Set and Map ADTs: B-Trees
CSE 373 Winter 2020

Instructor: Hannah C. Tang

Teaching Assistants:
Aaron Johnston Ethan Knutson Nathan Lipiarski
Amanda Park Farrell Fileas Sam Long
Anish Velagapudi Howard Xiao Yifan Bai
Brian Chan Jade Watkins Yuma Tou
Elena Spasova Lea Quan
Announcements

❖ Asymptotic Analysis: handout coming soon

❖ ワークショップs
 ▪ Student-centered study groups; bring your questions!
 ▪ Friday 11:30-12:30 @ CSE 203

❖ Extra Drop-in Time
 ▪ Saturday morning: 10:30am-12pm @ Odegaard 117E

❖ “tl;dr” slides are your per-topic learning objectives
Questions from Reading Quiz

❖ Why is the reading quiz borkened ?

❖ Why is BST height in $O(N^2)$?

❖ Why is BST height NOT in $\Theta(N)$?

❖ How do you calculate average depth? Why do we care about depth? How does it relate to height?

We will regrade!

Best structured tree: $h \in \Theta(\log N)$

Worst structured tree: $h \in \Theta(N)$

°°° No Θ-bound for the overall case!
Lecture Outline

- **BST Remove (cont.)**
- **BST Tree Height**
- **2-3 Trees**
- **B-Trees**
Binary Search Trees: Remove

- 3 cases based on the number of children
 1. Key has no children
 2. Key has one child
 3. Key has two children

- In each case, we must maintain the **Binary Search Tree Invariant**!
BST Remove: Case #1: Leaf

- Remove the node with the value **hippo**

```cpp
BSTNode remove(BSTNode n) {
}
```
BST Remove: Case #2: One Child

- Remove the node with the value **ears**
 - What does the BST invariant say about the descendant's values?

```java
BSTNode remove(BSTNode n) {
}
```
BST Remove: Case #3: Two Children

- Remove the node with the value **dog**

- The replacement node:
 - Must be > than all keys in left subtree
 - Must be < than all keys in right subtree
BST Remove: Case #3: Two Children

- Remove the node with the value **dog**

- The replacement node:
 - Must be > than all keys in left subtree: **predecessor** (**cat**)
 - Must be < than all keys in right subtree: **successor** (**ears**)

- The predecessor or successor have either 0 or 1 children
BST Remove: Case #3: Two Children

- **dog**
 - **baby**
 - **ant**
 - **cat**
 - **glug**
 - **ears**
 - **hippo**
 - **frog**

- **cat**
 - **baby**
 - **glug**
 - **ears**
 - **hippo**

- **ears**
 - **baby**
 - **glug**
 - **ant**
 - **cat**
 - **frog**
 - **hippo**
Aside: Finding the largest (or smallest) node

- The predecessor is the largest node in the left subtree
- The successor is the smallest node in the right subtree

How do you find the largest (and smallest) node in a tree?
- Remember that subtrees are trees too

```java
BSTNode largest(BSTNode n) {
    while (n.right != null) {
        n = n.right;
    }
    return n;
}
```
tl;dr

- Binary Search Trees implement both the Set and Map ADTs
- Binary Search Trees are *recursively defined*
- Binary Search Trees can be an efficient Map/Set ADT

<table>
<thead>
<tr>
<th></th>
<th>LinkedList Map, Worst Case</th>
<th>BST Map, Worst Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Find</td>
<td>Θ(N)</td>
<td>Θ(h)</td>
</tr>
<tr>
<td>Add</td>
<td>Θ(N)</td>
<td>Θ(h)</td>
</tr>
<tr>
<td>Remove</td>
<td>Θ(N)</td>
<td>Θ(h)</td>
</tr>
</tbody>
</table>

🤔 What is the relationship between N & h? 😞
Lecture Outline

❖ BST Remove (cont.)

❖ **BST Tree Height**

❖ 2-3 Trees

❖ B-Trees
Binary Search Tree: Height

❖ Suppose we want to build a BST out of \{1, 2, 3, 4, 5, 6, 7\}

❖ Give a sequence of add operations that result in:
 - a **spindly** tree ("worst case")
 - a **bushy** tree ("best case")

![Binary Search Tree Diagram]

```
Height: 6
Average Depth: 3
```

```
Height: 2
Average Depth: 1.43
```
Randomization: Mathematical Analysis

- Binary search tree height is in \(O(N)\)
 - Worst case height: \(\Theta(N)\)
 - Best case height: \(\Theta(\log N)\)
 - \(\Theta(\log N)\) via randomized insertion
 - Randomized insertion with randomized deletion is still \(\Theta(\log N)\) height

- BSTs are frequently concerned with best- and worst-case tree structure

Average Depth of a Randomized BST
If \(N\) distinct keys are inserted in random order, the expected average depth is

\[
\sim 2 \ln N = \Theta(\log N).
\]

Total Height of a Randomized BST
If \(N\) distinct keys are inserted in random order, the expected height is

\[
\sim 4.311 \ln N = \Theta(\log N).
\]
What About “Real World” BSTs?

- These examples are contrived! What about real-world workloads?
- An approximation of the real-world: inserting random numbers

Random trees have $\Theta(\log N)$ average depth and height
Random trees are bushy, not spindly
Randomization is Pretty Good!

- BSTs have great runtime if we insert keys randomly
 - $\Theta(\log N)$ per insertion

- But:
 - We can’t always insert our keys in a random order. Why?
 - What if we need guaranteed $\Theta(\log N)$ runtime?
Bounding the Height (i.e., protecting against sorted input)

- Recall that a Binary Search Tree’s invariant is:
 - The left subtree only contains values <k
 - The right subtree only contains values >k

- What invariants could we add, to bound the height to log N?
Bounding the Height: Example Invariant

- **Hypothesis:** Every node has either 0 or 2 children

- **Analysis:** What is the worst-case height for this tree?
What is the worst-case height of a BST where every node must have either 0 or 2 children?

A. $\Theta(1)$
B. $\Theta(\log_2 N)$
C. $\Theta(N)$
D. $\Theta(N \log_2 N)$
E. $\Theta(N^2)$

$H(N) \in \Theta(N)$

How do you add a node to this tree?
Adding Nodes Creates Worst-case Height Trees

- Unbalanced growth leads to worst-case height trees

- When does adding a new node affect the height of a tree?
 - Can you explain in terms of the subtrees (ie, recursively)?
Your Turn: Generate Some Invariants

- Generate an invariant that might balance your tree
 - Is it strong enough to roughly-balance the tree?
 - Is it flexible enough to be maintainable?

- Root balanced: not strong enough

- Recursively balanced: strong, but "complete" trees are unmanageable
Lecture Outline

❖ BST Remove (cont.)

❖ BST Tree Height

❖ 2-3 Trees

❖ B-Trees
Bounding the Height: Overstuff the leaves

- If we never add new leaves, the tree can never get unbalanced
 - **Instead:** Overstuff existing leaves to avoid adding new leaves
Overstuffed Leaves: Promote the Keys

- Set a limit L on number of keys
 - e.g. L=3

- If any node has more than L keys, give (“promote”) a key to the parent
 - e.g. the left-middle key
 - Why not the leftmost or rightmost?
Promoting Keys Splits the Leaf Node

- Set a limit \(L \) on number of keys
 - e.g. \(L=3 \)

- If any node has more than \(L \) keys, give ("promote") a key to the parent
 - e.g. the left-middle key
 - Why not the leftmost or rightmost?
 - Promoting a key splits the old overstuffed node into two new parts: left and right.
Practice: Adding More Keys

- Suppose we add the keys 20 and 21.
- If our cap is at most $L=3$ keys per node, draw the post-split tree.
Promoting Keys Can Cascade Into Ancestors

- Add 25 and 26
Overstuffing the Root Node

❖ If promotions can cascade up the tree, we may eventually need to split the root.

❖ Splitting the root is the only time a tree grows in height!
2-3, 2-3-4, and B-Trees

- We chose limit L=3 keys in each node. Formally, this is called a 2-3-4 Tree: each non-leaf node can have 2, 3, or 4 children.

- 2-3 Tree. Choose L=2 keys. Each non-leaf node can have 2 or 3 children.

- B-Trees are the generalization of this idea for any choice of L.
2-3 Tree Practice

❖ Give an insertion order for the keys {1, 2, 3, 4, 5, 6, 7} that results in:
 ▪ a **max-height** 2-3 Tree
 ▪ a **min-height** 2-3 Tree

Demo: https://www.cs.usfca.edu/~galles/visualization/BTree.html
Lecture Outline

❖ BST Remove (cont.)

❖ BST Tree Height

❖ 2-3 Trees

❖ B-Trees
B-Tree Invariants

- B-Tree’s invariants guarantee “bushy” trees (i.e., $H(N) \in \Theta(\log_2 N)$)
 1. All leaves must be the same depth from the root
 - Achieved because the tree’s height only grows from the root
 2. A non-leaf node with k keys must have exactly $k + 1$ non-null children
 - Achieved because we remove two keys from an overstuffed child: one is promoted to the parent and the other becomes the new child of the newly-promoted parent key
 3. A non-leaf non-root node must have at least $\lceil L/2 \rceil$ children
 - (A non-leaf root node must have ≥ 2 children)

- Why are these invalid B-Trees?
B-Tree Invariants Bound Its Height

- Smallest possible height ("shortest tree") is when all nodes have \(L \) keys
 - \(H(N) \sim \log_{L+1} N \in \Theta(\log N) \)

- Largest possible height ("tallest tree") is when all non-leaf nodes have just 1 key
 - \(H(N) \sim \log_2 N \in \Theta(\log N) \)

\[\text{N=8, L=2, H(N) = 1} \]

\[\text{N=8, L=2, H(N) = 2} \]
Search Runtime

- **Shortest-case number of nodes to inspect:** $\log_{L+1} N$
- **Shortest-case number of keys to inspect per node:** L
- **Runtime:** $L \log_{L+1} N \in \Theta(\log N)$

- **Tallest-case number of nodes to inspect:** $\log_2 N + 1$
- **Tallest-case number of keys to inspect per node:** 1
- **Runtime:** $\log_2 N + 1 \in \Theta(\log N)$

\[N=8, L=2, H(N) = 1 \]

\[N=8, L=2, H(N) = 2 \]
Insertion Runtime

- **Shortest-case number of nodes to inspect**: \(\log_{L+1} N \)
- **Shortest-case number of keys to inspect per node**: \(L \)
- **Shortest-case number of splits**: \(\log_{L+1} N \)
- **Runtime**: \(2L \log_{L+1} N \in \Theta(\log N) \)

- **Tallest-case number of nodes to inspect**: \(\log_2 N + 1 \)
- **Tallest-case number of keys to inspect per node**: \(1 \)
- **Tallest-case number of splits**: \(\log_2 N + 1 \)
- **Runtime**: \(2\log_2 N + 2 \in \Theta(\log N) \)

N=8, L=2, H(N) = 1

N=8, L=2, H(N) = 2
tl;dr

❖ **Search Trees** have great runtimes most of the time
 - But they struggle with sorted (or mostly-sorted) input
 - Must bound the height if we need runtime guarantees

❖ **Plain BSTs**: simple to reason about/implement. A good starting point

❖ **B-Trees** are a *Search Tree variant* that binds the height to $\Theta(\log N)$ by only allowing the tree to grow from its root
 - A good choice for a Map and/or Set implementation

<table>
<thead>
<tr>
<th></th>
<th>LinkedList Map, Worst Case</th>
<th>BST Map, Worst Case</th>
<th>B-Tree Map, Worst Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Find</td>
<td>$\Theta(N)$</td>
<td>$h = \Theta(N)$</td>
<td>$\Theta(\log N)$</td>
</tr>
<tr>
<td>Add</td>
<td>$\Theta(N)$</td>
<td>$h = \Theta(N)$</td>
<td>$\Theta(\log N)$</td>
</tr>
<tr>
<td>Remove</td>
<td>$\Theta(N)$</td>
<td>$h = \Theta(N)$</td>
<td>$\Theta(\log N)$</td>
</tr>
</tbody>
</table>