Set and Map ADTs: B-Trees

 CSE 373 Winter 2020Instructor: Hannah C. Tang

Teaching Assistants:

Aaron Johnston
Amanda Park
Anish Velagapudi
Brian Chan
Elena Spasova

Ethan Knutson
Farrell Fileas
Howard Xiao
Jade Watkins
Lea Quan

Nathan Lipiarski
Sam Long
Yifan Bai
Yuma Tou

Announcements

* Asymptotic Analysis: handout coming soon
: Workshops 解
- Student-centered study groups; bring your questions!
- Friday 11:30-12:30 @ CSE 203

- Saturday morning: 10:30am-12pm @ Odegaard 117E
* "tl;dr" slides are your per-topic learning objectives

Questions from Reading Quiz
*Why is the reading quiz borkened $\$$? We will regrade!

* Why is BST height in $O\left(N^{2}\right)$? Best structured tie: $h \in \Theta(\log N)$ Wurst structured tree: $h \in \Theta(N)$
: Why is BST height NOT in $\Theta(N)$? \therefore No θ-bound for the overall case!
* How do you calculate average depth? Why do we care about depth? How does it relate to height?

Node attributes	Tree attributes
depth	avg depth height

Lecture Outline

* BST Remove (cont.)
* BST Tree Height
* 2-3 Trees
* B-Trees

Binary Search Trees: Remove

* 3 cases based on the number of children

1. Key has no children
2. Key has one child
3. Key has two children

* In each case, we must maintain the Binary Search Tree Invariant!

BST Remove: Case \#1: Leaf

* Remove the node with the value hippo

```
BSTNode remove(BSTNode n) {
```


\}

BST Remove: Case \#2: One Child

* Remove the node with the value ears
- What does the BST invariant say about the descendant's values?

```
BSTNode remove(BSTNode n) {
```


\}

BST Remove: Case \#3: Two Children

* Remove the node with the value dog
* The replacement node:
- Must be $>$ than all keys in left subtree
- Must be < than all keys in right
 subtree

BST Remove: Case \#3: Two Children

* Remove the node with the value dog
* The replacement node:
- Must be $>$ than all keys in left subtree: predecessor (cat)
- Must be < than all keys in right subtree: successor (ears)

$$
a, b, c, d(e, f, g, h
$$

* The predecessor or successor have either 0 or 1 children

BST Remove: Case \#3: Two Children

Aside: Finding the largest (or smallest) node

* The predecessor is the largest node in the left subtree
* The successor is the smallest node in the right subtree
* How do you find the largest (and smallest) node in a tree?
- Remember that subtrees are trees too

```
BSTNode largest(BSTNode n)
    while (n.right != null) {
        n = n.right;
    }
    return n;
}
```


tl;dr

* Binary Search Trees implement both the Set and Map ADTs
* Binary Search Trees are recursively defined
* Binary Search Trees can be an efficient Map/Set ADT

	LinkedList Map, Worst Case	BST Map, Worst Case
Find	$\Theta(\mathrm{N})$	$\Theta(\mathrm{h})$
Add	$\Theta(\mathrm{N})$	$\Theta(\mathrm{h})$
Remove	$\Theta(\mathrm{N})$	$\Theta(\mathrm{h})$

Lecture Outline

* BST Remove (cont.)
* BST Tree Height
* 2-3 Trees
* B-Trees

Binary Search Tree: Height

* Suppose we want to build a BST out of $\{1,2,3,4,5,6,7\}$
* Give a sequence of add operations that result in:
- a spindly tree ("worst case") : sorted order
- a bushy tree ("best case") :? any non-sorted order?

Randomization: Mathematical Analysis

* Binary search tree height is in O(N)
- Worst case height: $\Theta(\mathrm{N})$
- Best case height: $\Theta(\log \mathrm{N})$
- $\Theta(\log N)$ via randomized insertion
- Randomized insertion with randomized deletion is still Θ (log N) height
* BSTs are frequently concerned with best- and worst-case tree structure

Average Depth of a Randomized BST

If N distinct keys are inserted in
random order, the expected average
depth is
$\sim 2 \ln N=\Theta(\log N)$.

Total Height of a Randomized BST

If N distinct keys are inserted in random order, the expected height is
$\sim 4.311 \ln \mathrm{~N}=\Theta(\log \mathrm{N})$.

The Height of a Randomized Binary Search Tree (Reed/STOC 2000)

What About "Real World" BSTs?

* These examples are contrived! What about real-world workloads?
* An approximation of the real-world: inserting random numbers

Random Insertion into a BST (Kevin Wayne/Princeton) https://www.youtube.com/watch?v=5dGkblzqdmc

Randomization is Pretty Good!

* BSTs have great runtime if we insert keys randomly
- $\Theta(\log N)$ per insertion
* But:

- We can’t always insert our keys in a random order. Why?
- What if we need guaranteed $\Theta(\log \mathrm{N})$ runtime?

$$
\begin{aligned}
& \text { plain BUTs are pretty } \\
& \text { good unless you need } \\
& \text { a guarantee against sorted input }
\end{aligned}
$$

Bounding the Height (ie, protecting against sorted input)

* Recall that a Binary Search Tree's invariant is:
- The left subtree only contains values $<k$
- The right subtree only contains values $>k$
*What invariants could we add, to bound the height to $\log \mathrm{N}$?

Bounding the Height: Example Invariant

* Hypothesis: Every node has either 0 or 2 children
* Analysis: What is the worst-case height for this tree?

(II) Poll Everywhere

What is the worst-case height of a BST where every node must have either 0 or 2 children?

A.	$\Theta(1)$
B.	$\Theta\left(\log _{2} N\right)$
C	$\Theta(N)$
D.	$\Theta\left(N \log _{2} N\right)$
E.	$\Theta\left(N^{2}\right)$

How do you add a node to this tree?

Adding Nodes Creates Worst-case Height Trees

* Unbalanced growth leads to worst-case height trees

* When does adding a new node affect the height of a tree?
- Can you explain in terms of the subtrees (ie, recursively)?

Your Turn: Generate Some Invariants

* Generate an invariant that might balance your tree
- Is it strong enough to roughly-balance the tree?
- Is it flexible enough to be maintainable?
- Root balanced: not strong enough

- Recursively balance di strong, but "complete" trees ae unmaintainable

Lecture Outline

* BST Remove (cont.)
* BST Tree Height
* 2-3 Trees
* B-Trees

Bounding the Height: Overstuff the leaves

Results in a non-biracy search tree!

* If we never add new leaves, the tree can never get unbalanced
- Instead: Overstuff existing leaves to avoid adding new leaves

Overstuffed Leaves: Promote the Keys

* Set a limit L on number of keys
- e.g. L=3
* If any node has more than L

keys, give ("promote") a key to the parent
- e.g. the left-middle key
- Why not the leftmost or rightmost?

Promoting Keys Splits the Leaf Node

* Set a limit L on number of keys
- e.g. L=3
* If any node has more than L keys, give ("promote") a key to the parent
- e.g. the left-middle key
- Why not the leftmost or rightmost?
- Promoting a key splits the old
 overstuffed node into two new parts: left and right.

Practice: Adding More Keys

* Suppose we add the keys 20 and 21.
* If our cap is at most $\mathrm{L}=3$ keys per node, draw the post-split tree.

Promoting Keys Can Cascade Into Ancestors

* Add 25 and 26

Overstuffing the Root Node

* If promotions can cascade up the tree, we may eventually need to split the root.
$*$ Splitting the root is the only time a tree grows in height!

2-3, 2-3-4, and B-Trees

* We chose limit L=3 keys in each node. Formally, this is called a 2-3-4 Tree: each non-leaf node can have 2,3 , or 4 children
* 2-3 Tree. Choose L=2 keys. Each non-leaf node can have 2 or 3 children
* B-Trees are the generalization of this idea for any choice of L

Max 3 keys and 4 non-null children per node.

2-3 Tree

Max 2 keys and 3 non-null children per node.

2-3 Tree Practice

* Give an insertion order for the keys $\{1,2,3,4,5,6,7\}$ that results in:
- a max-height 2-3 Tree
- a min-height 2-3 Tree

Demo: https://www.cs.usfca.edu/~galles/visualization/BTree.htm|

Lecture Outline

* BST Remove (cont.)
* BST Tree Height
* 2-3 Trees
* B-Trees

B-Tree Invariants

* B-Tree's invariants guarantee "bushy" trees (ie, $\mathrm{H}(\mathrm{N}) \in \Theta\left(\log _{2} \mathrm{~N}\right)$)

1. All leaves must be the same depth from the root

- Achieved because the tree's height only grows from the root

2. A non-leaf node with k keys must have exactly $k+1$ non-null children

- Achieved because we remove two keys from an overstuffed child: one is promoted to the parent and the other becomes the new child of the newlypromoted parent key

3. A non-leaf non-root node must have at least ceil(L/2) children

- (A non-leaf root node must have >=2 children)
* Why are these invalid B-Trees?

B-Tree Invariants Bound Its Height

* Smallest possible height ("shortest tree") is when all nodes have L keys
- $H(N) \sim \log _{L+1} N \in \Theta(\log N)$
* Largest possible height ("tallest tree") is when all non-leaf nodes have just 1 key
- H(N) ~ $\log _{2} N \in \Theta(\log N)$

Search Runtime

* Shortest-case number of nodes to inspect: $\log _{\mathrm{L}+1} \mathrm{~N}$
* Shortest-case number of keys to inspect per node: L
* Runtime: $\mathrm{L} \log _{\mathrm{L}+1} \mathrm{~N} \in \Theta(\log \mathrm{~N})$
* Tallest-case number of nodes to inspect: $\log _{2} \mathrm{~N}+1$
* Tallest-case number of keys to inspect per node: 1
* Runtime: $\log _{2} \mathrm{~N}+1 \in \Theta(\log \mathrm{~N})$

Insertion Runtime

* Shortest-case number of nodes to inspect: $\log _{\mathrm{L}+1} \mathrm{~N}$
* Shortest-case number of keys to inspect per node: L
* Shortest-case number of splits: $\log _{\mathrm{L}+1} \mathrm{~N}$
* Runtime: $2 \mathrm{~L} \log _{\mathrm{L}+1} \mathrm{~N} \in \Theta(\log \mathrm{~N})$
* Tallest-case number of nodes to inspect: $\log _{2} \mathrm{~N}+1$
* Tallest-case number of keys to inspect per node: 1
* Tallest-case number of splits: $\log _{2} \mathrm{~N}+1$
* Runtime: $2 \log _{2} \mathrm{~N}+2 \in \Theta(\log \mathrm{~N})$

tl;dr

* Search Trees have great runtimes most of the time
- But they struggle with sorted (or mostly-sorted) input
- Must bound the height if we need runtime guarantees
* Plain BSTs: simple to reason about/implement. A good starting point
* B-Trees are a Search Tree variant that binds the height to $\Theta(\log N)$ by only allowing the tree to grow from its root
- A good choice for a Map and/or Set implementation

	LinkedList Map, Worst Case	BST Map, Worst Case	B-Tree Map, Worst Case
Find	$\Theta(N)$	$h=\Theta(N)$	$\Theta(\log N)$
Add	$\Theta(N)$	$h=\Theta(N)$	$\Theta(\log N)$
Remove	$\Theta(N)$	$h=\Theta(N)$	$\Theta(\log N)$

