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About how long did Homework 2 take?

A. 0-2 Hours

B. 2-4 Hours

C. 4-6 Hours

D. 5-10 Hours

E. 10-14 Hours

F. 14+ Hours

G. I haven’t finished yet / I don’t want to say
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Announcements

❖ Homework 3: Autocomplete is released

▪ We’ve started to implement a rate-limiting / token-saving policy to 
encourage you to write your own tests and to start early.

▪ Thresholds are “reasonable”

▪ Hint: If you implemented a unittest that tested the exact thing the 
autograder described, you could run the autograder’s test in the 
debugger (and also not have to use your tokens).

▪ Hint: MatchResult takes an inclusive start but an exclusive end index

❖ HW2 feedback survey

▪ Similar to HW1; help us improve our homeworks

❖ Extra DITs added Monday morning

▪ 11-12:30, CSE 4th floor breakout
3
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Questions from Reading Quiz

❖ Do map values need to be unique as well?

❖ Is the Java TreeMap a BST?

❖ What if the map keys aren’t numbers?
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Lecture Outline

❖ Binary Search and Binary Range Search

❖ ADTs: Sets and Maps

❖ Binary Search Trees as Sets and Maps

❖ BST Operations:

▪ Find/Contains

▪ Add

▪ Remove
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Case Analysis != Asymptotic Analysis

❖ Case analysis deals with a specific input or a specific class of 
inputs

❖ Asymptotic analysis deals with “the shape of the curve near 
infinity”

❖ Demos (each case has their own O, Θ, and Ω bounds): 

▪ Best: https://www.desmos.com/calculator/uovi22xfwq

▪ Worst: https://www.desmos.com/calculator/v3u5hviyqe

▪ Overall: https://www.desmos.com/calculator/huqfxcwu05
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“Shapes Near Infinity”
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Binary Search Runtime
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public static boolean binarySearch(int[] sorted, int findMe) {

if (sorted.length == 0)

return false;

int mid = sorted.length / 2;

if (findMe < sorted[mid])

int[] subrange = Arrays.copyOfRange(sorted, 0, mid);

return binarySearch(subrange, findMe);

else if (x > sorted[mid])

int[] subrange = Arrays.copyOfRange(sorted, mid, sorted.length);

return binarySearch(subrange, findMe);

else

return true;

}

Case Big-O Big-Theta Big-Omega

Best O(1) Θ(1) Ω(1)

Worst O(log2N) Θ(log2N) Ω(log2N)

Overall O(log2N) DNE Ω(1)
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Binary Range Search

❖ You are highly encouraged to learn more about this algorithm 
with a websearch or by talking with a friend

▪ Remember: Don’t copy-n-paste other people’s (or your) code

❖ Basic idea is that you’re looking for the first and last elements 
of a range

▪ Which means, unlike binary search, there’s no early exit when you’ve 
found a matching item
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Case Big-O Big-Theta Big-Omega

Best O(log2N) Θ(log2N) Ω(log2N)

Worst O(log2N) Θ(log2N) Ω(log2N)

Overall
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Lecture Outline

❖ Binary Search vs Binary Range Search

❖ ADTs: Sets and Maps

❖ Binary Search Trees as Sets and Maps

❖ BST Operations:

▪ Find/Contains

▪ Add

▪ Remove
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ADTs So Far

11

List ADT. A collection storing an 

ordered sequence of 

elements.

• Each element is accessible by a 

zero-based index.

• A list has a size defined as the 

number of elements in the list.

• Elements can be added to the 

front, back, or any index in the list.

• Optionally, elements can be 

removed from the front, back, or 

any index in the list.

❖ Data structures that 
implemented the List ADT 
include LinkedList and 
ArrayList

❖ When we restrict List’s 
functionality, we end up with 
the 3 other ADTs we’ve seen 
so far
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ADTs So Far

❖ Data structures that implemented 
these  ADTs are LinkedList and 
ArrayList variants
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Deque ADT. A collection 

storing an ordered 

sequence of elements.

• Each element is 

accessible by a zero-

based index.

• A deque has a size 

defined as the number 

of elements in the 

deque.

• Elements can be added 

to the front or back.

• Optionally, elements can 

be removed from the 

front or back.

Queue ADT. A collection 

storing an ordered 

sequence of elements.

• A queue has a size 

defined as the 

number of elements 

in the queue.

• Elements can only be 

added to one end and 

removed from the 

other (“FIFO”)

Stack ADT. A collection 

storing an ordered 

sequence of elements.

• A stack has a size 

defined as the 

number of elements 

in the stack.

• Elements can only be 

added and removed 

from the top (“LIFO”)



CSE373, Winter 2020L07:  Binary Search Trees

Set ADT

13

Set ADT. A collection of values.

• A set has a size defined as the 

number of elements in the set.

• You can add and remove values.

• Each value is accessible via a “get” 

or “contains” operation.

class Item<Value> {

Value v;

}

LinkedList<Item> set;

❖ Naïve implementation: a list of 
items

▪ add(v):

▪ contains(v):

▪ remove(v):
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Map ADT

❖ Also known as “Dictionary ADT”

❖ Naïve implementation: a set of 
(key, value) pairs

▪ add(k, v):

▪ find(k):

▪ contains(k):

▪ remove(k):
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Map ADT. A collection of keys, each 

associated with a value.

• A map has a size defined as the 

number of elements in the map.

• You can add and remove (key, 

value) pairs.

• Each value is accessible by its key 

via a “get” or “contains” operation.

class KVPair<Key, Value> {

Key k;

Value v;

}

LinkedList<KVPair> map;
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Lecture Outline

❖ Binary Search vs Binary Range Search

❖ ADTs: Sets and Maps

❖ Binary Search Trees as Sets and Maps

❖ BST Operations:

▪ Find/Contains

▪ Add

▪ Remove
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Tree Data Structure

❖ A Tree is a collection of nodes; each node has <= 1 parent and 

>= 0 children

▪ Root node: the “top” of the tree and the

only node with no parent

▪ Leaf node: a node with no children

▪ Edge: the connection between a parent

and child

▪ There is exactly one path between

any pair of nodes

❖ Subtree: a node and all of its

descendants

▪ Trees are defined recursively!
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class Node<Value> {

Value v;

List<Node> children;

}

Nodes

Edges Purple

Green Red

Blue Indigo OrangeYellow

Pink
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Binary Tree Data Structure

❖ A Binary Tree is a tree where each node has 0 <= children <= 2
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class BinaryNode<Value> {

Value v;

BinaryNode left;

BinaryNode right;

}

1

5 31

8 179

5
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Review: Binary Search

❖ Remember Binary Search’s “function call tree”?
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2 3 6 10 11

6

3

2 11

10

binarySearch(3)

6

3

2 11

10

binarySearch(11)

6

3

2 11

10

binarySearch(6)
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Binary Search Trees

❖ A Binary Search Tree is a binary tree with the following 

invariant: for every node with value k in the BST:

▪ The left subtree only contains values <k

▪ The right subtree only contains values >k

19

class BSTNode<Value> {

Value v;

BSTNode left;

BSTNode right;

}

9

5 17

8 311

Reminder: the BST ordering applies recursively to the entire subtree



CSE373, Winter 2020L07: Binary Search Trees

pollev.com/uwcse373

❖ Are these Binary Search Trees?

A. Yes / Yes

B. Yes / No

C. No / Yes

D. No / No

20

4

3 7

6 52 9

8 5

Apple

Banana

Cantaloupe

Durian

Elderberry
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BST Ordering Applies Recursively

21

9

5 17

8 311

9

5 17

8 311

< 9 > 9

9

5 17

8 311

< 9 > 9

< 9 and < 5 < 9 and > 5
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Binary Search Trees as Maps

❖ Since BSTs contain keys, they can also contain (key, value) pairs

22

class BSTNode<Key, Value> {

Key k;

Value v;

BSTNode left;

BSTNode right;

}

9: Banana

5: Cantaloupe 17: Apple

8: Apple 31: Fig1: Elderberry
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Lecture Outline

❖ Binary Search vs Binary Range Search

❖ ADTs: Maps and Sets

❖ Binary Search Trees as Maps and Sets

❖ BST Operations:

▪ Find/Contains

▪ Add

▪ Remove
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Binary Search Trees: Find/Contains

❖ Unsurprisingly, this looks a lot like binary search

❖ Can you implement contains by putting the following 

statements in the correct order?

▪ Hint: remember BST’s invariants

❖ What is find’s worst-case runtime?

24

9

5 17

8 311

boolean contains(BSTNode n,

Key k) {

}

if (n == null)

return false;

if (k.equals(n.key))

return true;

if (k < n.k) {

return contains(

n.left, k);

}

if (k >= n.k) {

return contains(

n.right, k);

}

A B C D
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BST Find/Contains’s runtime

❖ What is find’s worst-case runtime, as a function of n?

❖ What is find’s worst-case runtime, as a function of height?
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Apple

Banana

Cantaloupe

Durian

Elderberry

4

3 7

6 52 9

8 5
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BST Height (or depth)

❖ The height of a binary search tree is the number of edges on 
the longest path between the root node and any leaf

▪ A path is a connected sequence of edges that join parent-child
nodes

▪ The height of this tree is 3

❖ We don’t have a tight bound for
the tree’s height as a function
of its size!

26

1

2

3
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Lecture Outline

❖ Binary Search vs Binary Range Search

❖ ADTs: Maps and Sets

❖ Binary Search Trees as Maps and Sets

❖ BST Operations:

▪ Find/Contains

▪ Add

▪ Remove

27



CSE373, Winter 2020L07:  Binary Search Trees

Binary Search Trees: Add

❖ Where does the new key belong?

❖ How do we use BST invariants to 
ensure the leaf is added correctly?
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dog

baby glug

ant

frog

cat ears hippo
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BSTNode add(BST t, Key k) {

// Implement by putting statements 

// in the correct order

}

return t; if (k < t.key)) {

t.left

= add(t.left, k);

}

if (k > t.key) {

t.right

= add(t.right, k);

}

if (t == null){

return

new BSTNode(k);

}

A B C D
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Lecture Outline

❖ Binary Search vs Binary Range Search

❖ ADTs: Maps and Sets

❖ Binary Search Trees as Maps and Sets

❖ BST Operations:

▪ Find/Contains

▪ Add

▪ Remove (to be continued Friday)
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