
CSE373, Winter 2020L13: Hash Tables

Set and Map ADTs: Hash Tables
CSE 373 Winter 2020

Instructor: Hannah C. Tang

Teaching Assistants:

Aaron Johnston Ethan Knutson Nathan Lipiarski

Amanda Park Farrell Fileas Sam Long

Anish Velagapudi Howard Xiao Yifan Bai

Brian Chan Jade Watkins Yuma Tou

Elena Spasova Lea Quan

CSE373, Winter 2020L13: Hash Tables

pollev.com/uwcse373

❖ How long did HW4 take?

A. 0-2 Hours

B. 2-4 Hours

C. 4-6 Hours

D. 6-10 Hours

E. 10-14 Hours

F. 14+ Hours

G. I haven’t finished yet / I don’t want to say

2

CSE373, Winter 2020L13: Hash Tables

Announcements

❖ Homework 5: k-d trees is released and due next Friday

▪ This is the first of our “hard” homeworks

▪ Suggestion: pretend it’s due Tuesday so you don’t panic while
prepping for midterm. Start early!

▪ Hint: start with a version that doesn’t prune; then implement a
version that chooses good/bad sides; then finally a pruning version

❖ Midterm is also next Friday

▪ If your student number ends in an odd number, go to KNE 210

▪ If your student ends in an even number, go to KNE 220

3

CSE373, Winter 2020L13: Hash Tables

Feedback from the Reading Quiz

❖ Is it possible to hash data without prior knowledge of its
structure? To come up with a good hash function, it seems like
we would need to know appropriate features of the data ahead
of time to use as inputs to the hash function.

❖ How do we deal with collisions?

❖ When will we get to hash tables?

4

CSE373, Winter 2020L13: Hash Tables

Lecture Outline

❖ Hash Tables Introduction

❖ Handling Collisions

▪ Separate Chaining

▪ Open Addressing

❖ Java-specific Gotchas

5

CSE373, Winter 2020L13: Hash Tables

Review: Set and Map Data Structures

❖ We’ve seen several data structures implementing the Set or Map ADT

❖ Search Trees give good performance – log N – as long as the tree is
reasonably balanced

▪ Which doesn’t occur with sorted or mostly-sorted input

▪ So we invented two new categories of search trees whose heights are
bounded:

• B-Trees, which grow from the root and have L >= 2 children

• Balanced BSTs, which grow from the leaves but rotate to stay balanced

6

Find Add Remove

LLRB Tree Map h = Θ(log N) h = Θ(log N) h = Θ(log N)

B-Tree Map h = Θ(log N) h = Θ(log N) h = Θ(log N)

BST Map h = Θ(N) h = Θ(N) h = Θ(N)

LinkedList Map Θ(N) Θ(N) Θ(N)

CSE373, Winter 2020L13: Hash Tables

Limits of Search-Tree-Based Sets and Maps

❖ We required items to be comparable

▪ “Is X < Y?” isn’t true of all types

▪ Can we avoid the comparable requirement?

❖ Balanced search trees have excellent performance, but can we
do even better?

▪ Θ(log N) is amazing: 1 billion items is still only height ~30

▪ Can we get even better performance than Θ(log N)?

7

Basically: Can we do better than search trees?

CSE373, Winter 2020L13: Hash Tables

Yes, We Can!

❖ Thanks to hashing, we can convert objects to
large integers

❖ Thanks to DataIndexed{Integer, Word}Set, we
can use these large integers as array indices

8

WordToPriorityMap m;

m.add(“cat”, 100);

m.add(“bee”, 50);

m.add(“dog”, 200);

hashFunction(“cat”) == 2;

hashFunction(“bee”) == 2525393088;

hashFunction(“dog”) == 9752423;

0 -

1 -

2 100

3 -

… -

9752423 200

… -

2525393088 50

…

CSE373, Winter 2020L13: Hash Tables

Yes, We Can! (this time for sure)

❖ We’re mapping strings to an integer

▪ Hash the strings and use the hash value as an array
index

▪ To force our numbers to fit into a reasonably-sized
array, we’ll use the modulo operator (%)

9

WordToPriorityMap m;

m.add(“cat”, 100);

m.add(“bee”, 50);

m.add(“dog”, 200);

hashFunction(“cat”) == 2;

2 % 5 == 2

hashFunction(“bee”) == 2525393088;

2525393088 % 5 == 3

hashFunction(“dog”) == 9752423;

9752423 % 5 == 3

0 -

1 -

2 100

3 50

4 -

🎺

CSE373, Winter 2020L13: Hash Tables

pollev.com/uwcse373

How should we handle the “bee” and “dog” collision at index 3?

A. Somehow force “bee” and “dog” to share the same index

B. Overwrite “bee” with “dog”

C. Keep “bee” and ignore “dog”

D. Put “dog” in a different index, and somehow remember/find it later

E. Rebuild the hash table with a different size and/or hash function

F. I’m not sure …

10

CSE373, Winter 2020L13: Hash Tables

Lecture Outline

❖ Hash Tables Introduction

❖ Handling Collisions

▪ Separate Chaining

▪ Open Addressing

❖ Java-specific Gotchas

11

CSE373, Winter 2020L13: Hash Tables

Yes, We Can! (third time’s the charm)

❖ We’re mapping strings to an integer

▪ Hash the strings and use the hash value as an array
index

▪ To force our numbers to fit into a reasonably-sized
array, we’ll use the modulo operator (%)

▪ Each entry in the array is an initially-empty linked list

12

WordToPriorityMap m;

m.add(“cat”, 100);

m.add(“bee”, 50);

m.add(“dog”, 200);

hashFunction(“cat”) == 2;

2 % 5 == 2

hashFunction(“bee”) == 2525393088;

2525393088 % 5 == 3

hashFunction(“dog”) == 9752423;

9752423 % 5 == 3

0 -

1 -

2

3

4 -

100

50 200

CSE373, Winter 2020L13: Hash Tables

Separate Chaining

❖ Each index in our array is a “bucket”. When an item x hashes to
h:

▪ If bucket h is empty: create a new list containing x

▪ If bucket h is already a list: add x if it is not already present

❖ Bucket h is a “separate chain” of all items with hash code h

13

0 -

1 -

2

3

4 -

100

50 200

CSE373, Winter 2020L13: Hash Tables

0 -

1 -

2

3

4 -

Separate Chaining: Performance

❖ The worst-case runtime is determined by the length of the
longest list

▪ Let’s call the length of this worst-case list “Q”

14

100

50 200

Find Add Remove

LLRB Tree h = Θ(log N) h = Θ(log N) h = Θ(log N)

Separate Chaining
Hash Table

Q = Θ(??) Q = Θ(??) Q = Θ(??)

LinkedList Map Θ(N) Θ(N) Θ(N)

CSE373, Winter 2020L13: Hash Tables

pollev.com/uwcse373

For this hash table with 5 buckets, give the order of growth for Q with
respect to N

A. Q is Θ(1)

B. Q is Θ(log N)

C. Q is Θ(N)

D. Q is Θ(N log N)

E. I’m not sure …

15

0

1

2

3

4

CSE373, Winter 2020L13: Hash Tables

0 -

1 -

2

3

4 -

Separate Chaining: Improving Performance for
best/average case

❖ Suppose we have:

▪ A fixed number of buckets M

▪ An increasing number of items N

❖ Even if the items are spread out evenly
(ie, best and average cases), lists are of
length λ = N/M

▪ For M = 5, Q = Θ(N)

▪ How can we improve our design to guarantee
that N/M is Θ(log N) or even Θ(1)?

16

100

50 200

CSE373, Winter 2020L13: Hash Tables

0 -

1 -

2

3

4 -

Separate Chaining: Improving Performance for
best/average case

❖ Suppose we have:

▪ An increasing number of buckets M

▪ An increasing number of items N

❖ Even if the items are spread out evenly
(ie, best and average cases), lists are of
length λ = N/M

▪ For M = 5, Q = Θ(N)

▪ How can we improve our design to guarantee
that N/M is Θ(log N) or even Θ(1)?

❖ Example strategy: when N/M >= 1.5, double M

▪ This is called “resizing”

▪ N/M is called the “load factor” and is often abbreviated λ
17

100

50 200

Make M a function of N

CSE373, Winter 2020L13: Hash Tables

pollev.com/uwcse373

❖ Demo:
https://docs.google.com/presentation/d/1QevjelsyVO8Ea375VRhIf-o--
MIMDYB83OxBbXnbQZU/edit#slide=id.g52624185f6_2_2823

❖ Where will the bucket go?

A. Index 0

B. Index 1

C. Index 3

D. Index 4

E. Index 7

F. I’m not sure …

18

https://docs.google.com/presentation/d/1QevjelsyVO8Ea375VRhIf-o--MIMDYB83OxBbXnbQZU/edit#slide=id.g52624185f6_2_2823

CSE373, Winter 2020L13: Hash Tables

0

1

2

3

4

Separate Chaining: Runtime Analysis for
best/average case
❖ As long as M ∈ Θ(N), O(λ) ∈ Θ(1)

❖ Assuming items are evenly spaced, lists
will be λ items long, resulting in
Θ(λ) ∈ Θ(1) runtimes

❖ What’s the cost of a resize?

▪ Resizing takes Θ(N) time to
redistribute all items

▪ However, most add operations
(specifically: λtargetM adds) will be Θ(1)

❖ Similar to our resizing arrays, as long as
we resize by a multiplicative factor the
average runtime will still be Θ(1) 19

CSE373, Winter 2020L13: Hash Tables

Separate Chaining: Performance

20

Find Add Remove

LLRB Tree h = Θ(log N) h = Θ(log N) h = Θ(log N)

Resizing Separate
Chaining Hash Table

(worst case)
Q= Θ(N) Q = Θ(N) Q = Θ(N)

Resizing Separate
Chaining Hash Table

(best/average cases) +

λ = Θ(1) λ = Θ(1)* λ = Θ(1)*

LinkedList Map Θ(N) Θ(N) Θ(N)

*: Indicates average case
+: Assuming items are evenly spaced

CSE373, Winter 2020L13: Hash Tables

0

1

2

3

“Assuming items are evenly spaced”

❖ Hash function uniformity is critical to avoiding worst case

❖ Hash table size is also critical; it must be relatively prime to the
hash function’s clusters (if any)

▪ Eg, if hash function only returns even numbers,
an even-sized hash table would cause clusters

21

0

1

2

3

4

0

1

2

3

4

CSE373, Winter 2020L13: Hash Tables

Lecture Outline

❖ Hash Tables Introduction

❖ Handling Collisions

▪ Separate Chaining

▪ Open Addressing

❖ Java-specific Gotchas

22

CSE373, Winter 2020L13: Hash Tables

Yes, We Can! (fourth time’s the boon)

❖ We’re mapping strings to an integer

▪ Hash the strings and use the hash value as an array
index

▪ To force our numbers to fit into a reasonably-sized
array, we’ll use the modulo operator (%)

▪ “Probe” for a different bucket

23

WordToPriorityMap m;

m.add(“cat”, 100);

m.add(“bee”, 50);

m.add(“dog”, 200);

hashFunction(“cat”) == 2;

2 % 5 == 2

hashFunction(“bee”) == 2525393088;

2525393088 % 5 == 3

hashFunction(“dog”) == 9752423;

9752423 % 5 == 3

0 -

1 -

2 100

3 50

4 200

CSE373, Winter 2020L13: Hash Tables

0 -

1 -

2 100

3 50

4 200

Open Addressing

❖ Linear probing

▪ Add one to the index. If already occupied,
keep incrementing

▪ Demo: http://goo.gl/o5EDvb

❖ Quadratic probing

▪ Add one to the index. If already occupied,
look 4 ahead, then 9 ahead, then 16 ahead,
then …

❖ Many other possibilities, but not often
used in practice

▪ Load factor λ must be carefully managed to
prevent excessive (or infinite) time spent
probing

24

0 -

1 -

2

3

4 -

100

50 200

http://goo.gl/o5EDvb

CSE373, Winter 2020L13: Hash Tables

Lecture Outline

❖ Hash Tables Introduction

❖ Handling Collisions

▪ Separate Chaining

▪ Open Addressing

❖ Java-specific Gotchas

25

CSE373, Winter 2020L13: Hash Tables

Java Gotchas (1 of 2)

❖ Java’s hash table implementation is the HashSet/HashMap

▪ The hash function is Object’s hashCode(), which is a 32-bit number

▪ Java’s equals() method is implemented as memory address equality

❖ Warning #1: Don’t override equals() without also overriding
hashCode()

▪ Leads to items getting lost and other weird behavior

▪ HashMaps/HashSets use equals() to determine if an item exists in a
particular bucket, but hashCode() to find the item in the bucket

26

CSE373, Winter 2020L13: Hash Tables

Java Gotchas (2 of 2)

❖ Warning #2: Don’t store objects that can change in a
HashSet/HashMap!

▪ If an object’s members can change, then its hashCode() changes.
Again, items may get lost.

❖ Warning #3: Most cryptographic hashes consider 32-bits
substantially too small

▪ But do you need cryptographic-quality hashing?

27

CSE373, Winter 2020L13: Hash Tables

tl;dr
❖ Hash Tables combine hashing and data-indexed arrays

▪ Collision resolution is tricky!

▪ Managing load factor λ and smart resizing yields Θ(1) runtime

28

Find Add Remove

Resizing Separate
Chaining Hash Table

(worst case)
Q = Θ(N) Q = Θ(N) Q = Θ(N)

Resizing Separate
Chaining Hash Table

(best/average cases) +

Θ(1) Θ(1)* Θ(1)*

LLRB Tree h = Θ(log N) h = Θ(log N) h = Θ(log N)

B-Tree h = Θ(log N) h = Θ(log N) h = Θ(log N)

BST h = Θ(N) h = Θ(N) h = Θ(N)

LinkedList Θ(N) Θ(N) Θ(N)
*: Indicates average case

+: Assuming items are evenly spaced

