Set and Map ADTs: Left-Leaning Red-Black Trees
CSE 373 Winter 2020

Instructor: Hannah C. Tang

Teaching Assistants:
Aaron Johnston Ethan Knutson Nathan Lipiarski
Amanda Park Farrell Fileas Sam Long
Anish Velagapudi Howard Xiao Yifan Bai
Brian Chan Jade Watkins Yuma Tou
Elena Spasova Lea Quan
Announcements

❖ Case-vs-Asymptotic Analysis handout released!

❖ Workshop Survey released (see Piazza)
 ▪ Workshop Friday @ 11:30am, CSE 203
Lecture Outline

❖ Review: 2-3 Trees and BSTs

❖ Left-Leaning Red-Black Trees
 ▪ Insertion

❖ Other Balanced BSTs
Review: BSTs and B-Trees

❖ **Search Trees** have great runtimes most of the time
 ▪ But they struggle with sorted (or mostly-sorted) input
 ▪ Must bound the height if we need runtime guarantees

❖ **Plain BSTs**: simple to reason about/implement. A good starting point

❖ **B-Trees** are a *Search Tree variant* that binds the height to $\Theta(\log N)$ by only allowing the tree to grow from its root
 ▪ A good choice for a Map and/or Set implementation

<table>
<thead>
<tr>
<th></th>
<th>LinkedList Map, Worst Case</th>
<th>BST Map, Worst Case</th>
<th>B-Tree Map, Worst Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Find</td>
<td>$\Theta(N)$</td>
<td>$\Theta(h) \in \Theta(N)$</td>
<td>$\Theta(\log N)$</td>
</tr>
<tr>
<td>Add</td>
<td>$\Theta(N)$</td>
<td>$\Theta(h) \in \Theta(N)$</td>
<td>$\Theta(\log N)$</td>
</tr>
<tr>
<td>Remove</td>
<td>$\Theta(N)$</td>
<td>$\Theta(h) \in \Theta(N)$</td>
<td>$\Theta(\log N)$</td>
</tr>
</tbody>
</table>
Review: 2-3 Trees

- 2-3 Trees are a specific type of B-Tree (with L=3)

- Its invariants are the same as a B-Tree’s:
 1. All leaves must be the same depth from the root
 2. A non-leaf node with k keys must have exactly k + 1 non-null children

- Example 2-3 trees:
Improving Search Trees

❖ **Binary Search Trees (BST)**
 - Can balance a BST with rotation, but we have no fast algorithm to do so

❖ **2-3 Trees**
 - Balanced by construction: no rotations required
 - Tree will split nodes as needed, but the algorithm is complicated

Can we get the best of both worlds: a BST with the functionality of a 2-3 tree?
Converting 2-3 Tree to BST

- 2-3 trees with only 2-nodes (2 children) are already regular binary search trees

- How can we represent 3-nodes as a BST?
Splitting 3-nodes

Left-leaning

Right-leaning
Practice:

❖ Convert this 2-3 Tree to a left-leaning BST

❖ Convert this left-leaning BST to a 2-3 Tree
Lecture Outline

❖ Review: 2-3 Trees and BSTs

❖ **Left-Leaning Red-Black Trees**
 ▪ Insertion

❖ Other Balanced BSTs
Left-Leaning Red-Black Tree

- **Left-Leaning Red-Black (LLRB) Tree** is a BST variant with the following additional invariants:
 1. Every root-to-bottom* path has the same number of black edges
 2. Red edges must lean left
 3. No node has two red edges connected to it, either above/below or left/right

* “bottom” refers to single-children nodes and leaf nodes (which have no children)
There is a 1-1 correspondence (bijection) between 2-3 trees and Left-Leaning Red-Black trees:

- 2-nodes are the same in both trees
- 3-nodes are connected by a red link

Left-Leaning Red-Black (LLRB) Tree:
- Identify the link connecting the left-items in a 3-node and color it red.
Left-Leaning Red-Black Tree == 2-3 Tree

- 2-3 Trees (more generally: B-Trees) are balanced search trees:
 - height is in $\Theta(\log N)$
 - find, insert, and remove are also in $\Theta(\log N)$

- Since any LLRB Tree can be a 2-3 Tree:
 - height is in $\Theta(\log N)$
 - find, insert, and remove are also in $\Theta(\log N)$
Left-Leaning Red-Black Tree

- **Left-Leaning Red-Black (LLRB) Tree** is a BST variant with the following additional invariants:

1. Every root-to-bottom* path has the same number of black edges
 - *All 2-3 tree leaf nodes are the same depth from the root*
2. Red edges lean left
 - *We arbitrarily choose left-leaning, so we need to stick with it*
3. No node has two red edges connected to it, either above/below or left/right
 - *This would result in an overstuffed 2-3 tree node*
What’s the height of the corresponding Left-Leaning Red-Black tree?

A. 3
B. 4
C. 5
D. 6
E. 7
F. I’m not sure ...
Height of a Left-Leaning Red-Black Tree

Given a 2-3 tree of height H, the corresponding LLRB tree has height: $H + \text{max}(3\text{-Nodes}) = (H) + (H+1) \in \Theta(\log N)$
Lecture Outline

❖ Review: 2-3 Trees and BSTs

❖ Left-Leaning Red-Black Trees
 ▪ Insertion
 Pretend it’s a 2-3 tree

❖ Other Balanced BSTs
LLRB Tree Insertion: Overall Approach

- Insert nodes using the “Plain BST” algorithm, but join the new node to its parent with a red edge
 - This is analogous to how a 2-3 tree insertion always overstuffs a leaf

- If this results in an invalid Left-Leaning Red-Black Tree, repair
 - This is analogous to repairing a 2-3 tree after a leaf is too full and a key needs to be promoted
Insert: Overstuffing a Node (Left-Side)

- Use a red link to mimic the corresponding 2-3 tree.
Insert: Overstuffing a Node (Right-Side)

❖ What is the problem with inserting a red link to the right child? What should we do to fix it?

2-3 Tree

\[
\text{add}(C) \quad b \quad \rightarrow \quad b \quad \rightarrow \quad ? \\
\]

2-3 Tree

\[
\text{add}(C) \quad b \quad \rightarrow \quad b \quad c \\
\]
Insert: Overstuffing a Node (Right-Side)

- Rotate left around B

LLRB Tree

```
<table>
<thead>
<tr>
<th>b</th>
<th>→</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

2-3 Tree

```
| b | → | b c |
```

rotateLeft(B)
Insert: Inserting to the Right Side

- How do we add to the right side?

2-3 Tree
Insert: Inserting to the Right Side

- Recolor us and our sibling

![Diagram of LLRB Tree and 2-3 Tree insertions]

LLRB Tree

2-3 Tree
Insert: Splitting a Node

❖ How do we split a node?

2-3 Tree
Insert: Splitting a Node

LLRB Tree

1. Initial LLRB tree:
 - `g`
 - `b` (with child `a`)
 - `x`

2. After `add(C)`:
 - `g`
 - `b` (with child `a` and `c`)
 - `x`

3. After `recolorEdges(B)`:
 - `g`
 - `b` (with child `a` and `c`)
 - `x`

2-3 Tree

1. Initial 2-3 tree:
 - `g`
 - `a b` (with child `x`)

2. After `add(C)`:
 - `b g`
 - `a` (with children `c` and `x`)
Insert: Practice

2-3 Tree
Insert: Practice

2-3 Tree

add(E)

rotateRight(Z)

recolorEdges(S)
Insert: Practice

LLRB Tree

2-3 Tree
Left-Leaning Red-Black Tree Invariants

- **Left-Leaning Red-Black (LLRB) Tree** is a BST variant with the following additional invariants:
 1. Every root-to-bottom path has the same number of black edges
 2. Red edges lean left
 3. No node has two red edges connected to it, either above/below or left/right

- When repairing an LLRB Tree, use the following recipes:
 - Right link red? **Rotate left**
 - Two left reds in a row? **Rotate right**
 - Both children red? **Recolor all edges leaving the node**
private Node insert(Node h, Key key, Value value) {
 if (h == null) { return new Node(key, value, RED); }

 int cmp = key.compareTo(h.key);
 if (cmp < 0) { h.left = insert(h.left, key, val); }
 else if (cmp > 0) { h.right = insert(h.right, key, val); }
 else { h.value = value; }

 if (isRed(h.right) && !isRed(h.left)) { h = rotateLeft(h); }
 if (isRed(h.left) && isRed(h.left.left)) { h = rotateRight(h); }
 if (isRed(h.left) && isRed(h.right)) { recolorEdges (h); }

 return h;
}
Left-Leaning Red-Black Trees Runtime

- Searching for a key is the same as a BST
- Tree height is guaranteed in $\Theta(\log N)$
- Inserting a key is a recursive process
 - $\Theta(\log N)$ to add(E)
 - $\Theta(\log N)$ to maintain invariants

```
add(E)
```

```
rotateRight(Z)
recolorEdges(S)
rotateLeft(B)
```
Lecture Outline

❖ Review: 2-3 Trees and BSTs

❖ Left-Leaning Red-Black Trees
 ▪ Insertion

❖ Other Balanced BSTs
Red-Black Trees

- Left--leaning Red-Black trees:
 - Invented 2008 as a “simpler-to-implement” Red-Black tree

- Red-black trees:
 - Invented 1972 (!!) and handles the “right-leaning” case
 - Nodes, not edges, are colored red/black
 - Used millions (billions?) of times as a second: Java TreeMap, C++ Map, Linux scheduler and epoll, ...
 - You will get to use (but not implement) in HW4!
AVL Trees

- Recursively balanced with equal heights = not flexible enough
 - Can only represent inputs of size $2^n - 1$

- Recursively balanced with heights differing ≤ 1
 - AVL tree!

- Insertions: add to leaf, then log N rotations until tree is rebalanced

- Deletions: lol
... and Still More

- Order Statistic Tree
- Interval Tree
- Splay Tree
- Dancing Tree
- And so much more!
tl;dr (1 of 2)

- **Search Trees** have great runtimes most of the time
 - But they struggle with sorted (or mostly-sorted) input
 - Must bound the height if we need runtime guarantees

- **Plain BSTs**: simple to reason about/implement. A good starting point

- **Left-leaning Red-Black Trees**: A BST variant with a $\Theta(\log N)$ bound on the height
 - Invariants quite tricky, but implementation isn’t bad!
 - Correctness and runtimes guaranteed by 1-1 mapping with 2-3 trees
tl;dr (2 of 2)

- **B-Trees** a *Search Tree variant* with a $\Theta(\log_2 N)$ bound on the height
 - Only allows the tree to grow from its root
 - Added two simple invariants, but implementation quite tricky
 - All leaves must be the same depth from the root
 - A non-leaf node with k keys must have exactly $k+1$ non-null children

- Possible data structures for a Map and/or Set ADT:

<table>
<thead>
<tr>
<th></th>
<th>LinkedList Map, Worst Case</th>
<th>BST Map, Worst Case</th>
<th>B-Tree Map, Worst Case</th>
<th>LLRBT Map, Worst Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Find</td>
<td>$\Theta(N)$</td>
<td>$\Theta(h) \in \Theta(N)$</td>
<td>$\Theta(\log N)$</td>
<td>$\Theta(\log N)$</td>
</tr>
<tr>
<td>Add</td>
<td>$\Theta(N)$</td>
<td>$\Theta(h) \in \Theta(N)$</td>
<td>$\Theta(\log N)$</td>
<td>$\Theta(\log N)$</td>
</tr>
<tr>
<td>Remove</td>
<td>$\Theta(N)$</td>
<td>$\Theta(h) \in \Theta(N)$</td>
<td>$\Theta(\log N)$</td>
<td>$\Theta(\log N)$</td>
</tr>
</tbody>
</table>