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Announcements

❖ Homework 4: Heap is released and due Wednesday

▪ Hint: you will need an additional data structure to improve the 
runtime for changePriority().  It does not affect the correctness of 
your PQ at all.  Please use a built-in Java collection instead of 
implementing your own.

▪ Hint: If you implemented a unittest that tested the exact thing the 
autograder described, you could run the autograder’s test in the 
debugger (and also not have to use your tokens).

❖ Please look at posted QuickCheck; we had a few corrections!
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Lecture Outline

❖ Heaps, cont.: Floyd’s buildHeap

❖ Review: Set/Map data structures and logarithmic runtimes

❖ Multi-dimensional Data

❖ Uniform and Recursive Partitioning

❖ Quadtrees
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Other Priority Queue Operations

❖ The two “primary” PQ operations are:

▪ removeMax()

▪ add()

❖ However, because PQs are used in so many algorithms there 
are three common-but-nonstandard operations:

▪ merge(): merge two PQs into a single PQ

▪ buildHeap(): reorder the elements of an array so that its contents can 
be interpreted as a valid binary heap

▪ changePriority(): change the priority of an item already in the heap
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buildHeap: Naïve Implementation

❖ buildHeap() takes an array of size N and applies the heap-
ordering principle to it

❖ Naïve implementation:

▪ Start with an empty array (representing an empty binary heap)

▪ Call add() N times

▪ Runtime: ??

❖ Can we do better?
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buildHeap: Clever Implementation

❖ ~½ of all nodes in a 
complete binary tree are 
leaves

▪ Remember that 20 + 21 + … 2n

= 2n+1 – 1

❖ Clever implementation:

▪ Start with full array 
(representing a binary heap 
with lots of violations)

▪ Call percolateDown() N/2 
times

▪ Runtime: ??
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20: 1

21: 2

22: 4

23: 8

This “clever implementation” is called Floyd’s Algorithm
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pollev.com/uwcse373

❖ What is buildHeap()’s 
runtime?

▪ Start with full array 
(representing a binary heap 
with lots of violations)

▪ Call percolateDown() N/2 times

A. Θ(1)

B. Θ(log N)

C. Θ(N)

D. Θ(N log N)

E. I’m not sure …
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Lecture Outline

❖ Heaps, cont.: Floyd’s buildHeap

❖ Review: Set/Map data structures and logarithmic runtimes

❖ Multi-dimensional Data

❖ Uniform and Recursive Partitioning

❖ Quad-Trees
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ADT / Data Structure Taxonomy

❖ Search Trees (“left is less-than, right is greater-than”)

▪ Binary Search Trees (branching factor == 2)

• Plain BST (unbalanced)

– Balanced BSTs: LLRB (other examples: “Classic” Red-Black, AVL, Splay, etc)

▪ B-Trees (have a branching factor >2; balanced)

• 2-3 Trees

• 2-3-4 Trees

❖ Hash Tables (will cover later!)
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Why Does Balance Matter?

❖ Balanced trees help us avoid considering 
all of the data all of the time

▪ Binary Search Tree: Discarding 
approximately half of the remaining data at 
each recursive step leads to a logarithmic 
runtime

▪ Binary Heap: Recursively percolating up one 
level approximately halves the number of 
potential positions to consider, again 
leading to a logarithmic runtime
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Lecture Outline

❖ Heaps, cont.: Floyd’s buildHeap

❖ Review: Set/Map data structures and logarithmic runtimes

❖ Multi-dimensional Data

❖ Uniform and Recursive Partitioning

❖ Quad-Trees
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Autocomplete as a 1-Dimensional Range Search

❖ Location names can be sorted 1-dimensionally 
(lexicographically aka dictionary ordering)

❖ Since the data is sorted, we could run two binary searches on 
the array

▪ Range Search Runtime: ??

▪ Insert Runtime: ??
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Autocomplete as a 1-Dimensional Range Search

❖ Or we could do a range search in a 
balanced BST

▪ Range Search Runtime: ??

▪ Insert Runtime: ??
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void printRange(Node root, Key lo, Key hi) {

if (root == null) return;

if (lo < root->key)

printRange(root->left, lo, hi);

if (lo <= root->key && root->key >= hi)

print(root->key);

if (root->key > hi)

printRange(root->right, lo, hi);

}



CSE373, Winter 2020L11: Quadtrees

Geo-locating a Click on a 2D Map

❖ Why do some map clicks 
resolve to a lat/lng?

❖ And other clicks resolve to 
a point-of-interest?
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2-d Range Search: Naïve Implementation

❖ Check every point for containment in the click target

❖ Range Search

▪ Scan through all the keys and collect matching
results

▪ Runtime: ??

❖ Nearest Neighbour

▪ Range Search, hope for an non-empty result, 
iterate through results and choose nearest

▪ Runtime: ??

❖ Insert

▪ Put key anywhere

▪ Runtime: ??
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Lecture Outline

❖ Heaps, cont.: Floyd’s buildHeap

❖ Review: Set/Map data structures and logarithmic runtimes

❖ Multi-dimensional Data

❖ Uniform and Recursive Partitioning

❖ Quad-Trees
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Uniform Partitioning

❖ Divide space into non-
overlapping subspaces

▪ Known as “spatial partitioning 
problem”

❖ Uniform partitioning strategy

▪ Partition space into uniform 
rectangular buckets (“bins”)

▪ Ex: 4x4 grid of such buckets.
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pollev.com/uwcse373

What is the runtime to find the
nearest neighbour to our blue point, 
assuming N points are evenly spread 
out across a 16-bin uniform 
partition?

A. Θ(1)

B. Θ(log N)

C. Θ(N)

D. Θ(N2)

E. I’m not sure …
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Recursive Partitioning: An x-coordinate BST?

❖ Suppose we put points into a BST map ordered by x-coordinate.
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Recursive Partitioning: An x-coordinate BST?

❖ Range Searching becomes:
“What are all the points with 
x-coordinate less than -1.5?”
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Recursive Partitioning: A y-coordinate BST?

But in a y-coordinate BST, we can’t prune anything!
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Lecture Outline

❖ Heaps, cont.: Floyd’s buildHeap

❖ Review: Set/Map data structures and logarithmic runtimes

❖ Multi-dimensional Data

❖ Uniform and Recursive Partitioning

❖ Quad-Trees
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Recursive Partitioning: Quadtree

❖ 2-dimensional data

▪ Keys are located on a plane

▪ Recursive decision: 
northwest, northeast, 
southwest, southeast.

❖ 1-dimensional data

▪ Keys are ordered on a line

▪ Recursive decision: left or 
right
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Using Quadtrees to Recursively Partition

❖ Quadtrees produce recursive, hierarchical partitionings

▪ Each point owns 4 subspaces
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Quadtree: Insert
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Demo: https://docs.google.com/presentation/d/1vqAJkvUxSh-Eq4iIJZevjpY29nagNTjx-
4N3HpDi0UQ/present?ueb=true&slide=id.g11ecaeaf56_0_0

https://docs.google.com/presentation/d/1vqAJkvUxSh-Eq4iIJZevjpY29nagNTjx-4N3HpDi0UQ/edit?usp=sharing
https://docs.google.com/presentation/d/1vqAJkvUxSh-Eq4iIJZevjpY29nagNTjx-4N3HpDi0UQ/present?ueb=true&slide=id.g11ecaeaf56_0_0
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Quadtree: Range Search

We can prune unnecessary subspaces!
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3-dimensional Data and Beyond

❖ Oct-trees are generalization of quadtrees for 3D data

❖ Quadtree Applications: 
https://www.ics.uci.edu/~eppstein/gina/quadtree.html
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Octree (WhiteTimberwolf/Wikimedia)

https://www.ics.uci.edu/~eppstein/gina/quadtree.html
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tl;dr

❖ A Priority Queue’s core functionality is removeMax and add

▪ changePriority can be Θ(log N) if you use an auxiliary data structure

▪ buildHeap can be Θ(N) if you percolate carefully

❖ Recursively subdividing input:

▪ allows you to find one piece data without examining all of it

▪ often yields logarithmic runtime

❖ Quadtrees allow you to recursively partition 2-dimensional 
data using a single 4-way question
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