
CSE373, Winter 2020L09:  Left-Leaning Red-Black Trees

Set and Map ADTs: Left-Leaning 
Red-Black Trees
CSE 373 Winter 2020

Instructor: Hannah C. Tang

Teaching Assistants:

Aaron Johnston Ethan Knutson Nathan Lipiarski

Amanda Park Farrell Fileas Sam Long

Anish Velagapudi Howard Xiao Yifan Bai

Brian Chan Jade Watkins Yuma Tou

Elena Spasova Lea Quan



CSE373, Winter 2020L09:  Left-Leaning Red-Black Trees

Announcements

❖ Case-vs-Asymptotic Analysis handout released!

▪ https://courses.cs.washington.edu/courses/cse373/20wi/files/clarity
_case_asymp.pdf

❖ Workshop Survey released (see Piazza)

▪ Workshop Friday @ 11:30am, CSE 203

3

https://courses.cs.washington.edu/courses/cse373/20wi/files/clarity_case_asymp.pdf


CSE373, Winter 2020L09:  Left-Leaning Red-Black Trees

Lecture Outline

❖ Review: 2-3 Trees and BSTs

❖ Left-Leaning Red-Black Trees

▪ Insertion

❖ Other Balanced BSTs

4



CSE373, Winter 2020L09:  Left-Leaning Red-Black Trees

Review: BSTs and B-Trees

❖ Search Trees have great runtimes most of the time

▪ But they struggle with sorted (or mostly-sorted) input

▪ Must bound the height if we need runtime guarantees

❖ Plain BSTs: simple to reason about/implement.  A good starting point

❖ B-Trees are a Search Tree variant that binds the height to Θ(log N) by 
only allowing the tree to grow from its root

▪ A good choice for a Map and/or Set implementation

5

LinkedList 
Map, Worst 

Case

BST Map,
Worst Case

B-Tree Map,
Worst Case

Find Θ(N) h = Θ(N) Θ(log N)

Add Θ(N) h = Θ(N) Θ(log N)

Remove Θ(N) h =  Θ(N) Θ(log N)



CSE373, Winter 2020L09:  Left-Leaning Red-Black Trees

Review: 2-3 Trees

❖ 2-3 Trees are a specific type of B-Tree (with L=3)

❖ Its invariants are the same as a B-Tree’s:

1. All leaves must be the same depth from the root

2. A non-leaf node with k keys must have exactly k + 1 non-null children

❖ Example 2-3 trees:

6

2 6

4

1 3 5 7

3  5

1  2 6  74



CSE373, Winter 2020L09:  Left-Leaning Red-Black Trees

Improving Search Trees

❖ Binary Search Trees (BST)

▪ Can balance a BST with 
rotation, but we have no fast 
algorithm to do so

7

❖ 2-3 Trees

▪ Balanced by construction: no 
rotations required

▪ Tree will split nodes as 
needed, but the algorithm is 
complicated

e

b g

o

n p

m

d f

b g

o

n p

m

e

Can we get the best of both worlds: a BST with the functionality of a 2-3 tree?



CSE373, Winter 2020L09:  Left-Leaning Red-Black Trees

Converting 2-3 Tree to BST

❖ 2-3 trees with only 2-nodes
(2 children) are already 
regular binary search trees

8

❖ How can we represent 3-
nodes as a BST?

e

b g

o

n p

m

?

d f

b g

o

n p

m

e



CSE373, Winter 2020L09:  Left-Leaning Red-Black Trees

Splitting 3-nodes

9

f

d

eb

g

>f

>d and <f<d

Left-leaning

f

d

e

b

g

>f>d and <f

<d

Right-leaning

d f

b ge



CSE373, Winter 2020L09:  Left-Leaning Red-Black Trees

Practice:

❖ Convert this 2-3 Tree to a 
left-leaning BST

❖ Convert this left-leaning BST 
to a 2-3 Tree

11

u w

a s x yv

u

s v

y

x

w

a

f

d g

o

n p

m

b e

d f

b g

o

n p

m

e



CSE373, Winter 2020L09:  Left-Leaning Red-Black Trees

Lecture Outline

❖ Review: 2-3 Trees and BSTs

❖ Left-Leaning Red-Black Trees

▪ Insertion

❖ Other Balanced BSTs

12



CSE373, Winter 2020L09:  Left-Leaning Red-Black Trees

Left-Leaning Red-Black Tree

❖ Left-Leaning Red-Black (LLRB) Tree is a BST variant with the 
following additional invariants:

1. Every root-to-bottom* path has the same number of black edges

2. Red edges must lean left

3. No node has two red edges connected to it, either above/below or 
left/right

13

f

d

o

m

* “bottom” refers to single-children nodes and leaf nodes (which have no children)

f

d g

o

n p

m

b e



CSE373, Winter 2020L09:  Left-Leaning Red-Black Trees

Left-Leaning Red-Black Tree == 2-3 Tree

❖ There is a 1-1 correspondence 
(bijection) between 2-3 trees and 
Left-Leaning Red-Black trees

❖ 2-nodes are the same in both 
trees

❖ 3-nodes are connected by a red 
link

❖ Left-Leaning Red-Black (LLRB) Tree

▪ Identify the link connecting the left-
items in a 3-node and color it red

14

d f

b g

o

n p

m

e

f

d g

o

n p

m

b e



CSE373, Winter 2020L09:  Left-Leaning Red-Black Trees

Left-Leaning Red-Black Tree == 2-3 Tree

❖ 2-3 Trees (more generally: B-Trees) are balanced search trees:

▪ height is in Θ(log N)

▪ find, insert, and remove are also in Θ(log N)

❖ Since any LLRB Tree can be a 2-3 Tree:

▪ height is in Θ(log N)

▪ find, insert, and remove are also in Θ(log N)

15



CSE373, Winter 2020L09:  Left-Leaning Red-Black Trees

Left-Leaning Red-Black Tree

❖ Left-Leaning Red-Black (LLRB) Tree is a BST variant with the 
following additional invariants:

1. Every root-to-bottom* path has the same number of black edges

• All 2-3 tree leaf nodes are the same depth from the root

2. Red edges lean left

• We arbitrarily choose left-leaning, so we need to stick with it

3. No node has two red edges connected to it, either above/below or 
left/right

• This would result in an overstuffed 2-3 tree node

16

f

d g

o

n p

m

b e

d f

b g

o

n p

m

e



CSE373, Winter 2020L09: Left-Leaning Red-Black Trees

pollev.com/uwcse373

❖ What’s the height of the corresponding Left-Leaning Red-Black
tree?

A. 3

B. 4

C. 5

D. 6

E. 7

F. I’m not sure …

17

d e p

b g j n

q r va c f h i i m o

s u

t

l



CSE373, Winter 2020L09:  Left-Leaning Red-Black Trees

Height of a Left-Leaning Red-Black Tree

18

p

u

l

s

r

q
Given a 2-3 tree of height H, the corresponding LLRB tree has 
height: H + max(3-Nodes) = (H) + (H+1) ∈ Θ(log N)
Black Edges Red Edges

Worst case when 
these are 3-nodes

Longest path

d e p

b g j n

q r va c f h i i m o

s u

t

l



CSE373, Winter 2020L09:  Left-Leaning Red-Black Trees

Lecture Outline

❖ Review: 2-3 Trees and BSTs

❖ Left-Leaning Red-Black Trees

▪ Insertion

❖ Other Balanced BSTs

19

Pretend it’s a 2-3 tree



CSE373, Winter 2020L09:  Left-Leaning Red-Black Trees

LLRB Tree Insertion: Overall Approach

❖ Insert nodes using the “Plain BST” algorithm, but join the new 
node to its parent with a red edge

▪ This is analogous to how a 2-3 tree insertion always overstuffs a leaf

❖ If this results in an invalid Left-Leaning Red-Black Tree, repair

▪ This is analogous to repairing a 2-3 tree after a leaf is too full and a 
key needs to be promoted

20



CSE373, Winter 2020L09:  Left-Leaning Red-Black Trees

LLRB Tree

Insert: Overstuffing a Node (Left-Side)

❖ Use a red link to mimic the corresponding 2-3 tree.

21

b

a
b

add(A)

2-3 Tree

b
add(A)

a b



CSE373, Winter 2020L09:  Left-Leaning Red-Black Trees

Insert: Overstuffing a Node (Right-Side)

❖ What is the problem with inserting a red link to the right child? 
What should we do to fix it?

22

2-3 Tree

b
add(C)

b c

b

c
b

add(C)
?



CSE373, Winter 2020L09:  Left-Leaning Red-Black Trees

Insert: Overstuffing a Node (Right-Side)

❖ Rotate left around B

23

2-3 Tree

b
add(C)

b c

b

c
b

add(C) rotateLeft(B) c

b
LLRB Tree



CSE373, Winter 2020L09:  Left-Leaning Red-Black Trees

Insert: Inserting to the Right Side

❖ How do we add to the right side?

24

b

a

add(C)

2-3 Tree

a b
add(C)

c

b

a
?

a

b

c



CSE373, Winter 2020L09:  Left-Leaning Red-Black Trees

Insert: Inserting to the Right Side

❖ Recolor us and our sibling

25

b

a

add(C)

2-3 Tree

a b
add(C)

a

c

b

a

b

c

recolorEdges(B)

c

b

a
LLRB Tree



CSE373, Winter 2020L09:  Left-Leaning Red-Black Trees

Insert: Splitting a Node

❖ How do we split a node?

26

add(C)

2-3 Tree

add(C)g

a b x

b g

a xc

b

a

x

g

c

b

a

x

g

?



CSE373, Winter 2020L09:  Left-Leaning Red-Black Trees

Insert: Splitting a Node

27

add(C)

2-3 Tree

add(C)g

a b x

b g

a xc

b

a

x

g

c

b

a

x

g
recolorEdges(B)

c

b

a

x

g

LLRB Tree



CSE373, Winter 2020L09:  Left-Leaning Red-Black Trees

Insert: Practice

28

add(E)

2-3 Tree

add(E)b

a s z

b s

a ze

a

s

z

b

?a

s

z

b

e



CSE373, Winter 2020L09:  Left-Leaning Red-Black Trees

Insert: Practice

29

add(E)

2-3 Tree

add(E)b

a s z

b s

a ze

?a

s

z

b

e

rotateRight(Z)

a

e

s

b

z

a

e

s

b

z

recolorEdges(S)



CSE373, Winter 2020L09:  Left-Leaning Red-Black Trees

Insert: Practice

30

2-3 Tree

add(E)b

a s z

b s

a ze

a

e

s

b

z

recolorEdges(S) rotateLeft(B)

b

a

z

s

e

LLRB Tree



CSE373, Winter 2020L09:  Left-Leaning Red-Black Trees

Left-Leaning Red-Black Tree Invariants

❖ Left-Leaning Red-Black (LLRB) Tree is a BST variant with the 
following additional invariants:

1. Every root-to-bottom path has the same number of black edges

2. Red edges lean left

3. No node has two red edges connected to it, either above/below or 
left/right

❖ When repairing an LLRB Tree, use the following recipes:

▪ Right link red?  Rotate left

▪ Two left reds in a row?  Rotate right

▪ Both children red?  Recolor all edges leaving the node

31



CSE373, Winter 2020L09:  Left-Leaning Red-Black Trees

Insert: Java Implementation

private Node insert(Node h, Key key, Value value) {

if (h == null) { return new Node(key, value, RED); }

int cmp = key.compareTo(h.key);

if (cmp < 0)      { h.left  = insert(h.left,  key, val); }

else if (cmp > 0) { h.right = insert(h.right, key, val); }

else { h.value = value;                     }

if (isRed(h.right) && !isRed(h.left))      { h = rotateLeft(h);  }

if (isRed(h.left)  &&  isRed(h.left.left)) { h = rotateRight(h); }

if (isRed(h.left)  &&  isRed(h.right))     { recolorEdges (h);   }

return h;

}

32

Right link red? Rotate left

Two left reds in a row? Rotate right

Both children red? Recolor all edges leaving node



CSE373, Winter 2020L09:  Left-Leaning Red-Black Trees

Left-Leaning Red-Black Trees Runtime

❖ Searching for a key is the same as a BST

❖ Tree height is guaranteed in Θ(log N)

❖ Inserting a key is a recursive process

▪ Θ(log N) to add(E)

▪ Θ(log N) to maintain invariants

33

A

S

Z

B

E

add(E)
B

A

Z

S

E

rotateRight(Z)
recolorEdges(S)
rotateLeft(B)



CSE373, Winter 2020L09:  Left-Leaning Red-Black Trees

Lecture Outline

❖ Review: 2-3 Trees and BSTs

❖ Left-Leaning Red-Black Trees

▪ Insertion

❖ Other Balanced BSTs

34



CSE373, Winter 2020L09:  Left-Leaning Red-Black Trees

Red-Black Trees

❖ Left-leaning Red-Black trees:

▪ Invented 2008 as a “simpler-to-implement” Red-Black tree

❖ Red-black trees:

▪ Invented 1972 (!!) and handles the “right-leaning” case

▪ Nodes, not edges, are colored red/black

▪ Used millions (billions?) of times as a second: Java TreeMap, C++ 
Map, Linux scheduler and epoll, …

▪ You will get to use (but not implement) in HW4!

35



CSE373, Winter 2020L09:  Left-Leaning Red-Black Trees

AVL Trees

❖ Recursively balanced with equal 
heights = not flexible enough

▪ Can only represent inputs of size 2n - 1

❖ Recursively balanced with heights 
differing <=1

▪ AVL tree!

❖ Insertions: add to leaf, then log N 
rotations until tree is rebalanced

❖ Deletions: lol

36



CSE373, Winter 2020L09:  Left-Leaning Red-Black Trees

… and Still More

❖ Order Statistic Tree

❖ Interval Tree

❖ Splay Tree

❖ Dancing Tree

❖ And so much more!

37



CSE373, Winter 2020L09:  Left-Leaning Red-Black Trees

tl;dr (1 of 2)

❖ Search Trees have great runtimes most of the time

▪ But they struggle with sorted (or mostly-sorted) input

▪ Must bound the height if we need runtime guarantees

❖ Plain BSTs: simple to reason about/implement.  A good starting 
point

❖ Left-leaning Red-Black Trees: A BST variant with a Θ(log N) 
bound on the height

▪ Invariants quite tricky, but implementation isn’t bad!

▪ Correctness and runtimes guaranteed by 1-1 mapping with 2-3 trees

38



CSE373, Winter 2020L09:  Left-Leaning Red-Black Trees

tl;dr (2 of 2)

❖ B-Trees are a Search Tree variant with a Θ(log2N) bound on the 
height

▪ Only allows the tree to grow from its root

▪ Added two simple invariants, but implementation quite tricky

• All leaves must be the same depth from the root

• A non-leaf node with k keys must have exactly k+1 non-null children

❖ Possible data structures for a Map and/or Set ADT:

39

LinkedList Map, 
Worst Case

BST Map,
Worst Case

B-Tree Map,
Worst Case

LLRBT Map,
Worst Case

Find Θ(N) h = Θ(N) Θ(log N) Θ(log N)

Add Θ(N) h = Θ(N) Θ(log N) Θ(log N)

Remove Θ(N) h = Θ(N) Θ(log N) Θ(log N)


