
CSE373, Winter 2020L11: Quadtrees

Quadtrees
CSE 373 Winter 2020

Instructor: Hannah C. Tang

Teaching Assistants:

Aaron Johnston Ethan Knutson Nathan Lipiarski

Amanda Park Farrell Fileas Sam Long

Anish Velagapudi Howard Xiao Yifan Bai

Brian Chan Jade Watkins Yuma Tou

Elena Spasova Lea Quan

CSE373, Winter 2020L11: Quadtrees

Announcements

❖ Homework 4: Heap is released and due Wednesday

▪ Hint: you will need an additional data structure to improve the
runtime for changePriority(). It does not affect the correctness of
your PQ at all. Please use a built-in Java collection instead of
implementing your own.

▪ Hint: If you implemented a unittest that tested the exact thing the
autograder described, you could run the autograder’s test in the
debugger (and also not have to use your tokens).

❖ Please look at posted QuickCheck; we had a few corrections!

2

CSE373, Winter 2020L11: Quadtrees

Lecture Outline

❖ Heaps, cont.: Floyd’s buildHeap

❖ Review: Set/Map data structures and logarithmic runtimes

❖ Multi-dimensional Data

❖ Uniform and Recursive Partitioning

❖ Quadtrees

3

CSE373, Winter 2020L11: Quadtrees

Other Priority Queue Operations

❖ The two “primary” PQ operations are:

▪ removeMax()

▪ add()

❖ However, because PQs are used in so many algorithms there
are three common-but-nonstandard operations:

▪ merge(): merge two PQs into a single PQ

▪ buildHeap(): reorder the elements of an array so that its contents can
be interpreted as a valid binary heap

▪ changePriority(): change the priority of an item already in the heap

4

CSE373, Winter 2020L11: Quadtrees

buildHeap: Naïve Implementation

❖ buildHeap() takes an array of size N and applies the heap-
ordering principle to it

❖ Naïve implementation:

▪ Start with an empty array (representing an empty binary heap)

▪ Call add() N times

▪ Runtime: ??

❖ Can we do better?

5

CSE373, Winter 2020L11: Quadtrees

buildHeap: Clever Implementation

❖ ~½ of all nodes in a
complete binary tree are
leaves

▪ Remember that 20 + 21 + … 2n

= 2n+1 – 1

❖ Clever implementation:

▪ Start with full array
(representing a binary heap
with lots of violations)

▪ Call percolateDown() N/2
times

▪ Runtime: ??

6

20: 1

21: 2

22: 4

23: 8

This “clever implementation” is called Floyd’s Algorithm

CSE373, Winter 2020L11: Quadtrees

pollev.com/uwcse373

❖ What is buildHeap()’s
runtime?

▪ Start with full array
(representing a binary heap
with lots of violations)

▪ Call percolateDown() N/2 times

A. Θ(1)

B. Θ(log N)

C. Θ(N)

D. Θ(N log N)

E. I’m not sure …

7

20: 1

21: 2

22: 4

23: 8

CSE373, Winter 2020L11: Quadtrees

Lecture Outline

❖ Heaps, cont.: Floyd’s buildHeap

❖ Review: Set/Map data structures and logarithmic runtimes

❖ Multi-dimensional Data

❖ Uniform and Recursive Partitioning

❖ Quad-Trees

8

CSE373, Winter 2020L11: Quadtrees

ADT / Data Structure Taxonomy

❖ Search Trees (“left is less-than, right is greater-than”)

▪ Binary Search Trees (branching factor == 2)

• Plain BST (unbalanced)

– Balanced BSTs: LLRB (other examples: “Classic” Red-Black, AVL, Splay, etc)

▪ B-Trees (have a branching factor >2; balanced)

• 2-3 Trees

• 2-3-4 Trees

❖ Hash Tables (will cover later!)

9

Maps and Sets

A
D

T
D

at
a

St
ru

ct
u

re
s

th
at

 Im
p

le
m

en
t

CSE373, Winter 2020L11: Quadtrees

Why Does Balance Matter?

❖ Balanced trees help us avoid considering
all of the data all of the time

▪ Binary Search Tree: Discarding
approximately half of the remaining data at
each recursive step leads to a logarithmic
runtime

▪ Binary Heap: Recursively percolating up one
level approximately halves the number of
potential positions to consider, again
leading to a logarithmic runtime

10

9

5 17

8 311

6 5

7

2 1 3 4

CSE373, Winter 2020L11: Quadtrees

Lecture Outline

❖ Heaps, cont.: Floyd’s buildHeap

❖ Review: Set/Map data structures and logarithmic runtimes

❖ Multi-dimensional Data

❖ Uniform and Recursive Partitioning

❖ Quad-Trees

11

CSE373, Winter 2020L11: Quadtrees

Autocomplete as a 1-Dimensional Range Search

❖ Location names can be sorted 1-dimensionally
(lexicographically aka dictionary ordering)

❖ Since the data is sorted, we could run two binary searches on
the array

▪ Range Search Runtime: ??

▪ Insert Runtime: ??

12

Sanaa Santiago
Sao

Paulo
Seattle Sendai Seoul

CSE373, Winter 2020L11: Quadtrees

Autocomplete as a 1-Dimensional Range Search

❖ Or we could do a range search in a
balanced BST

▪ Range Search Runtime: ??

▪ Insert Runtime: ??

13

Seattle

Santiago Sendai

Sao
Paulo

SeoulSanaa

void printRange(Node root, Key lo, Key hi) {

if (root == null) return;

if (lo < root->key)

printRange(root->left, lo, hi);

if (lo <= root->key && root->key >= hi)

print(root->key);

if (root->key > hi)

printRange(root->right, lo, hi);

}

CSE373, Winter 2020L11: Quadtrees

Geo-locating a Click on a 2D Map

❖ Why do some map clicks
resolve to a lat/lng?

❖ And other clicks resolve to
a point-of-interest?

14

CSE373, Winter 2020L11: Quadtrees

2-d Range Search: Naïve Implementation

❖ Check every point for containment in the click target

❖ Range Search

▪ Scan through all the keys and collect matching
results

▪ Runtime: ??

❖ Nearest Neighbour

▪ Range Search, hope for an non-empty result,
iterate through results and choose nearest

▪ Runtime: ??

❖ Insert

▪ Put key anywhere

▪ Runtime: ??
15

A
(-1, -1)

(2, 2)

B
(0, 1)
C

D
(1, 0)

E

(-2, -2)

F

(-3, 2.5)

CSE373, Winter 2020L11: Quadtrees

Lecture Outline

❖ Heaps, cont.: Floyd’s buildHeap

❖ Review: Set/Map data structures and logarithmic runtimes

❖ Multi-dimensional Data

❖ Uniform and Recursive Partitioning

❖ Quad-Trees

16

CSE373, Winter 2020L11: Quadtrees

Uniform Partitioning

❖ Divide space into non-
overlapping subspaces

▪ Known as “spatial partitioning
problem”

❖ Uniform partitioning strategy

▪ Partition space into uniform
rectangular buckets (“bins”)

▪ Ex: 4x4 grid of such buckets.

17

A
(-1, -1)

(2, 2)

B
(0, 1)

C

D
(1, 0)

E

(-2, -2)

F

(-3, 2.5)

CSE373, Winter 2020L11: Quadtrees

pollev.com/uwcse373

What is the runtime to find the
nearest neighbour to our blue point,
assuming N points are evenly spread
out across a 16-bin uniform
partition?

A. Θ(1)

B. Θ(log N)

C. Θ(N)

D. Θ(N2)

E. I’m not sure …

18

CSE373, Winter 2020L11: Quadtrees

Recursive Partitioning: An x-coordinate BST?

❖ Suppose we put points into a BST map ordered by x-coordinate.

19

A
(-1, -1)

(2, 2)

B
(0, 1)
C

D
(1, 0)

E

(-2, -2)

F

(-3, 2.5)

A (-1, -1)

B (2, 2)

C (0, 1)

D (1, 0)

E (-2, -2)

F (-3, 2.5)

CSE373, Winter 2020L11: Quadtrees

Recursive Partitioning: An x-coordinate BST?

❖ Range Searching becomes:
“What are all the points with
x-coordinate less than -1.5?”

20

A
(-1, -1)

(2, 2)

B
(0, 1)
C

D
(1, 0)

E

(-2, -2)

F

(-3, 2.5)

A (-1, -1)

B (2, 2)

C (0, 1)

D (1, 0)

E (-2, -2)

F (-3, 2.5)

Pruned

CSE373, Winter 2020L11: Quadtrees

Recursive Partitioning: A y-coordinate BST?

But in a y-coordinate BST, we can’t prune anything!

21

A (-1, -1)

B (2, 2)

C (0, 1)

D (1, 0)

E (-2, -2)

F (-3, 2.5)

A
(-1, -1)

(2, 2)

B
(0, 1)
C

D
(1, 0)

E

(-2, -2)

F

(-3, 2.5)

CSE373, Winter 2020L11: Quadtrees

Lecture Outline

❖ Heaps, cont.: Floyd’s buildHeap

❖ Review: Set/Map data structures and logarithmic runtimes

❖ Multi-dimensional Data

❖ Uniform and Recursive Partitioning

❖ Quad-Trees

22

CSE373, Winter 2020L11: Quadtrees

Recursive Partitioning: Quadtree

❖ 2-dimensional data

▪ Keys are located on a plane

▪ Recursive decision:
northwest, northeast,
southwest, southeast.

❖ 1-dimensional data

▪ Keys are ordered on a line

▪ Recursive decision: left or
right

23

A

A
northeast

southeast

left right
northwest

southwest

Binary Search Tree Quadtree

CSE373, Winter 2020L11: Quadtrees

Using Quadtrees to Recursively Partition

❖ Quadtrees produce recursive, hierarchical partitionings

▪ Each point owns 4 subspaces

24

A

B

C

D

E

Uniform
Partitioning

A

B

D

E

Recursive Partition
(quadtree)

C

CSE373, Winter 2020L11: Quadtrees

Quadtree: Insert

25

A
NW

NE SE
SW

B

C

SW

SE

D

E

A
(-1, -1)

(2, 2)

B
(0, 1)

C

D

(1, 0)

E

(-2, -2)

Demo: https://docs.google.com/presentation/d/1vqAJkvUxSh-Eq4iIJZevjpY29nagNTjx-
4N3HpDi0UQ/present?ueb=true&slide=id.g11ecaeaf56_0_0

https://docs.google.com/presentation/d/1vqAJkvUxSh-Eq4iIJZevjpY29nagNTjx-4N3HpDi0UQ/edit?usp=sharing
https://docs.google.com/presentation/d/1vqAJkvUxSh-Eq4iIJZevjpY29nagNTjx-4N3HpDi0UQ/present?ueb=true&slide=id.g11ecaeaf56_0_0

CSE373, Winter 2020L11: Quadtrees

Quadtree: Range Search

We can prune unnecessary subspaces!

26

A
NW

NE SE
SW

B

C

SW

SE

D

E

A
(-1, -1)

(2, 2)

B
(0, 1)

C

D

(1, 0)

E

(-2, -2)

Demo:
https://docs.google.com/presentation/d/1ZVvh_Q15Lh2D1_NnzZ4PR_aDsLBwvAU9JYQAwlSu
XSM/present?ueb=true&slide=id.g52a9824549_0_129

https://docs.google.com/presentation/d/1ZVvh_Q15Lh2D1_NnzZ4PR_aDsLBwvAU9JYQAwlSuXSM/edit?usp=sharing
https://docs.google.com/presentation/d/1ZVvh_Q15Lh2D1_NnzZ4PR_aDsLBwvAU9JYQAwlSuXSM/present?ueb=true&slide=id.g52a9824549_0_129

CSE373, Winter 2020L11: Quadtrees

3-dimensional Data and Beyond

❖ Oct-trees are generalization of quadtrees for 3D data

❖ Quadtree Applications:
https://www.ics.uci.edu/~eppstein/gina/quadtree.html

27

Octree (WhiteTimberwolf/Wikimedia)

https://www.ics.uci.edu/~eppstein/gina/quadtree.html

CSE373, Winter 2020L11: Quadtrees

tl;dr

❖ A Priority Queue’s core functionality is removeMax and add

▪ changePriority can be Θ(log N) if you use an auxiliary data structure

▪ buildHeap can be Θ(N) if you percolate carefully

❖ Recursively subdividing input:

▪ allows you to find one piece data without examining all of it

▪ often yields logarithmic runtime

❖ Quadtrees allow you to recursively partition 2-dimensional
data using a single 4-way question

28

Range Search
Nearest

Neighbour
Add

Θ(log N) Θ(log N) Θ(log N)

