Quadtrees
 CSE 373 Winter 2020

Instructor: Hannah C. Tang

Teaching Assistants:
Aaron Johnston
Ethan Knutson
Amanda Park
Anish Velagapudi
Brian Chan
Elena Spasova Lea Quan

Nathan Lipiarski
Sam Long
Yifan Bai
Yuma Tou

Announcements

* Homework 4: Heap is released and due Wednesday
- Hint: you will need an additional data structure to improve the runtime for changePriority(). It does not affect the correctness of your PQ at all. Please use a built-in Java collection instead of implementing your own.
- Hint: If you implemented a unittest that tested the exact thing the autograder described, you could run the autograder's test in the debugger (and also not have to use your tokens).
* Please look at posted QuickCheck; we had a few corrections!

Lecture Outline

* Heaps, cont.: Floyd's buildHeap
* Review: Set/Map data structures and logarithmic runtimes
* Multi-dimensional Data
* Uniform and Recursive Partitioning
* Quadtrees

Other Priority Queue Operations

* The two "primary" PQ operations are:
- removeMax()
- add()
* However, because PQs are used in so many algorithms there are three common-but-nonstandard operations:
- merge(): merge two PQs into a single PQ
- buildHeap(): reorder the elements of an array so that its contents can be interpreted as a valid binary heap
- changePriority(): change the priority of an item already in the heap

buildHeap: Naïve Implementation

* buildHeap() takes an array of size N and applies the heapordering principle to it
* Naïve implementation:
- Start with an empty array (representing an empty binary heap)
- Call add() N times
- Runtime: ??

* Can we do better?

buildHeap: Clever Implementation

* ~ $1 / 2$ of all nodes in a
complete binary tree are leaves
- Remember that $2^{0}+2^{1}+\ldots 2^{n} \quad 2^{0}: 1$ $=2^{n+1}-1$
* Clever implementation:
- Start with full array (representing a binary heap with lots of violations)
- Call percolateDown() N/2 times starting from the rightrinost leaf parent (ie, midde of array)
- Runtime: ??

(II) Poll Everywhere

* What is buildHeap()'s runtime?
- Start with full array (representing a binary heap $\quad 2^{0}: 1$ with lots of violations)
- Call percolateDown() N/2 times $2^{1}: 2$
A. $\Theta(1)$
B. $\quad \Theta(\log N)$
$2^{2}: 4$
c. $\Theta(N)$
$2^{3}: 8$
D. $\quad \Theta(N \log N)$
E. I'm not sure ...

Lecture Outline

* Heaps, cont.: Floyd's buildHeap
* Review: Set/Map data structures and logarithmic runtimes
* Multi-dimensional Data
* Uniform and Recursive Partitioning
* Quad-Trees

ADT / Data Structure Taxonomy

Maps and Sets

* Search Trees ("left is less-than, right is greater-than")
- Binary Search Trees (branching factor == 2)

- Balanced BSTs: LLRB (other examples: "Classic" Red-Black, AVL, Splay, etc)
- B-Trees (have a branching factor >2; balanced)
- 2-3 Trees
- 2-3-4 Trees
* Hash Tables (will cover later!)

Why Does Balance Matter?

* Balanced trees help us avoid considering all of the data all of the time
- Binary Search Tree: Discarding approximately half of the remaining data at each recursive step leads to a logarithmic runtime

- Binary Heap: Recursively percolating up one level approximately halves the number of potential positions to consider, again leading to a logarithmic runtime

Lecture Outline

* Heaps, cont.: Floyd's buildHeap
* Review: Set/Map data structures and logarithmic runtimes
: Multi-dimensional Data
* Uniform and Recursive Partitioning
* Quad-Trees

Autocomplete as a 1-Dimensional Range Search

* Location names can be sorted 1-dimensionally (lexicographically aka dictionary ordering)
* Since the data is sorted, we could run two binary searches on the array
- Range Search Runtime: ?? $O(\log N)$ (twice)
- Insert Runtime: ?? $0(\mathbb{N})$

Sanaa	Santiago	Sao Paulo	Seattle	Sendai	Seoul

Autocomplete as a 1-Dimensional Range Search

* Or we could do a range search in a balanced BST
- Range Search Runtime: ?? $O(\log N)$
- Insert Runtime: ?? $O(\log N)$


```
void printRange(Node root, Key lo, Key hi)
    if (root == null) return;
    if (lo < root->key)
        printRange(root->left, lo, hi);
    if (lo <= root->key && root->key >= hi)
        print(root->key);
    if (root->key > hi)
        printRange(root->right, lo, hi);
}
```


Geo-locating a Click on a 2D Map

* Why do some map clicks resolve to a lat/Ing?
* And other clicks resolve to a point-of-interest?

2-d Range Search: Naïve Implementation

* Check every point for containment in the click target (ie, consider all of)
* Range Search
- Scan through all the keys and collect matching results
- Runtime: ?? $O(N)$
* Nearest Neighbour
- Range Search, hope for an non-empty result, iterate through results and choose nearest

- Runtime: ?? $O(N)$
\% Insert
- Put key anywhere
- Runtime: ??

Lecture Outline

* Heaps, cont.: Floyd's buildHeap
* Review: Set/Map data structures and logarithmic runtimes
* Multi-dimensional Data
* Uniform and Recursive Partitioning
* Quad-Trees

Uniform Partitioning

* Divide space into nonoverlapping subspaces
- Known as "spatial partitioning problem"
* Uniform partitioning strategy
- Partition space into uniform rectangular buckets ("bins")
- Ex: 4x4 grid of such buckets.

(I1) Poll Everywhere

What is the runtime to find the nearest neighbour to our blue point, assuming N points are evenly spread out across a 16 -bin uniform partition?
A. $\Theta(1)$
в. $\quad \Theta(\log N)$ $\theta(N) N / 16 \in \Theta(N)$, so $\theta\left(N^{2}\right)$ we are, essentially, still
D. $\Theta\left(N^{2}\right)$ considering all of our data. We can do better!
E. I'm not sure ...

Recursive Partitioning: An x-coordinate BST?

* Suppose we put points into a BST map ordered by x-coordinate.

Recursive Partitioning: An x-coordinate BST?

* Range Searching becomes:
"What are all the points with x-coordinate less than -1.5?"

Recursive Partitioning: A y-coordinate BST?

But in a y-coordinate BST, we can't prune anything!

Lecture Outline

* Heaps, cont.: Floyd's buildHeap
* Review: Set/Map data structures and logarithmic runtimes
* Multi-dimensional Data
* Uniform and Recursive Partitioning
* Quad-Trees

Recursive Partitioning: Quadtree

* 1-dimensional data
- Keys are ordered on a line
- Recursive decision: left or right

* 2-dimensional data
- Keys are located on a plane
- Recursive decision: northwest, northeast, southwest, southeast.

Using Quadtrees to Recursively Partition

* Quadtrees produce recursive, hierarchical partitionings
- Each point owns 4 subspaces

Recursive Partition
(quadtree)

Quadtree: Insert

Demo: https://docs.google.com/presentation/d/1vqAJkvUxSh-Eq4ilJZevipY29nagNTjx4N3HpDiOUO/present?ueb=true\&slide=id.g11ecaeaf56 00

Quadtree: Range Search

We can prune unnecessary subspaces!

Demo:
https://docs.google.com/presentation/d/1ZVvh Q15Lh2D1 NnzZ4PR aDsLBwvAU9JYQAwlSu XSM/present?ueb=true\&slide=id.g52a9824549 0129

3-dimensional Data and Beyond

* Oct-trees are generalization of quadtrees for 3D data
* Quadtree Applications:
https://www.ics.uci.edu/~eppstein/gina/quadtree.html

tl;dr

* A Priority Queue's core functionality is removeMax and add
- changePriority can be $\Theta(\log N)$ if you use an auxiliary data structure
- buildHeap can be $\Theta(\mathrm{N})$ if you percolate carefully
* Recursively subdividing input:
- allows you to find one piece data without examining all of it
- often yields logarithmic runtime
* Quadtrees allow you to recursively partition 2-dimensional data using a single 4-way question

Range Search	Nearest Neighbour	Add
$\Theta(\log N)$	$\Theta(\log N)$	$\Theta(\log N)$

