
CSE373, Winter 2020L12: k-d Trees; Hashing

K-d Trees; Hashing
CSE 373 Winter 2020

Instructor: Hannah C. Tang

Teaching Assistants:

Aaron Johnston Ethan Knutson Nathan Lipiarski

Amanda Park Farrell Fileas Sam Long

Anish Velagapudi Howard Xiao Yifan Bai

Brian Chan Jade Watkins Yuma Tou

Elena Spasova Lea Quan

CSE373, Winter 2020L12: k-d Trees; Hashing

Announcements

❖ New workshops on Wednesdays

▪ 2:30-3:20 in CSE1 203

▪ We also have workshops Friday 11:30-12:20 in CSE 203

▪ Topic survey is being phased out

❖ HW 4 (heaps) due Wednesday (🙌 extra day!!! 🙌)

▪ But HW 5 (k-d Tree) will be still be released on Tuesday

2

CSE373, Winter 2020L12: k-d Trees; Hashing

Lecture Outline

❖ Multidimensional Data, cont.: k-d trees

❖ Hashing

▪ Designing Our Own Hash Function

▪ Hashing Applications

3

CSE373, Winter 2020L12: k-d Trees; Hashing

Review: Quadtree

❖ 2-dimensional data: Quadtree

▪ Keys are located on a plane

▪ Recursive decision: northwest, northeast, southwest, southeast

4

D

northeast

southeast

northwest

southwest
A

B

D

E

Recursive Partition
(quadtree)

C

CSE373, Winter 2020L12: k-d Trees; Hashing

Another approach: k-d Trees

❖ Quadtree: pick the “single correct region” at each recursive step

❖ k-d Tree: pick “partially-correct regions” at each recursive step; we’ll
select the correct region after k recursive steps

5

2-dimensional data: Quadtree

❖ Recursive decision: northwest,
northeast, southwest, southeast

A

northeast

southeast

northwest

southwest

2-dimensional data: 2-d tree

❖ Recursive decision k1: left or right

❖ Recursive decision k2: up or down

A

up

right

down

left

CSE373, Winter 2020L12: k-d Trees; Hashing

2-d Tree

❖ The root node partitions entire space left and right (by x-coordinate)

❖ All depth 1 nodes partition its subspaces into up and down (by y-
coordinate)

❖ All depth 2 nodes partition its subspaces into left and right (by x-
coordinate)

❖ …

6

L R

D U

L R

B (4, 2)

A (2, 3)

C (4, 5)

D (3, 3)

D U

E (1, 5)

D U

F (4, 4)

D U

CSE373, Winter 2020L12: k-d Trees; Hashing

2-d Tree

❖ Each point owns 2 subspaces whose
dimensions may be constrained by its
ancestors

▪ D’s subspaces are constrained on the left
and right by its ancestors A and C

▪ The subspace below D is constrained by
its ancestor B

▪ The subspace above D is infinitely large

7

A
(2, 3)

B

C

D
(3, 3)

E
(1, 5)

F

(4, 4)
Root

(4, 5)

(4, 2)

CSE373, Winter 2020L12: k-d Trees; Hashing

pollev.com/uwcse373

Where would G (5, 3) go in our 2-d tree?

A. Right child of D

B. Left child of B

C. Left child of F

D. Right child of F

E. I’m not sure …

8

L R

D U

L R

B (4, 2)

A (2, 3)

C (4, 5)

D (3, 3)

D U

E (1, 5)

D U

F (4, 4)
D U

A
(2, 3)

B

C

D
(3, 3)

E
(1, 5)

F
(4, 4)

(4, 5)

(4, 2)

G
(5, 3)

CSE373, Winter 2020L12: k-d Trees; Hashing

k-d Tree: Insertion

❖ Walk down the tree until you find a suitable leaf, then add

▪ What, if any, balance properties does a k-d Tree have?

❖ 2-d Tree Insertion Demo:
https://docs.google.com/presentation/d/1WW56RnFa3g6UJEq
uuIBymMcu9k2nqLrOE1ZlnTYFebg/present?ueb=true&slide=id
.g54b6045b73_0_38

9

https://docs.google.com/presentation/d/1WW56RnFa3g6UJEquuIBymMcu9k2nqLrOE1ZlnTYFebg/present?ueb=true&slide=id.g54b6045b73_0_38

CSE373, Winter 2020L12: k-d Trees; Hashing

k-d Tree: Nearest Neighbour

❖ Walk the tree, visiting every
node but exploring the
“better ” side first

▪ ... Can we “prune ” known-
bad sides?

❖ 2-d Tree Nearest Neighbour

▪ Demo:
https://docs.google.com/pres
entation/d/1DNunK22t-
4OU_9c-
OBgKkMAdly9aZQkWuv_tBkD
g1G4/edit#slide=id.g54b6045
cf5_150_1378

▪ Video:
https://www.youtube.com/w
atch?v=mxrUFkdXaR8

10

nearest(Node n, Point goal, Node best):

if n is null:

return best

if n.distance(goal)

< best.distance(goal):

best = n

if goal < n:

goodSide = n.”left”Child

badSide = n.”right”Child

else:

goodSide = n.”right”Child

badSide = n.”left”Child

best = nearest(goodSide, goal, best)

if mightHaveSomethingUseful(badSide):

best = nearest(badSide, goal, best)

return best

https://docs.google.com/presentation/d/1DNunK22t-4OU_9c-OBgKkMAdly9aZQkWuv_tBkDg1G4/edit#slide=id.g54b6045cf5_150_1378
https://www.youtube.com/watch?v=mxrUFkdXaR8

CSE373, Winter 2020L12: k-d Trees; Hashing

Applications

❖ Lots of simulations require finding nearest neighbor (or k-
nearest neighbor)

▪ Astronomy, biology, etc.

❖ Range-searching multidimensional data used often in machine
learning and other optimization problems

▪ Eg, your Instagram profile has gender, age range, preference level for
home décor, preference level for DIY, etc. If an advertiser wants to
reach the 10,000 “best” customers for its face cream, whom should
be targeted?

11

CSE373, Winter 2020L12: k-d Trees; Hashing

Multidimensional Data: Summary

❖ Operations:

▪ Range Searching: What are all the objects inside this (rectangular)
region?

▪ Nearest Neighbour: What is the closest object top a specific point
(this is often the k-nearest in machine learning)

❖ Spatial Partitioning: Dividing space into non-overlapping
subspaces, allowing us to prune the search space.

▪ Uniform partitioning

▪ Quadtree

▪ k-d Tree

12

CSE373, Winter 2020L12: k-d Trees; Hashing

Lecture Outline

❖ Multidimensional Data, cont.: k-d trees

❖ Hashing

▪ Designing Our Own Hash Function

▪ Hashing Applications

13

CSE373, Winter 2020L12: k-d Trees; Hashing

Feedback from the Reading Quiz

❖ Is hashing related to HashSets/HashMaps?

❖ Do we need to use hash functions in HW4?

❖ What do we do when we have collisions?

❖ What is uniformity and why is it important?

14

CSE373, Winter 2020L12: k-d Trees; Hashing

What is Hashing?

❖ Hashing is taking data of arbitrary size and type and converting
it to an fixed-size integer (ie, an integer in a predefined range)

❖ Running example: design a hash function that maps strings to
32-bit integers [-2147483648, 2147483647]

❖ A good hash function exhibits the following properties:

▪ Deterministic: the same input should generate the same output

▪ Efficiency: it should take a reasonable amount of time

▪ Uniformity: inputs should be spread “evenly” over its output range

15

CSE373, Winter 2020L12: k-d Trees; Hashing

Bad Hashing

16

int hashFn(String s) {

return

Random.nextInt();

}

int hashFn(String s) {

int retVal = 0;

for (int i = 0;

i < s.length();

i++) {

for (int j = 0;

j < s.length();

j++) {

retVal += helperFn(

s, i, j);

}

}

return retVal;

}

int hashFn(String s) {

if (s.length()%2 == 0)

return 17;

else

return 42;

}

Deterministic? Efficient? Uniform?

CSE373, Winter 2020L12: k-d Trees; Hashing

Lecture Outline

❖ Multidimensional Data, cont.: k-d trees

❖ Hashing

▪ Designing Our Own Hash Function

▪ Hashing Applications

17

CSE373, Winter 2020L12: k-d Trees; Hashing

Attempt #1: hash(“cat”)

❖ One idea: Assign each letter a number, use the first letter of
the word

▪ a = 1, b = 2, c = 3, …, z = 26

▪ hash(“cat”) == 3

❖ What’s wrong with this approach?

▪ Other words start with c

• hash(“chupacabra”) == 3

▪ Can’t hash “=abc123”

18

CSE373, Winter 2020L12: k-d Trees; Hashing

Attempt #2: hash(“cat”)

❖ Next idea: Add together all the
letter codes, add new values for
symbols

▪ hash(“cat”) == 99 + 97 + 116 == 312

▪ hash(“=abc123”) == 505

❖ What’s wrong with this approach?

▪ Other words with the same letters

• hash(“act”) == 97 + 99 + 116 == 312

19

CSE373, Winter 2020L12: k-d Trees; Hashing

Attempt #3: hash(“cat”)

❖ Max possible value for English-only text (including
punctuation) is 126

❖ Another idea: Use 126 as our base to ensure unique values
across all possible strings

▪ hash(“cat”) == 99*1260 + 97*1261 + 116*1262 == 232055937

▪ hash(“act”) == 97*1260 + 99*1261 + 116*1262 == 232056187

❖ What’s wrong with this approach?

▪ Only handles English!

20

CSE373, Winter 2020L12: k-d Trees; Hashing

Attempt #4: hash(“cat”)

❖ If we switch to another character set we can encode strings
such as “¡Hola!”

▪ The Unicode “Basic Multilingual Plane” contains 65,472 codepoints

❖ hash(“cat”) == 99*654720 + 97*654721 + 116*654722 == 497,249,953,827

❖ What’s wrong with this approach?

▪ Our range was [-2,147,483,648, 2,147,483,647]

• 497,249,953,827 % 2,147,483,647 == 1,181,231,370 == hash(“䙹”)

▪ We could use the modulus operator (%) to “wrap around”, but now
we’ve introduced the possibility of collisions

▪ The BMP excludes most emoji (🎺), characters outside the “Han
Unification” (兩 vs两 vs 両 vs 㒳), and much, much more

21

😢

CSE373, Winter 2020L12: k-d Trees; Hashing

hash(“cat”): Lessons Learned

❖ Writing a hash function is hard!

▪ So don’t do it ☺

❖ Common hash algorithms include:

▪ MD5

▪ SHA-1

▪ SHA-256

• the only one that hasn’t been proven to be cryptographically insecure (yet)

▪ xxHash

▪ CityHash

▪ SuperFastHash

22

CSE373, Winter 2020L12: k-d Trees; Hashing

Lecture Outline

❖ Multidimensional Data, cont.: k-d trees

❖ Hashing

▪ Designing Our Own Hash Function

▪ Hashing Applications

23

CSE373, Winter 2020L12: k-d Trees; Hashing

Content Hashing: Applications

❖ Caching:

▪ You’ve downloaded a large video file. You want to know if a new
version is available. Rather than re-downloading the entire file,
compare your file’s hash value with the server’s hash value.

❖ File Verification / Error Checking:

▪ Same implementation

▪ Can be used to verify files on your machine, files spread across
multiple servers, etc.

❖ Fingerprinting

▪ Git hashes (“identification”)

▪ Ad tracking (“identification”): see https://panopticlick.eff.org/

▪ YouTube ContentID (“duplicate detection”)
24

https://panopticlick.eff.org/

CSE373, Winter 2020L12: k-d Trees; Hashing

Content Hashing: Defining a Salient Feature

❖ Hash function implementors can choose what’s salient:

▪ hash(“cat”) == hash(“CAT”) ???

❖ What’s salient in detecting that an image or video is unique?

❖ What’s salient in determining that a user is unique?

25

CSE373, Winter 2020L12: k-d Trees; Hashing

Content Hashing vs Cryptographic Hashing

❖ In addition to the properties of “regular” hash functions,
cryptographic hashes also have the following properties:

▪ It is infeasible to find or generate two different inputs that generate
the same hash value

▪ Given a hash value, it is infeasible to calculate the original input

▪ Small changes to the input generate an uncorrelated hash values

❖ Security is very hard to get right!

▪ If you don’t know what you’re doing, you’re probably making it
worse

▪ Most algorithms, including MD5 and SHA-1, are not cryptographically
secure

26

CSE373, Winter 2020L12: k-d Trees; Hashing

pollev.com/uwcse373

❖ Can hashing be appropriately used for this application?

▪ Verifying files or messages are untampered (“integrity”)

▪ Verifying the identity of the other party (“authentication”)

▪ Verifying that an entered password matches a previous password without
storing the password itself

A. Yes / Yes / No

B. Yes / Yes / Yes

C. Yes / No / No

D. Yes / No / Yes

E. I’m not sure …

27

CSE373, Winter 2020L12: k-d Trees; Hashing

tl;dr

❖ k-d Trees allow you to recursively partition k-dimensional data
using a k 2-way questions

❖ Hash functions map arbitrary data to a fixed-size integer

▪ Please don’t write your own hash function if you don’t have to

▪ There are lots of cool applications of hashing (see next lecture!)

28

Range Search
Nearest

Neighbour
Add

Θ(log N) Θ(log N) Θ(log N)

