1) A=0(1) A=0(1)
(best/average cases) *
LinkedList Map O(N) O(N) O(N)
*olodi ase

+: Assuming items are evenly spaced

20

YA UNIVERSITY of WASHINGTON

L13: Hash Tables

“Assuming items are evenly spaced”

CSE373, Winter 2020

+ Hash function uniformity is critical to avoiding worst case

0

1

: L L0

0

1

—>]

—>]

L

!

« Hash table size is also critical; it must be relatively prime to the

hash function’s clusters (if any)

= Eg, if hash function only returns even numbers,
an even-sized hash table would cause clusters

0

1

2

3

—

LR

il

21

YA UNIVERSITY of WASHINGTON L13: Hash Tables

Lecture Outline

«» Hash Tables Introduction

+ Handling Collisions
= Separate Chaining
= Open Addressing

+ Java-specific Gotchas

CSE373, Winter 2020

22

YA UNIVERSITY of WASHINGTON L13: Hash Tables

Yes, We Can! (fourth time’s the boon)

« We’re mapping strings to an integer

® Hash the strings and use the hash value as an array
index

® To force our numbers to fit into a reasonably-sized
array, we’ll use the modulo operator (%)

= “Probe” for a different bucket

WordToPriorityMap m;
m.add (“cat”, 100); 0
m.add (“bee”, 50);
m.add (“dog”, 200); 1

hashFunction (“cat”) == 2;

2 % 5 == 3
hashFunction (“bee”) == 2525393088;
2525393088 % 5 == 3 4
hashFunction (“dog”) == 9752423;

9752423 % 5 ==

100

50 47

200

hewe

CSE373, Winter 2020

23

YA UNIVERSITY of WASHINGTON L13: Hash Tables

Open Addressing

« Linear probing
= Add one to the index. If already occupied,
keep incrementing

® Demo: http://go0.gl/05EDvb

« Quadratic probing

= Add one to the index. If already occupied,
look 4 ahead, then 9 ahead, then 16 ahead,
then ...

« Many other possibilities, but not often
used in practice
® Load factor A must be carefully managed to

prevent excessive (or infinite) time spent
probing

CSE373, Winter 2020

Sf\\DQKQ.\e—
C O»\V\\n\p)

= 100

= 50 ~» 200

, meé(\ _
O\ (656\/\6
100
50

200

24

http://goo.gl/o5EDvb

YA UNIVERSITY of WASHINGTON L13: Hash Tables

Lecture Outline

«» Hash Tables Introduction

« Handling Collisions
= Separate Chaining
= Open Addressing

+ Java-specific Gotchas

CSE373, Winter 2020

25

YA UNIVERSITY of WASHINGTON L13: Hash Tables CSE373, Winter 2020

Java Gotchas (1 of 2)

+ Java’s hash table implementation is the HashSet/HashMap
® The hash function is Object’s hashCode(), which is a 32-bit number
= Java’s equals() method is implemented as memory address equality

« Warning #1: Don’t override equals() without also overriding
hashCode()

® Leads to items getting lost and other weird behavior

= HashMaps/HashSets use equals() to determine if an item exists in a
particular bucket, but hashCode() to find the item in the bucket

26

YA UNIVERSITY of WASHINGTON L13: Hash Tables CSE373, Winter 2020

Java Gotchas (2 of 2)

« Warning #2: Don’t store objects that can change in a
HashSet/HashMap!

= |f an object’s members can change, then its hashCode() changes.
Again, items may get lost.

« Warning #3: Most cryptographic hashes consider 32-bits

substantially too small
= But do you need cryptographic-quality hashing?

27

W UNIVERSITY of WASHINGTON

th:dr

L13: Hash Tables

CSE373, Winter 2020

« Hash Tables combine hashing and data-indexed arrays

® Collision resolution is tricky!

®" Managing load factor A and smart resizing yields ©(1) runtime

Resizing Separate
Chaining Hash Table
(worst case)

Q=0(N)

Resizing Separate
Chaining Hash Table 0(1)
(best/average cases)*

LLRB Tree h =0(log N)
B-Tree h =0(log N)
BST h = ©(N)
LinkedList O(N)

Q=0(N) Q=0(N)
o(1)” 0(1)"

h =0(log N) h =0(log N)
h=0(log N) h=0(log N)
h = O(N) h =0(N)
O(N) ©(N)

*: Indicates average case
+: Assuming items are evenly spaced 28

