Set and Map ADTs: Left-Leaning Red-Black Trees

CSE 373 Winter 2020

Instructor: Hannah C. Tang

Teaching Assistants:

Aaron Johnston
Amanda Park
Anish Velagapudi
Brian Chan
Elena Spasova

Ethan Knutson
Farrell Fileas
Howard Xiao
Jade Watkins
Lea Quan

Nathan Lipiarski
Sam Long
Yifan Bai
Yuma Tou

Announcements

* Case-vs-Asymptotic Analysis handout released!
- https://courses.cs.washington.edu/courses/cse373/20wi/files/clarity case asymp.pdf
* Workshop Survey released (see Piazza)
- Workshop Friday @ 11:30am, CSE 203

Lecture Outline

* Review: 2-3 Trees and BSTs
* Left-Leaning Red-Black Trees
- Insertion
* Other Balanced BSTs

Review: BSTs and B-Trees

* Search Trees have great runtimes most of the time
- But they struggle with sorted (or mostly-sorted) input
- Must bound the height if we need runtime guarantees
* Plain BSTs: simple to reason about/implement. A good starting point
* B-Trees are a Search Tree variant that binds the height to $\Theta(\log N)$ by only allowing the tree to grow from its root
- A good choice for a Map and/or Set implementation

	LinkedList Map, Worst Case	BST Map, Worst Case	B-Tree Map, Worst Case
Find	$\Theta(N)$	$h=\Theta(N)$	$\Theta(\log N)$
Add	$\Theta(N)$	$h=\Theta(N)$	$\Theta(\log N)$
Remove	$\Theta(N)$	$h=\Theta(N)$	$\Theta(\log N)$

Review: 2-3 Trees

* 2-3 Trees are a specific type of B-Tree (with L=3)
* Its invariants are the same as a B-Tree's:

1. All leaves must be the same depth from the root
2. A non-leaf node with k keys must have exactly $k+1$ non-null children

* Example 2-3 trees:

Improving Search Trees

* Binary Search Trees (BST)
- Can balance a BST with rotation, but we have no fast algorithm to do so

* 2-3 Trees

- Balanced by construction: no rotations required
- Tree will split nodes as needed, but the algorithm is complicated

Converting 2-3 Tree to BST

* 2-3 trees with only 2-nodes
(2 children) are already regular binary search trees

* How can we represent 3nodes as a BST?

Splitting 3-nodes

Right-leaning

Practice:

* Convert this 2-3 Tree to a left-leaning BST

* Convert this left-leaning BST to a 2-3 Tree

Lecture Outline

* Review: 2-3 Trees and BSTs
* Left-Leaning Red-Black Trees
- Insertion
* Other Balanced BSTs

Left-Leaning Red-Black Tree

* Left-Leaning Red-Black (LLRB) Tree is a BST variant with the following additional invariants:

1. Every root-to-bottom* path has the same number of black edges
2. Red edges must lean left
3. No node has two red edges connected to it, either above/below or left/right

Left-Leaning Red-Black Tree == 2-3 Tree

* There is a 1-1 correspondence (bijection) between 2-3 trees and Left-Leaning Red-Black trees
* 2-nodes are the same in both trees

* 3-nodes are connected by a red link
* Left-Leaning Red-Black (LLRB) Tree
- Identify the link connecting the leftitems in a 3-node and color it red

Left-Leaning Red-Black Tree == 2-3 Tree

* 2-3 Trees (more generally: B-Trees) are balanced search trees:
- height is in $\Theta(\log N)$
- find, insert, and remove are also in $\Theta(\log N)$
* Since any LLRB Tree can be a 2-3 Tree:
- height is in $\Theta(\log \mathrm{N})$
- find, insert, and remove are also in $\Theta(\log N)$

Left-Leaning Red-Black Tree

* Left-Leaning Red-Black (LLRB) Tree is a BST variant with the following additional invariants:

1. Every root-to-bottom* path has the same number of black edges

- All 2-3 tree leaf nodes are the same depth from the root

2. Red edges lean left

- We arbitrarily choose left-leaning, so we need to stick with it

3. No node has two red edges connected to it, either above/below or left/right

- This would result in an overstuffed 2-3 tree node

(II) Poll Everywhere

*What's the height of the corresponding Left-Leaning Red-Black tree?
A. 3
B. 4
C. 5
D. 6
E. 7
F. I'm not sure ...

Height of a Left-Leaning Red-Black Tree

Lecture Outline

* Review: 2-3 Trees and BSTs
* Left-Leaning Red-Black Trees
- Insertion

Pretend it's a 2-3 tree

* Other Balanced BSTs

LLRB Tree Insertion: Overall Approach

* Insert nodes using the "Plain BST" algorithm, but join the new node to its parent with a red edge
- This is analogous to how a 2-3 tree insertion always overstuffs a leaf
* If this results in an invalid Left-Leaning Red-Black Tree, repair - This is analogous to repairing a 2-3 tree after a leaf is too full and a key needs to be promoted

Insert: Overstuffing a Node (Left-Side)

* Use a red link to mimic the corresponding 2-3 tree.

$$
\mathrm{b} \xrightarrow{\operatorname{add}(\mathrm{~A})} a
$$

2-3 Tree

Insert: Overstuffing a Node (Right-Side)

* What is the problem with inserting a red link to the right child? What should we do to fix it?

$$
\mathrm{b} \xrightarrow{\operatorname{add}(\mathrm{C})} \quad b c
$$

2-3 Tree

Insert: Overstuffing a Node (Right-Side)

* Rotate left around B

$$
\mathrm{b} \xrightarrow{\operatorname{add}(\mathrm{C})} \quad b c
$$

2-3 Tree

Insert: Inserting to the Right Side

* How do we add to the right side?

Insert: Inserting to the Right Side

* Recolor us and our sibling recolors all edges
reaving B

2-3 Tree

Insert: Splitting a Node

* How do we split a node?

Insert: Splitting a Node

Insert: Practice

Insert: Practice

Insert: Practice

Left-Leaning Red-Black Tree Invariants

* Left-Leaning Red-Black (LLRB) Tree is a BST variant with the following additional invariants:

1. Every root-to-bottom path has the same number of black edges
2. Red edges lean left
3. No node has two red edges connected to it, either above/below or left/right

* When repairing an LLRB Tree, use the following recipes:
- Right link red? Rotate left
- Two left reds in a row? Rotate right
- Both children red? Recolor all edges leaving the node

Insert: Java Implementation

```
private Node insert(Node h, Key key, Value value) {
    if (h == null) { return new Node(key, value, RED); }
    int cmp = key.compareTo(h.key);
    if (cmp < 0) { h.left = insert(h.left, key, val); }
    else if (cmp > 0) { h.right = insert(h.right, key, val); }
    else { h.value = value; }
    if (isRed(h.right) && !isRed(h.left)) { h = rotateLeft(h); }
    if (isRed(h.left) && isRed(h.left.left)) { h = rotateRight(h); }
    if (isRed(h.left) && isRed(h.right)) { recolorEdges (h); }
    return h;
```

Right link red? Rotate left
Two left reds in a row? Rotate right
Both children red? Recolor all edges leaving node

Left-Leaning Red-Black Trees Runtime

* Searching for a key is the same as a BST
* Tree height is guaranteed in $\Theta(\log \mathrm{N})$
* Inserting a key is a recursive process
- $\Theta(\log N)$ to $\operatorname{add}(E)$
- $\Theta(\log \mathrm{N})$ to maintain invariants

rotateRight(Z) recolorEdges(S) rotateLeft(B)

Lecture Outline

* Review: 2-3 Trees and BSTs
* Left-Leaning Red-Black Trees
- Insertion
* Other Balanced BSTs

Red-Black Trees

* Left-leaning Red-Black trees:
- Invented 2008 as a "simpler-to-implement" Red-Black tree
* Red-black trees:
" Invented 1972 (!!) and handles the "right-leaning" case
- Nodes, not edges, are colored red/black
- Used millions (billions?) of times as a second: Java TreeMap, C++ Map, Linux scheduler and epoll, ...
- You will get to use (but not implement) in HW4!

AVL Trees

* Recursively balanced with equal heights = not flexible enough
- Can only represent inputs of size $2^{n}-1$
* Recursively balanced with heights differing <=1
- AVL tree!
* Insertions: add to leaf, then $\log \mathrm{N}$ rotations until tree is rebalanced
* Deletions: lol
... and Still More
* Order Statistic Tree
* Interval Tree
* Splay Tree
* Dancing Tree
* And so much more!

tl;dr (1 of 2)

* Search Trees have great runtimes most of the time
- But they struggle with sorted (or mostly-sorted) input
- Must bound the height if we need runtime guarantees
* Plain BSTs: simple to reason about/implement. A good starting point
* Left-leaning Red-Black Trees: A BST variant with a $\Theta(\log \mathrm{N})$ bound on the height
- Invariants quite tricky, but implementation isn't bad!
- Correctness and runtimes guaranteed by 1-1 mapping with 2-3 trees

tl;dr (2 of 2)

* B-Trees are a Search Tree variant with a $\Theta\left(\log _{2} \mathrm{~N}\right)$ bound on the height
- Only allows the tree to grow from its root
- Added two simple invariants, but implementation quite tricky
- All leaves must be the same depth from the root
- A non-leaf node with k keys must have exactly $k+1$ non-null children
* Possible data structures for a Map and/or Set ADT:

	LinkedList Map, Worst Case	BST Map, Worst Case	B-Tree Map, Worst Case	LLRBT Map, Worst Case
Find	$\Theta(N)$	$h=\Theta(N)$	$\Theta(\log N)$	$\Theta(\log N)$
Add	$\Theta(N)$	$h=\Theta(N)$	$\Theta(\log N)$	$\Theta(\log N)$
Remove	$\Theta(N)$	$h=\Theta(N)$	$\Theta(\log N)$	$\Theta(\log N)$

