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Announcements

❖ Asymptotic Analysis: handout coming soon

❖🎊Workshops 🎊

▪ Student-centered study groups; bring your questions!

▪ Friday 11:30-12:30 @ CSE 203

❖ Extra Drop-in Time 🎇🎇🎇

▪ Saturday morning: 10:30am-12pm @ Odegaard 117E 

❖ “tl;dr” slides are your per-topic learning objectives
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Questions from Reading Quiz

❖ Why is the reading quiz borkened💔?

❖ Why is BST height in O(N2)?

❖ Why is BST height NOT in Θ(N)?

❖ How do you calculate average depth?  Why do we care about 
depth?  How does it relate to height?
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Lecture Outline

❖ BST Remove (cont.)

❖ BST Tree Height

❖ 2-3 Trees

❖ B-Trees
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Binary Search Trees: Remove

❖ 3 cases based on the number of children

1. Key has no children

2. Key has one child

3. Key has two children

❖ In each case, we must maintain the Binary Search Tree 
Invariant!
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BST Remove: Case #1: Leaf

❖ Remove the node with the 
value hippo
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BST Remove: Case #2: One Child

❖ Remove the node with the value ears

▪ What does the BST invariant say about 
the descendant's values?
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BST Remove: Case #3: Two Children

❖ Remove the node with the value 
dog

❖ The replacement node:

▪ Must be ≻ than all keys in left 
subtree

▪ Must be ≺ than all keys in right 
subtree
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BST Remove: Case #3: Two Children

❖ Remove the node with the value 
dog

❖ The replacement node:

▪ Must be ≻ than all keys in left 
subtree: predecessor (cat)

▪ Must be ≺ than all keys in right 
subtree: successor (ears)

❖ The predecessor or successor 
have either 0 or 1 children
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BST Remove: Case #3: Two Children
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Aside: Finding the largest (or smallest) node

❖ The predecessor is the largest node in the left subtree

❖ The successor is the smallest node in the right subtree

❖ How do you find the largest (and smallest) node in a tree?

▪ Remember that subtrees are trees too
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BSTNode largest(BSTNode n) {

while (n.right != null) {

n = n.right;

}

return n;

}
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tl;dr

❖ Binary Search Trees implement both the Set and Map ADTs

❖ Binary Search Trees are recursively defined

❖ Binary Search Trees can be an efficient Map/Set ADT 
implementations
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LinkedList Map, 
Worst Case

BST Map,
Worst Case

Find Θ(N) Θ(h)

Add Θ(N) Θ(h)

Remove Θ(N) Θ(h)

🤔
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Lecture Outline

❖ BST Remove (cont.)

❖ BST Tree Height

❖ 2-3 Trees

❖ B-Trees
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Binary Search Tree: Height

❖ Suppose we want to build a BST out of {1, 2, 3, 4, 5, 6, 7}

❖ Give a sequence of add operations that result in:

▪ a spindly tree (“worst case”)

▪ a bushy tree (“best case”)
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Randomization: Mathematical Analysis

❖ Binary search tree height is in 
O(N)

▪ Worst case height: Θ(N)

▪ Best case height: Θ(log N)

▪ Θ(log N) via randomized 
insertion

• Randomized insertion with 
randomized deletion is still Θ(log 
N) height

❖ BSTs are frequently 
concerned with best- and 
worst-case tree structure
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The Height of a Randomized Binary Search Tree (Reed/STOC 2000)

Average Depth of a Randomized BST

If N distinct keys are inserted in 

random order, the expected average 

depth is

~ 2 ln N = Θ(log N).

Total Height of a Randomized BST

If N distinct keys are inserted in 

random order, the expected height is

~ 4.311 ln N = Θ(log N).
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What About “Real World” BSTs?

❖ These examples are 
contrived! What about 
real-world workloads?

❖ An approximation of the 
real-world: inserting 
random numbers
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Random Insertion into a BST (Kevin Wayne/Princeton)
https://www.youtube.com/watch?v=5dGkblzqdmc

Random trees have Θ(log N) average depth and height

Random trees are bushy, not spindly

http://www.youtube.com/watch?v=5dGkblzqdmc
https://www.youtube.com/watch?v=5dGkblzqdmc
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Randomization is Pretty Good!

❖ BSTs have great runtime if we 
insert keys randomly

▪ Θ(log N) per insertion

❖ But:

▪ We can’t always insert our keys 
in a random order. Why?

▪ What if we need guaranteed
Θ(log N) runtime?
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Bounding the Height

❖ Recall that a Binary Search Tree’s invariant is:

▪ The left subtree only contains values <k

▪ The right subtree only contains values >k

❖ What invariants could we add, to bound the height to log N?
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Bounding the Height: Example Invariant

❖ Hypothesis: Every node has either 0 or 2 children

❖ Analysis: What is the worst-case height for this tree?
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pollev.com/uwcse373

What is the worst-case height of a BST where every node must 
have either 0 or 2 children?

A. Θ(1)

B. Θ(log2N)

C. Θ(N)

D. Θ(N log2N)

E. Θ(N2)
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H(N) ∈ Θ(N)

How do you add a node to this tree?
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Adding Nodes Creates Worst-case Height Trees

❖ Unbalanced growth leads to worst-case height trees

❖ When does adding a new node affect the height of a tree?

▪ Can you explain in terms of the subtrees (ie, recursively)?
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Your Turn: Generate Some Invariants

❖ Generate an invariant that might balance your tree

▪ Is it strong enough to roughly-balance the tree?

▪ Is it flexible enough to be maintainable?
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Lecture Outline

❖ BST Remove (cont.)

❖ BST Tree Height

❖ 2-3 Trees

❖ B-Trees
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Bounding the Height: Overstuff the leaves

❖ If we never add new leaves, the tree can never get unbalanced

▪ Instead: Overstuff existing leaves to avoid adding new leaves
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Overstuffed Leaves: Promote the Keys

❖ Set a limit L on number of keys

▪ e.g. L=3

❖ If any node has more than L 
keys, give (“promote”) a key to 
the parent

▪ e.g. the left-middle key

▪ Why not the leftmost or 
rightmost?
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Promoting Keys Splits the Leaf Node

❖ Set a limit L on number of keys

▪ e.g. L=3

❖ If any node has more than L 
keys, give (“promote”) a key to 
the parent

▪ e.g. the left-middle key

▪ Why not the leftmost or 
rightmost?

▪ Promoting a key splits the old 
overstuffed node into two new 
parts: left and right.
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Practice: Adding More Keys

❖ Suppose we add the keys 20 and 21.

❖ If our cap is at most L=3 keys per node, draw the post-split tree.
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Promoting Keys Can Cascade Into Ancestors

❖ Add 25 and 26
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Overstuffing the Root Node

❖ If promotions can cascade up the tree, we may eventually need 
to split the root.

❖ Splitting the root is the only time a tree grows in height!
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2-3, 2-3-4, and B-Trees

❖ We chose limit L=3 keys in 
each node. Formally, this is 
called a 2-3-4 Tree: each 
non-leaf node can have 2, 3, 
or 4 children

❖ 2-3 Tree. Choose L=2 keys. 
Each non-leaf node can have 
2 or 3 children

❖ B-Trees are the 
generalization of this idea 
for any choice of L
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2-3-4 Tree

Max 3 keys and 4 non-null children per node.

s u w

r y ztn p

oe

b g

m q

v

2-3 Tree

Max 2 keys and 3 non-null children per node.

s  u

r tn p

oe

b g

m q

v



CSE373, Winter 2020L08:  B-Trees

2-3 Tree Practice

❖ Give an insertion order for the keys {1, 2, 3, 4, 5, 6, 7} that 
results in:

▪ a max-height 2-3 Tree

▪ a min-height 2-3 Tree

Demo: https://www.cs.usfca.edu/~galles/visualization/BTree.html
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Lecture Outline

❖ BST Remove (cont.)

❖ BST Tree Height

❖ 2-3 Trees

❖ B-Trees
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B-Tree Invariants

❖ B-Tree’s invariants guarantee “bushy” trees (ie, H(N) ∈ Θ(log2N))

1. All leaves must be the same depth from the root

• Achieved because the tree’s height only grows from the root

2. A non-leaf node with k keys must have exactly k + 1 non-null children

• Achieved because we remove two keys from an overstuffed child: one is 
promoted to the parent and the other becomes the new child of the newly-
promoted parent key

3. A non-leaf non-root node must have at least ceil(L/2) children

• (A non-leaf root node must have >=2 children)

❖ Why are these invalid B-Trees?
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B-Tree Invariants Bound Its Height

❖ Smallest possible height 
(“shortest tree”) is when all 
nodes have L keys

▪ H(N) ~ logL + 1N ∈ Θ(log N)

35

❖ Largest possible height 
(“tallest tree”) is when all 
non-leaf nodes have just 1 
key

▪ H(N) ~ log2N ∈ Θ(log N)

* *

*

* * * * *

N=8, L=2, H(N) = 2

N=8, L=2, H(N) = 1

* * * *

* *

* *
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Search Runtime

❖ Shortest-case number of 
nodes to inspect: logL + 1N

❖ Shortest-case number of keys 
to inspect per node: L

❖ Runtime: L logL + 1N ∈ Θ(log N)
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❖ Tallest-case number of nodes 
to inspect: log2N + 1

❖ Tallest-case number of keys to 
inspect per node: 1

❖ Runtime: log2N + 1 ∈ Θ(log N)

* *

*

* * * * *

N=8, L=2, H(N) = 2

N=8, L=2, H(N) = 1

* * * *

* *

* *
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Insertion Runtime

❖ Shortest-case number of nodes 
to inspect: logL + 1N

❖ Shortest-case number of keys 
to inspect per node: L

❖ Shortest-case number of splits: 
logL + 1N

❖ Runtime: 2L logL + 1N ∈ Θ(log N)
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❖ Tallest-case number of nodes to 
inspect: log2N + 1

❖ Tallest-case number of keys to 
inspect per node: 1

❖ Tallest-case number of splits: 
log2N + 1

❖ Runtime: 2log2N + 2 ∈ Θ(log N)

* *

*

* * * * *

N=8, L=2, H(N) = 2

N=8, L=2, H(N) = 1

* * * *

* *

* *
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tl;dr
❖ Search Trees have great runtimes most of the time

▪ But they struggle with sorted (or mostly-sorted) input

▪ Must bound the height if we need runtime guarantees

❖ Plain BSTs: simple to reason about/implement.  A good starting point

❖ B-Trees are a Search Tree variant that binds the height to Θ(log N) by 
only allowing the tree to grow from its root

▪ A good choice for a Map and/or Set implementation

38

LinkedList 
Map, Worst 

Case

BST Map,
Worst Case

B-Tree Map,
Worst Case

Find Θ(N) h = Θ(N) Θ(log N)

Add Θ(N) h = Θ(N) Θ(log N)

Remove Θ(N) h = Θ(N) Θ(log N)


