
CSE373, Winter 2020L10: Priority Queues

Priority Queues and Heaps
CSE 373 Winter 2020

Instructor: Hannah C. Tang

Teaching Assistants:

Aaron Johnston Ethan Knutson Nathan Lipiarski

Amanda Park Farrell Fileas Sam Long

Anish Velagapudi Howard Xiao Yifan Bai

Brian Chan Jade Watkins Yuma Tou

Elena Spasova Lea Quan

CSE373, Winter 2020L10: Priority Queues

pollev.com/uwcse373

About how long did Homework 3 take?

A. 0-2 Hours

B. 2-4 Hours

C. 4-6 Hours

D. 6-10 Hours

E. 10-14 Hours

F. 14+ Hours

G. I haven’t finished yet / I don’t want to say

3

CSE373, Winter 2020L10: Priority Queues

Announcements

❖ Homework 4: Heap is released and due Wednesday

▪ Hint: you will need an additional data structure to improve the
runtime for changePriority(). This data structure may or may not be
a (classic) Red-Black tree.

❖ Workshop this Friday @ 11:30am, CSE 203

▪ Topics include 2-3 Trees and LLRBs

❖ Please attend 373 DITs, not other classes’!

4

CSE373, Winter 2020L10: Priority Queues

Questions from Reading Quiz

❖ When do we use Priority Queues?

❖ How is a Queue and Priority Queue different?

❖ How do we handle duplicate values?

5

CSE373, Winter 2020L10: Priority Queues

Lecture Outline

❖ Priority Queues and Review: Binary Trees

❖ Binary Heaps

❖ Binary Heap Representation

6

CSE373, Winter 2020L10: Priority Queues

ADTs So Far (1 of 3)

7

Set ADT. A collection of values.

• A set has a size defined as the

number of elements in the set.

• You can add and remove values.

• Each value is accessible via a “get”

or “contains” operation.

Map ADT. A collection of keys, each

associated with a value.

• A map has a size defined as the

number of elements in the map.

• You can add and remove (key,

value) pairs.

• Each value is accessible by its key

via a “get” or “contains” operation.

CSE373, Winter 2020L10: Priority Queues

ADTs So Far (2 of 3)

8

List ADT. A collection storing an

ordered sequence of

elements.

• Each element is accessible by a

zero-based index.

• A list has a size defined as the

number of elements in the list.

• Elements can be added to the

front, back, or any index in the list.

• Optionally, elements can be

removed from the front, back, or

any index in the list.

CSE373, Winter 2020L10: Priority Queues

ADTs So Far (3 of 3)

9

Deque ADT. A collection

storing an ordered

sequence of elements.

• Each element is

accessible by a zero-

based index.

• A deque has a size

defined as the number

of elements in the

deque.

• Elements can be added

to the front or back.

• Optionally, elements can

be removed from the

front or back.

Queue ADT. A collection

storing an ordered

sequence of elements.

• A queue has a size

defined as the

number of elements

in the queue.

• Elements can only be

added to one end and

removed from the

other (“FIFO”)

Stack ADT. A collection

storing an ordered

sequence of elements.

• A stack has a size

defined as the

number of elements

in the stack.

• Elements can only be

added and removed

from the top (“LIFO”)

We found more-performant data structures to
implement the Queue ADT when we took advantage
of its more-limited-than-list functionality

CSE373, Winter 2020L10: Priority Queues

ADTs To Come

10

Priority Queue ADT. A collection of

values.

• A PQ has a size defined as the

number of elements in the set.

• You can add values.

• You cannot access or remove

arbitrary values, only the max

value.

Disjoint Set ADT. Coming Soon!

• After the midterm

Can we find a more-performant
data structure to implement the
Priority Queue ADT when we take
advantage of its more-limited-than-
queue functionality?

Today’s Topic!

Soon, but not yet!

Graph ADT. Coming Soon!

• After the midterm

CSE373, Winter 2020L10: Priority Queues

Priority Queues

❖ In lecture, we will study max priority queues but min priority
queues are also common

▪ Same as max-PQs, but invert the priority

❖ In a PQ, the only item that matters
is the max (or min)

11

15removeMax() 13

9

5
4

13
9

5
4

add(7)

15

29

13

9

5
4

7

add(29)

7 1513

9

5
4

7 15

15 13

9

5
4

CSE373, Winter 2020L10: Priority Queues

Priority Queue: Applications

❖ Used heavily in greedy algorithms, where each phase of the
algorithm picks the locally optimum solution

❖ Example: route finding

▪ Represent a map as a
series of segments

▪ At each intersection, ask
which segment gets you
closest to the destination
(ie, has max priority or
min distance)

12

CSE373, Winter 2020L10: Priority Queues

Lecture Outline

❖ Priority Queues and Review: Binary Trees

❖ Binary Heaps

❖ Binary Heap Representation

13

CSE373, Winter 2020L10: Priority Queues

Review: Binary Search Trees

❖ A Binary Search Tree is a binary tree with the following

invariant: for every node with value k in the BST:

▪ The left subtree only contains values <k

▪ The right subtree only contains values >k

14

class BSTNode<Value> {

Value v;

BSTNode left;

BSTNode right;

}

9

5 17

8 311

Reminder: the BST ordering applies recursively to the entire subtree

CSE373, Winter 2020L10: Priority Queues

Priority Queue: Possible Data Structures

❖ We have two viable implementations of this ADT (so far):

15

Sorted LinkedList PQ
(worst case)

Balanced Search Tree PQ
(worst case)

add O(N) O(log N)

max O(1) O(1)*

removeMax O(1) O(log N)

* If we keep a pointer to the largest element in the BST

CSE373, Winter 2020L10: Priority Queues

Review: Binary Tree Data Structure

❖ A Binary Tree (not a binary search tree) is a tree where each

node has 0 <= children <= 2

16

class BinaryNode<Value> {

Value v;

BinaryNode left;

BinaryNode right;

}

1

5 31

8 179

5

CSE373, Winter 2020L10: Priority Queues

Heaps

❖ A Max Heap: a binary tree where each node’s value is greater than

any of its descendents. It implements the Max Priority Queue ADT

▪ This is a recursive property!

❖ A Min Heap is the same, but each node is less than its descendents

17

1

5 31

8 179

5

31

9 17

8 15

31

9

17

8

1

5

CSE373, Winter 2020L10: Priority Queues

pollev.com/uwcse373

❖ Which of these are valid max heaps?

1. Valid / Invalid / Valid

2. Valid / Invalid / Invalid

3. Valid / Valid / Invalid

4. Valid / Valid / Valid

18

9

3 7

2 60

31

9

17

8

elderberry

durian banana

canteloupeapple

CSE373, Winter 2020L10: Priority Queues

Binary Heaps

❖ A Binary Heap is a heap that is completely filled, with the
possible exception of the bottom level which is filled left-to-right

▪ Its height is Θ(log N)

19

6 5

7

2 1 3 4

M T

W

A H B

CSE373, Winter 2020L10: Priority Queues

Binary Heaps: removeMax

❖ Remove the root’s value (but keep the root node)

❖ Swap in the to-be-deleted leaf’s value

❖ Recursively percolateDown() against each level’s larger child

20

6 5

7

2 1 3 4

removeMax()

6 5

2 1 3 4

6 5

4

2 1 3

4 5

6

2 1 3

percolateDown()

CSE373, Winter 2020L10: Priority Queues

Binary Heaps: add

❖ Add the new value at the next valid location in the complete tree

❖ Recursively percolateUp() … ?

21

6 5

7

2 1 3

add(19)

6 5

7

2 1 3 19

percolateUp()

6

2 1 3

6

2 1 3

CSE373, Winter 2020L10: Priority Queues

Lecture Outline

❖ Priority Queues and Review: Binary Trees

❖ Binary Heaps

❖ Binary Heap Representation

22

CSE373, Winter 2020L10: Priority Queues

Binary Heaps as Arrays

❖ A Binary Heap is a heap that is completely filled, with the
possible exception of the bottom level which is filled left-to-right

❖ … which makes it easily representable as an array

▪ (note: we leave the 0th index empty to make the arithmetic easier)

23

6 5

7

2 1 3 4

M T

W

A H B

- 7 6 5 2 1 3 4

-

CSE373, Winter 2020L10: Priority Queues

Binary Heaps as Arrays

❖ A Binary-Heap-as-Array’s node with index i has:

▪ Its children at 2*i and 2*i + 1

▪ Its parent at i/2

24

6 5

7

2 1 3 4

M T

W

A H B

- 7 6 5 2 1 3 4

CSE373, Winter 2020L10: Priority Queues

Binary Heaps as Arrays: percolateDown

void percolateDown(int idx) {

tmp = a[idx];

for (; idx * 2 <= a.length;) {

idx = idx * 2;

if (a[idx] < a[idx + 1]) idx++;

if (a[idx] > tmp) {

a[idx/2] = a[idx];

} else {

break;

}

}

} 25

6 5

4

2 1 3

4 5

6

2 1 3

percolateDown()

- 4 6 5 2 1 3

We’ve rewritten our recursive
algorithm iteratively!

CSE373, Winter 2020L10: Priority Queues

Other Priority Queue Operations

❖ The two “primary” PQ operations are:

▪ removeMax()

▪ add()

❖ However, because PQs are used in so many algorithms there
are three common-but-nonstandard operations:

▪ merge(): merge two PQs into a single PQ

▪ buildHeap(): reorder the elements of an array so that its contents can
be interpreted as a valid binary heap

▪ changePriority(): change the priority of an item already in the heap

26

CSE373, Winter 2020L10: Priority Queues

Other Priority Queue data structures

❖ D-Heaps

▪ Binary heap, but with a >2 branching factor “d”

❖ Leftist Heap

▪ Unbalanced heap that skews “leftward”, optimized for merge()

❖ Skew Heap

▪ Leftist Heap variant, also optimized for merge()

❖ Binomial Queue

▪ A “forest” of heaps

27

CSE373, Winter 2020L10: Priority Queues

tl;dr

❖ Priority Queue ADT is designed to find the max (or min) quickly

▪ We can implement it with many data structures

❖ The Binary Heap is a data structure which is simple to reason
about and implement and has constant- to Θ(log N) bounds

28

Sorted LL
(worst case)

Balanced BST
(worst case)

Binary Heap
(worst case)

add O(N) O(log N) O(log N)**

max O(1) O(1)* O(1)

removeMax O(1) O(log N) O(log N)

* If we keep a pointer to the largest element in the BST
** Average case is constant

CSE373, Winter 2020L10: Priority Queues

BONUS! ADT / Data Structure Taxonomy

❖ Search Trees (“left is less-than, right is greater-than”)

▪ Binary Search Trees (branching factor == 2)

• Plain BST (unbalanced)

– Balanced BSTs: LLRB (other examples: “Classic” Red-Black, AVL, Splay, etc)

▪ B-Trees (have a branching factor >2; balanced)

• 2-3 Trees

• 2-3-4 Trees

❖ Hash Tables (will cover later!)

29

Maps and Sets

A
D

T
D

at
a

St
ru

ct
u

re
s

th
at

 Im
p

le
m

en
t

