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Announcements

❖ Case-vs-Asymptotic Analysis handout released!

▪ https://courses.cs.washington.edu/courses/cse373/20wi/files/clarity
_case_asymp.pdf

❖ Workshop Survey released (see Piazza)

▪ Workshop Friday @ 11:30am, CSE 203
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Lecture Outline

❖ Review: 2-3 Trees and BSTs

❖ Left-Leaning Red-Black Trees

▪ Insertion

❖ Other Balanced BSTs
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Review: BSTs and B-Trees

❖ Search Trees have great runtimes most of the time

▪ But they struggle with sorted (or mostly-sorted) input

▪ Must bound the height if we need runtime guarantees

❖ Plain BSTs: simple to reason about/implement.  A good starting point

❖ B-Trees are a Search Tree variant that binds the height to Θ(log N) by 
only allowing the tree to grow from its root

▪ A good choice for a Map and/or Set implementation
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LinkedList 
Map, Worst 

Case

BST Map,
Worst Case

B-Tree Map,
Worst Case

Find Θ(N) h = Θ(N) Θ(log N)

Add Θ(N) h = Θ(N) Θ(log N)

Remove Θ(N) h =  Θ(N) Θ(log N)
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Review: 2-3 Trees

❖ 2-3 Trees are a specific type of B-Tree (with L=3)

❖ Its invariants are the same as a B-Tree’s:

1. All leaves must be the same depth from the root

2. A non-leaf node with k keys must have exactly k + 1 non-null children

❖ Example 2-3 trees:
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Improving Search Trees

❖ Binary Search Trees (BST)

▪ Can balance a BST with 
rotation, but we have no fast 
algorithm to do so
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❖ 2-3 Trees

▪ Balanced by construction: no 
rotations required

▪ Tree will split nodes as 
needed, but the algorithm is 
complicated
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Can we get the best of both worlds: a BST with the functionality of a 2-3 tree?
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Converting 2-3 Tree to BST

❖ 2-3 trees with only 2-nodes
(2 children) are already 
regular binary search trees
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❖ How can we represent 3-
nodes as a BST?
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Splitting 3-nodes
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Practice:

❖ Convert this 2-3 Tree to a 
left-leaning BST

❖ Convert this left-leaning BST 
to a 2-3 Tree
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Lecture Outline

❖ Review: 2-3 Trees and BSTs

❖ Left-Leaning Red-Black Trees

▪ Insertion

❖ Other Balanced BSTs
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Left-Leaning Red-Black Tree

❖ Left-Leaning Red-Black (LLRB) Tree is a BST variant with the 
following additional invariants:

1. Every root-to-bottom* path has the same number of black edges

2. Red edges must lean left

3. No node has two red edges connected to it, either above/below or 
left/right
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Left-Leaning Red-Black Tree == 2-3 Tree

❖ There is a 1-1 correspondence 
(bijection) between 2-3 trees and 
Left-Leaning Red-Black trees

❖ 2-nodes are the same in both 
trees

❖ 3-nodes are connected by a red 
link

❖ Left-Leaning Red-Black (LLRB) Tree

▪ Identify the link connecting the left-
items in a 3-node and color it red
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Left-Leaning Red-Black Tree == 2-3 Tree

❖ 2-3 Trees (more generally: B-Trees) are balanced search trees:

▪ height is in Θ(log N)

▪ find, insert, and remove are also in Θ(log N)

❖ Since any LLRB Tree can be a 2-3 Tree:

▪ height is in Θ(log N)

▪ find, insert, and remove are also in Θ(log N)
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Left-Leaning Red-Black Tree

❖ Left-Leaning Red-Black (LLRB) Tree is a BST variant with the 
following additional invariants:

1. Every root-to-bottom* path has the same number of black edges

• All 2-3 tree leaf nodes are the same depth from the root

2. Red edges lean left

• We arbitrarily choose left-leaning, so we need to stick with it

3. No node has two red edges connected to it, either above/below or 
left/right

• This would result in an overstuffed 2-3 tree node
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pollev.com/uwcse373

❖ What’s the height of the corresponding Left-Leaning Red-Black
tree?

A. 3

B. 4

C. 5

D. 6

E. 7

F. I’m not sure …
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Height of a Left-Leaning Red-Black Tree
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Lecture Outline

❖ Review: 2-3 Trees and BSTs

❖ Left-Leaning Red-Black Trees

▪ Insertion

❖ Other Balanced BSTs
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Pretend it’s a 2-3 tree
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LLRB Tree Insertion: Overall Approach

❖ Insert nodes using the “Plain BST” algorithm, but join the new 
node to its parent with a red edge

▪ This is analogous to how a 2-3 tree insertion always overstuffs a leaf

❖ If this results in an invalid Left-Leaning Red-Black Tree, repair

▪ This is analogous to repairing a 2-3 tree after a leaf is too full and a 
key needs to be promoted
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LLRB Tree

Insert: Overstuffing a Node (Left-Side)

❖ Use a red link to mimic the corresponding 2-3 tree.
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Insert: Overstuffing a Node (Right-Side)

❖ What is the problem with inserting a red link to the right child? 
What should we do to fix it?
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Insert: Overstuffing a Node (Right-Side)

❖ Rotate left around B
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Insert: Inserting to the Right Side

❖ How do we add to the right side?
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Insert: Inserting to the Right Side

❖ Recolor us and our sibling
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Insert: Splitting a Node

❖ How do we split a node?
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Insert: Splitting a Node
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Insert: Practice
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Insert: Practice
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Insert: Practice

30

2-3 Tree

add(E)b

a s z

b s

a ze

a

e

s

b

z

recolorEdges(S) rotateLeft(B)

b

a

z

s

e

LLRB Tree



CSE373, Winter 2020L09:  Left-Leaning Red-Black Trees

Left-Leaning Red-Black Tree Invariants

❖ Left-Leaning Red-Black (LLRB) Tree is a BST variant with the 
following additional invariants:

1. Every root-to-bottom path has the same number of black edges

2. Red edges lean left

3. No node has two red edges connected to it, either above/below or 
left/right

❖ When repairing an LLRB Tree, use the following recipes:

▪ Right link red?  Rotate left

▪ Two left reds in a row?  Rotate right

▪ Both children red?  Recolor all edges leaving the node
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Insert: Java Implementation

private Node insert(Node h, Key key, Value value) {

if (h == null) { return new Node(key, value, RED); }

int cmp = key.compareTo(h.key);

if (cmp < 0)      { h.left  = insert(h.left,  key, val); }

else if (cmp > 0) { h.right = insert(h.right, key, val); }

else { h.value = value;                     }

if (isRed(h.right) && !isRed(h.left))      { h = rotateLeft(h);  }

if (isRed(h.left)  &&  isRed(h.left.left)) { h = rotateRight(h); }

if (isRed(h.left)  &&  isRed(h.right))     { recolorEdges (h);   }

return h;

}
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Right link red? Rotate left

Two left reds in a row? Rotate right

Both children red? Recolor all edges leaving node
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Left-Leaning Red-Black Trees Runtime

❖ Searching for a key is the same as a BST

❖ Tree height is guaranteed in Θ(log N)

❖ Inserting a key is a recursive process

▪ Θ(log N) to add(E)

▪ Θ(log N) to maintain invariants
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Lecture Outline

❖ Review: 2-3 Trees and BSTs

❖ Left-Leaning Red-Black Trees

▪ Insertion

❖ Other Balanced BSTs
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Red-Black Trees

❖ Left-leaning Red-Black trees:

▪ Invented 2008 as a “simpler-to-implement” Red-Black tree

❖ Red-black trees:

▪ Invented 1972 (!!) and handles the “right-leaning” case

▪ Nodes, not edges, are colored red/black

▪ Used millions (billions?) of times as a second: Java TreeMap, C++ 
Map, Linux scheduler and epoll, …

▪ You will get to use (but not implement) in HW4!
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AVL Trees

❖ Recursively balanced with equal 
heights = not flexible enough

▪ Can only represent inputs of size 2n - 1

❖ Recursively balanced with heights 
differing <=1

▪ AVL tree!

❖ Insertions: add to leaf, then log N 
rotations until tree is rebalanced

❖ Deletions: lol
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… and Still More

❖ Order Statistic Tree

❖ Interval Tree

❖ Splay Tree

❖ Dancing Tree

❖ And so much more!
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tl;dr (1 of 2)

❖ Search Trees have great runtimes most of the time

▪ But they struggle with sorted (or mostly-sorted) input

▪ Must bound the height if we need runtime guarantees

❖ Plain BSTs: simple to reason about/implement.  A good starting 
point

❖ Left-leaning Red-Black Trees: A BST variant with a Θ(log N) 
bound on the height

▪ Invariants quite tricky, but implementation isn’t bad!

▪ Correctness and runtimes guaranteed by 1-1 mapping with 2-3 trees
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tl;dr (2 of 2)

❖ B-Trees are a Search Tree variant with a Θ(log2N) bound on the 
height

▪ Only allows the tree to grow from its root

▪ Added two simple invariants, but implementation quite tricky

• All leaves must be the same depth from the root

• A non-leaf node with k keys must have exactly k+1 non-null children

❖ Possible data structures for a Map and/or Set ADT:
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LinkedList Map, 
Worst Case

BST Map,
Worst Case

B-Tree Map,
Worst Case

LLRBT Map,
Worst Case

Find Θ(N) h = Θ(N) Θ(log N) Θ(log N)

Add Θ(N) h = Θ(N) Θ(log N) Θ(log N)

Remove Θ(N) h = Θ(N) Θ(log N) Θ(log N)


