YA UNIVERSITY of WASHINGTON L10: Priority Queues CSE373, Winter 2020

Priority Queues and Heaps
CSE 373 Winter 2020

Instructor: Hannah C. Tang

Teaching Assistants:

Aaron Johnston Ethan Knutson Nathan Lipiarski
Amanda Park Farrell Fileas Sam Long

Anish Velagapudi Howard Xiao Yifan Bai

Brian Chan Jade Watkins Yuma Tou

Elena Spasova Lea Quan

W UNIVERSITY of WASHINGTON L10: Priority Queues CSE373, Winter 2020

0 PO" E\Ie rYWhere pollev.com/uwcse373

About how long did Homework 3 take?

A 0-2 Hours
8. 2-4 Hours
c. 4-6Hours
p. 6-10 Hours

e. 10-14 Hours
r. 14+ Hours
e. | haven’t finished yet /| don’t want to say

YA UNIVERSITY of WASHINGTON L10: Priority Queues CSE373, Winter 2020

Announcements

« Homework 4: Heap is released and due Wednesday

® Hint: you will need an additional data structure to improve the
runtime for changePriority(). This data structure may or may not be
a (classic) Red-Black tree.

« Workshop this Friday @ 11:30am, CSE 203
® Topics include 2-3 Trees and LLRBs

+ Please attend 373 DITs, not other classes’!

YA UNIVERSITY of WASHINGTON L10: Priority Queues CSE373, Winter 2020

Questions from Reading Quiz

« When do we use Priority Queues?
« How is a Queue and Priority Queue different?

+ How do we handle duplicate values?

YA UNIVERSITY of WASHINGTON L10: Priority Queues

Lecture Outline
+ Priority Queues and Review: Binary Trees
+ Binary Heaps

+ Binary Heap Representation

CSE373, Winter 2020

YA UNIVERSITY of WASHINGTON

ADTs So Far (1 of 3)

L10: Priority Queues

e

. A collection of values.
® Aset has a size defined as the
number of elements in the set.
® You can add and remove values.
® Each value is accessible via a “get”
or “contains” operation.

. A collection of keys, each
associated with a value.
® A map has a size defined as the
number of elements in the map.
® You can add and remove (key,
value) pairs.
® Each value is accessible by its key
via a “get” or “contains” operation.

CSE373, Winter 2020

YA UNIVERSITY of WASHINGTON L10: Priority Queues CSE373, Winter 2020

ADTs So Far (2 of 3)

(~ ™)
List ADT. A collection storing an
ordered sequence of

elements.

® Each element is accessible by a
zero-based index.

® Alist has a size defined as the
number of elements in the list.

® Elements can be added to the
front, back, or any index in the list.

e Optionally, elements can be
removed from the front, back, or
any index in the list.

YA UNIVERSITY of WASHINGTON

L10: Priority Queues

ADTs So Far (3 of 3)

CSE373, Winter 2020

. A collection
storing an ordered
sequence of elements.

® Fach element is
accessible by a zero-
based index.

® A deque has a size
defined as the number
of elements in the
deque.

® Flements can be added
to the front or back.

® Optionally, elements can
be removed from the
front or back.

~

~

. A collection
storing an ordered
sequence of elements.

® Astack has a size
defined as the
number of elements
in the stack.

® Elements can only be
added and removed
from the top (“LIFO”)

. A collection
storing an ordered
sequence of elements.

® A queue has a size
defined as the
number of elements
in the queue.

® Elements can only be
added to one end and
removed from the
other (“FIFO”)

\

We found more-performant data structures to
implement the Queue ADT when we took advantage
of its more-limited-than-list functionality

YA UNIVERSITY of WASHINGTON L10: Priority Queues CSE373, Winter 2020

ADTs To Come

()

an!
. A collection of * Afteg g
values.
® A PQ has a size defined as the
()

number of elements in the set.

® You can add values. ® Aftert

® You cannot access or remove —
arbitrary values, only the max
value.

Can we find a more-performant
L y data structure to implement the

. . Priority Queue ADT when we take
Today’s Topic! advantage of its more-limited-than-

gueue functionality?

10

YA UNIVERSITY of WASHINGTON L10: Priority Queues CSE373, Winter 2020

Priority Queues

+ In lecture, we will study max priority queues but min priority
gueues are also common

= Same as max-PQs, but invert the priority
add(7)

+’

+ In a PQ, the only item that matters
is the max (or min)

add(29)
9

removeMax()

x
¥ 9

11

YA UNIVERSITY of WASHINGTON L10: Priority Queues CSE373, Winter 2020

Priority Queue: Applications

+ Used heavily in greedy algorithms, where each phase of the
algorithm picks the locally optimum solution

) :,VQ\Q(S‘V Thomson Hall (THO) / (ﬂﬁ el
. . o LR / 1.
+~ Example: route finding st Hll M5 paing area 952 @ % ~wae
L] / ®./ \ Grieg Garden \
Represent a map as a 0 OSSR mven |
series of segments Reasauny (Ve | Thewr
. . - @@ Allen L bfdf\t‘a I VHusrk‘y Union raSRg
" At each intersection, ask = ‘o BIdg (HUB) K
which segment getsyou < Sieg HalSI6)
. . = () Many Cates Hell UW Engineering Library
closest to the destination SR AN ' .
. . . ohngon Ha) - A
(ie, has max priority or ‘ % 73 (&
. . L] < g @ K\ 7 In ¥
min distance) S\ peee | d” | unversty
Qe@ Engineering <
@ Drumbheller Fouma;no g £/ Bldg (ECE)
Shc;m:slry Library \ % : 0Ly NE
3uilding (CHL) ~— g |

Q¢
®@ @9 gPaul G. Allen Center
X Qo for Computer Science...
Benson Hall (BNS) @

12

YA UNIVERSITY of WASHINGTON L10: Priority Queues

CSE373, Winter 2020

Lecture Outline
<« Priority Queues and Review: Binary Trees
+ Binary Heaps

+ Binary Heap Representation

13

W UNIVERSITY of WASHINGTON L10: Priority Queues

Review: Binary Search Trees

CSE373, Winter 2020

« A Binary Search Tree is a binary tree with the following

invariant: for every node with value k in the BST:

» The left subtree only contains values <k

9

» The right subtree only contains values >k /\

N

17

1 8

class BSTNode<Value> {
Value v;
BSTNode left;
BSTNode right;

}

N~

31

Reminder: the BST ordering applies recursively to the entire subtree

14

W UNIVERSITY of WASHINGTON L10: Priority Queues CSE373, Winter 2020

Priority Queue: Possible Data Structures

« We have two viable implementations of this ADT (so far):

Sorted LinkedList PQ | Balanced Search Tree PQ
(worst case) (worst case)

add O(N) O(log N)
max 0(1) O(1)*
removeMax 0O(1) O(log N)

* If we keep a pointer to the largest element in the BST

15

YA UNIVERSITY of WASHINGTON L10: Priority Queues CSE373, Winter 2020

Review: Binary Tree Data Structure

« A Binary Tree (not a binary search tree) is a tree where each
node has 0 <= children <=2

1
class BinaryNode<Value> { /\
Value v; > ?f-
BinaryNode left; /\
BinaryNode right; 9 8 17
} ry

16

YA UNIVERSITY of WASHINGTON L10: Priority Queues CSE373, Winter 2020

Heaps

+» A Max Heap: a binary tree where each node’s value is greater than
any of its descendents. It implements the Max Priority Queue ADT

= This is a recursive property!

+« A Min Heap is the same, but each node is less than its descendents

31

7Y

17

1 31

9 /\

- 9 17
) /\ 1
5

> 5 g |[1
1

17

YA UNIVERSITY of WASHINGTON L10: Priority Queues

@ Poll Everywhere

CSE373, Winter 2020

pollev.com/uwcse373

« Which of these are valid max heaps?

1. Valid / Invalid / Valid

Violdhor of (mb

\ '\VN\O\(\

elderberry

O~

durian banana

A} A

31 9

: /\
17

2 3 7
9 /\ 1
A

8 0 2 6

apple canteloupe i

18

YA UNIVERSITY of WASHINGTON L10: Priority Queues CSE373, Winter 2020

Binary Heaps

« A Binary Heap is a heap that is completely filled, with the
possible exception of the bottom level which is filled left-to-right

" |ts height is ©(log N)

7 w
7 S~ 7 S~
6 5 M T
Z Z \ Z Z
2 1 3 4 A H B

bt s (WQ,WX o o s e QL\OBM?,

19

YA UNIVERSITY of WASHINGTON L10: Priority Queues CSE373, Winter 2020

Binary Heaps: removeMax

« Remove the root’s value (but keep the root node)
« Swap in the to-be-deleted leaf’s value
« Recursively percolateDown() against each level’s larger child

7 & Sm?

o~ removeMax() o~

6 5 6 5
Z Z 0\ Z O\ Z 0\
2 1 3 4 2 1 3 4+

invariont
6 viclahon: | 4
o~ percolateDown() o~

Blog) A il K

2 1 3 2 1 3

20

YA UNIVERSITY of WASHINGTON L10: Priority Queues CSE373, Winter 2020

Binary Heaps: add

+ Add the new value at the next valid location in the complete tree
« Recursively percolateUp() ... ?

/7\ add(19) /7\ . percolateUp()
6 5 6 5 \“::g:\‘ hon
Z N e Z N N 0
2 1 3 2 1 3 19
OUoaN) o - —

19
0 N 2N N N
2 1 3115 2 1 315

21

YA UNIVERSITY of WASHINGTON L10: Priority Queues

Lecture Outline
<« Priority Queues and Review: Binary Trees
+ Binary Heaps

<« Binary Heap Representation

CSE373, Winter 2020

22

YA UNIVERSITY of WASHINGTON L10: Priority Queues CSE373, Winter 2020

Binary Heaps as Arrays

o A is a heap that is completely filled, with the
possible exception of the bottom level which is filled left-to-right

7 W
7 S~ S~
6 5 M T
Z N\ Z O\ Z N\ Z
2 1 3 4 A H B

+ ... which makes it easily representable as an array

= (note: we leave the 0% index empty to make the arithmetic easier)

Ww M T A H D

23

YA UNIVERSITY of WASHINGTON L10: Priority Queues CSE373, Winter 2020

Binary Heaps as Arrays

« A Binary-Heap-as-Array’s node with index i has:
® |ts children at 2*iand 2*i + 1

" |ts parent ati/2

7 W
7 S~ S~
6 5 M T
Z N\ Z O\ Z N\ Z
2 1 3 4 A H B

\egl level | leowel 7

24

YA UNIVERSITY of WASHINGTON

L10: Priority Queues

CSE373, Winter 2020

Binary Heaps as Arrays: percolateDown

4
/\
6 5
Z O\ Z
2 1 3

percolateDown()

>

void percolateDown (int idx)
tmp = al[idx];

for (

{

; idx * 2 <= a.length;)
idx = idx * 2; /

if (a[idx] < al[idx + 1]) idx++;4
if (alidx] > tmp) {

alidx/2] = al[idx]; <§\\\\\§\\\
} else {

break;

6
/\
4 5
Z O\ e
2 1 3

/F\(\A OwnC C&\\HYEX\ ‘w\ ‘\’\t [Ny mﬂ

Get e incla of oue \arﬁr Hld

We’ve rewritten our recursive
algorithm iteratively!

1§ vere gl wolathey Yhe

M W\ anon‘\‘

25

YA UNIVERSITY of WASHINGTON L10: Priority Queues CSE373, Winter 2020

Other Priority Queue Operations

« The two “primary” PQ operations are:
" removeMax()
= add()

+ However, because PQs are used in so many algorithms there
are three common-but-nonstandard operations: Il covisel
well ruis

" merge(): merge two PQs into a single PQ seon |

® buildHeap(): reorder the elements of an array so that its contents can]
be interpreted as a valid binary heap

= changePriority(): change the priority of an item already in the heap

Upn vl \\m@ewxem\ W Hwal

26

YA UNIVERSITY of WASHINGTON L10: Priority Queues CSE373, Winter 2020

Other Priority Queue data structures

+ D-Heaps

® Binary heap, but with a >2 branching factor “d”

+ Leftist Heap

® Unbalanced heap that skews “leftward”, optimized for merge()

+ Skew Heap

= | eftist Heap variant, also optimized for merge()

+« Binomial Queue

= A “forest” of heaps

27

W UNIVERSITY of WASHINGTON L10: Priority Queues CSE373, Winter 2020

th:dr

« Priority Queue ADT is designed to find the max (or min) quickly

®" We can implement it with many data structures

« The Binary Heap is a data structure which is simple to reason
about and implement and has constant- to ©(log N) bounds

Sorted LL Balanced BST Binary Heap
(worst case) (worst case) (worst case)

O(N) O(log N) O(log N)**
max 0(1) O(1)* 0(1)
removeMax 0O(1) O(log N) O(log N)

* If we keep a pointer to the largest element in the BST
** Average case is constant

28

W UNIVERSITY of WASHINGTON L10: Priority Queues CSE373, Winter 2020

BONUS! ADT / Data Structure Taxonomy

Maps and Sets

« Search Trees (“left is less-than, right is greater-than”)

= Binary Search Trees (branching factor == 2)
« Plain BST (unbalanced)
— Balanced BSTs: LLRB (other examples: “Classic” Red-Black, AVL, Splay, etc)
= B-Trees (have a branching factor >2; balanced)
« 2-3 Trees
« 2-3-4 Trees

« Hash Tables (will cover later!)

Data Structures that Implement | ADT

29

