Set and Map ADTs: B-Trees CSE 373 Winter 2020

Instructor: Hannah C. Tang

Teaching Assistants:

Aaron Johnston	Ethan Knutson	
Amanda Park	Farrell Fileas	
Anish Velagapudi	Howard Xiao	
Brian Chan	Jade Watkins	
Elena Spasova	Lea Quan	

Nathan Lipiarski Sam Long Yifan Bai Yuma Tou

Announcements

- Asymptotic Analysis: handout coming soon
- workshops
 - Student-centered study groups; bring your questions!
 - Friday 11:30-12:30 @ CSE 203
- 🔹 Extra Drop-in Time 💥 💥
 - Saturday morning: 10:30am-12pm @ Odegaard 117E
- "tl;dr" slides are your per-topic learning objectives

Questions from Reading Quiz

* Why is the reading quiz borkened ? We will regrade!

 Why is BST height in O(N²)? Best structured tree: h ∈ Θ(log N) Worst structured tree: h ∈ Θ(N)
 Why is BST height NOT in Θ(N)? . No O-bound for the overall case 1

 How do you calculate average depth? Why do we care about depth? How does it relate to height? Node attributes Tree attributes

Lecture Outline

- & BST Remove (cont.)
- ✤ BST Tree Height
- 2-3 Trees
- B-Trees

Binary Search Trees: Remove

- 3 cases based on the number of children
 - 1. Key has no children
 - 2. Key has one child
 - 3. Key has two children

In each case, we must maintain the Binary Search Tree Invariant!

BST Remove: Case #1: Leaf

Remove the node with the value hippo

BST Remove: Case #2: One Child

- Remove the node with the value ears
 - What does the BST invariant say about the descendant's values?

BST Remove: Case #3: Two Children

- Remove the node with the value dog
- The replacement node:
 - Must be > than all keys in left subtree
 - Must be < than all keys in right subtree

BST Remove: Case #3: Two Children

 Remove the node with the value dog

- The replacement node:
 - Must be > than all keys in left subtree: predecessor (cat)
 - Must be < than all keys in right subtree: successor (ears)

a,b,c),d,e,f,g,h

 The predecessor or successor have either 0 or 1 children

BST Remove: Case #3: Two Children

Aside: Finding the largest (or smallest) node

- * The predecessor is the largest node in the left subtree
- The successor is the smallest node in the right subtree
- How do you find the largest (and smallest) node in a tree?
 - Remember that subtrees are trees too

tl;dr

- Binary Search Trees implement both the Set and Map ADTs
- Binary Search Trees are recursively defined
- Binary Search Trees can be an efficient Map/Set ADT

	LinkedList Map, Worst Case	BST Map, Worst Case		
Find	Θ(N)	Θ(h)		
Add	Θ(N)	Θ(h)		
Remove	Θ(N)	Θ <mark>(</mark> h)		
What is the relationship between N & h? @				

Lecture Outline

- ST Remove (cont.)
- *** BST Tree Height**
- 2-3 Trees
- B-Trees

Binary Search Tree: Height

- Suppose we want to build a BST out of {1, 2, 3, 4, 5, 6, 7}
- Give a sequence of add operations that result in:

Randomization: Mathematical Analysis

- Binary search tree height is in O(N)
 - Worst case height: Θ(N)
 - Best case height: O(log N)
 - Θ(log N) via randomized insertion
 - Randomized insertion with randomized deletion is still Θ(log N) height
- BSTs are frequently concerned with best- and worst-case tree structure

Average Depth of a Randomized BST

If N distinct keys are inserted in random order, the expected average depth is

~ 2 ln N = $\Theta(\log N)$.

Total Height of a Randomized BST If N distinct keys are inserted in random order, the expected height is ~ 4.311 ln N = Θ(log N).

The Height of a Randomized Binary Search Tree (Reed/STOC 2000)

What About "Real World" BSTs?

- These examples are contrived! What about real-world workloads?
- An approximation of the real-world: inserting random numbers

Random Insertion into a BST (Kevin Wayne/Princeton) https://www.youtube.com/watch?v=5dGkblzgdmc

Random trees have $\Theta(\log N)$ average depth and height Random trees are bushy, not spindly

Randomization is Pretty Good!

- BSTs have great runtime if we insert keys randomly
 - O(log N) per insertion
- ✤ But:
 - We can't always insert our keys in a random order. Why?

Bounding the Height (ic, protecting against sorted input)

- Recall that a Binary Search Tree's invariant is:
 - The left subtree only contains values <k</p>
 - The right subtree only contains values >k
- What invariants could we add, to bound the height to log N?

Bounding the Height: Example Invariant

- Hypothesis: Every node has either 0 or 2 children
- Analysis: What is the worst-case height for this tree?

pollev.com/uwcse373

What is the worst-case height of a BST where every node must have either 0 or 2 children?

- D. $\Theta(N \log_2 N)$
- ε. Θ(N²)

How do you add a node to this tree?

Adding Nodes Creates Worst-case Height Trees

Unbalanced growth leads to worst-case height trees

- * When does adding a new node affect the height of a tree?
 - Can you explain in terms of the subtrees (ie, recursively)?

Your Turn: Generate Some Invariants

- * Generate an invariant that might balance your tree
 - Is it strong enough to roughly-balance the tree?
 - Is it flexible enough to be maintainable?

· Root balanced: not strong enough · Recursively balanced: strong, but "complete" trees are unmaintainable

Lecture Outline

- ST Remove (cont.)
- ✤ BST Tree Height
- * 2-3 Trees
- B-Trees

Bounding the Height: Overstuff the leaves Results in a non-binary search tree!

If we never add new leaves, the tree can never get unbalanced

Instead: Overstuff existing leaves to avoid adding new leaves

Overstuffed Leaves: Promote the Keys

- ✤ Set a limit L on number of keys
 - e.g. L=3
- If any node has more than L keys, give ("promote") a key to the parent
 - e.g. the left-middle key want "space" between keys
 - Why not the leftmost or rightmost?

Promoting Keys Splits the Leaf Node

- Set a limit L on number of keys
 - e.g. L=3
- If any node has more than L keys, give ("promote") a key to the parent
 - e.g. the left-middle key
 - Why not the leftmost or rightmost?
 - Promoting a key splits the old overstuffed node into two new parts: left and right.

Practice: Adding More Keys

- Suppose we add the keys 20 and 21.
- If our cap is at most L=3 keys per node, draw the post-split tree.

Promoting Keys Can Cascade Into Ancestors

* Add 25 and 26

Overstuffing the Root Node

- If promotions can cascade up the tree, we may eventually need to split the root.
- Splitting the root is the only time a tree grows in height!

2-3, 2-3-4, and B-Trees

 We chose limit L=3 keys in each node. Formally, this is called a 2-3-4 Tree: each non-leaf node can have 2, 3, or 4 children

- 2-3 Tree. Choose L=2 keys.
 Each non-leaf node can have
 2 or 3 children
- B-Trees are the generalization of this idea for any choice of L

2-3 Tree Practice

- Give an insertion order for the keys {1, 2, 3, 4, 5, 6, 7} that results in:
 - a max-height 2-3 Tree
 - a min-height 2-3 Tree

Demo: https://www.cs.usfca.edu/~galles/visualization/BTree.html

Lecture Outline

- ST Remove (cont.)
- ✤ BST Tree Height
- 2-3 Trees
- * B-Trees

B-Tree Invariants

- ↔ B-Tree's invariants guarantee "bushy" trees (ie, H(N) ∈ Θ(log₂N))
 - 1. All leaves must be the same depth from the root
 - Achieved because the tree's height only grows from the root
 - 2. A non-leaf node with k keys must have exactly k + 1 non-null children
 - Achieved because we remove two keys from an overstuffed child: one is promoted to the parent and the other becomes the new child of the newlypromoted parent key
 - 3. A non-leaf non-root node must have at least ceil(L/2) children
 - (A non-leaf root node must have >=2 children)
- Why are these invalid B-Trees?

B-Tree Invariants Bound Its Height

- Smallest possible height ("shortest tree") is when all nodes have L keys
 - $H(N) \sim \log_{L+1} N \in \Theta(\log N)$

- Largest possible height ("tallest tree") is when all non-leaf nodes have just 1 key
 - $H(N) \sim \log_2 N \in \Theta(\log N)$

Search Runtime

- Shortest-case number of nodes to inspect: log_{L+1}N
- Shortest-case number of keys to inspect per node: L
- ↔ *Runtime*: L log_{L+1}N ∈ Θ(log N)

- Tallest-case number of nodes to inspect: log₂N + 1
- Tallest-case number of keys to inspect per node: 1
- ∗ *Runtime*: log₂N + 1 ∈ Θ(log N)

Insertion Runtime

- Shortest-case number of nodes to inspect: $\log_{1+1}N$
- Shortest-case number of keys to inspect per node: L
- Shortest-case number of splits: $\log_{1+1}N$
- ↔ Runtime: 2L log₁₊₁N ∈ Θ(log N) ↔ Runtime: 2log₂N + 2 ∈ Θ(log N)

Tallest-case number of nodes to *inspect*: $\log_2 N + 1$

- Tallest-case number of keys to inspect per node: 1
- ✤ Tallest-case number of splits: $\log_2 N + 1$

N=8, L=2, H(N) = 1

tl;dr

- * Search Trees have great runtimes most of the time
 - But they struggle with sorted (or mostly-sorted) input
 - Must bound the height if we need runtime guarantees
- * Plain BSTs: simple to reason about/implement. A good starting point
- B-Trees are a Search Tree variant that binds the height to Θ(log N) by only allowing the tree to grow from its root
 - A good choice for a Map and/or Set implementation

	LinkedList Map, Worst Case	BST Map, Worst Case	B-Tree Map, Worst Case
Find	Θ(N)	h = Θ(N)	Θ(log N)
Add	Θ(N)	h = Θ(N)	Θ(log N)
Remove	Θ(N)	h = Θ(N)	Θ(log N)