
CSE373, Winter 2020L07: Binary Search Trees

Set and Map ADTs: Binary Search
Trees
CSE 373 Winter 2020

Instructor: Hannah C. Tang

Teaching Assistants:

Aaron Johnston Ethan Knutson Nathan Lipiarski

Amanda Park Farrell Fileas Sam Long

Anish Velagapudi Howard Xiao Yifan Bai

Brian Chan Jade Watkins Yuma Tou

Elena Spasova Lea Quan

CSE373, Winter 2020L07: Binary Search Trees

pollev.com/uwcse373

About how long did Homework 2 take?

A. 0-2 Hours

B. 2-4 Hours

C. 4-6 Hours

D. 5-10 Hours

E. 10-14 Hours

F. 14+ Hours

G. I haven’t finished yet / I don’t want to say

2

CSE373, Winter 2020L07: Binary Search Trees

Announcements

❖ Homework 3: Autocomplete is released

▪ We’ve started to implement a rate-limiting / token-saving policy to
encourage you to write your own tests and to start early.

▪ Thresholds are “reasonable”

▪ Hint: If you implemented a unittest that tested the exact thing the
autograder described, you could run the autograder’s test in the
debugger (and also not have to use your tokens).

▪ Hint: MatchResult takes an inclusive start but an exclusive end index

❖ HW2 feedback survey

▪ Similar to HW1; help us improve our homeworks

❖ Extra DITs added Monday morning

▪ 11-12:30, CSE 4th floor breakout
3

CSE373, Winter 2020L07: Binary Search Trees

Questions from Reading Quiz

❖ Do map values need to be unique as well?

❖ Is the Java TreeMap a BST?

❖ What if the map keys aren’t numbers?

4

CSE373, Winter 2020L07: Binary Search Trees

Lecture Outline

❖ Binary Search and Binary Range Search

❖ ADTs: Sets and Maps

❖ Binary Search Trees as Sets and Maps

❖ BST Operations:

▪ Find/Contains

▪ Add

▪ Remove

5

CSE373, Winter 2020L07: Binary Search Trees

Case Analysis != Asymptotic Analysis

❖ Case analysis deals with a specific input or a specific class of
inputs

❖ Asymptotic analysis deals with “the shape of the curve near
infinity”

❖ Demos (each case has their own O, Θ, and Ω bounds):

▪ Best: https://www.desmos.com/calculator/uovi22xfwq

▪ Worst: https://www.desmos.com/calculator/v3u5hviyqe

▪ Overall: https://www.desmos.com/calculator/huqfxcwu05

6

https://www.desmos.com/calculator/uovi22xfwq
https://www.desmos.com/calculator/v3u5hviyqe
https://www.desmos.com/calculator/huqfxcwu05

CSE373, Winter 2020L07: Binary Search Trees

“Shapes Near Infinity”

7

CSE373, Winter 2020L07: Binary Search Trees

Binary Search Runtime

8

public static boolean binarySearch(int[] sorted, int findMe) {

if (sorted.length == 0)

return false;

int mid = sorted.length / 2;

if (findMe < sorted[mid])

int[] subrange = Arrays.copyOfRange(sorted, 0, mid);

return binarySearch(subrange, findMe);

else if (x > sorted[mid])

int[] subrange = Arrays.copyOfRange(sorted, mid, sorted.length);

return binarySearch(subrange, findMe);

else

return true;

}

Case Big-O Big-Theta Big-Omega

Best O(1) Θ(1) Ω(1)

Worst O(log2N) Θ(log2N) Ω(log2N)

Overall O(log2N) DNE Ω(1)

CSE373, Winter 2020L07: Binary Search Trees

Binary Range Search

❖ You are highly encouraged to learn more about this algorithm
with a websearch or by talking with a friend

▪ Remember: Don’t copy-n-paste other people’s (or your) code

❖ Basic idea is that you’re looking for the first and last elements
of a range

▪ Which means, unlike binary search, there’s no early exit when you’ve
found a matching item

9

Case Big-O Big-Theta Big-Omega

Best O(log2N) Θ(log2N) Ω(log2N)

Worst O(log2N) Θ(log2N) Ω(log2N)

Overall

CSE373, Winter 2020L07: Binary Search Trees

Lecture Outline

❖ Binary Search vs Binary Range Search

❖ ADTs: Sets and Maps

❖ Binary Search Trees as Sets and Maps

❖ BST Operations:

▪ Find/Contains

▪ Add

▪ Remove

10

CSE373, Winter 2020L07: Binary Search Trees

ADTs So Far

11

List ADT. A collection storing an

ordered sequence of

elements.

• Each element is accessible by a

zero-based index.

• A list has a size defined as the

number of elements in the list.

• Elements can be added to the

front, back, or any index in the list.

• Optionally, elements can be

removed from the front, back, or

any index in the list.

❖ Data structures that
implemented the List ADT
include LinkedList and
ArrayList

❖ When we restrict List’s
functionality, we end up with
the 3 other ADTs we’ve seen
so far

CSE373, Winter 2020L07: Binary Search Trees

ADTs So Far

❖ Data structures that implemented
these ADTs are LinkedList and
ArrayList variants

12

Deque ADT. A collection

storing an ordered

sequence of elements.

• Each element is

accessible by a zero-

based index.

• A deque has a size

defined as the number

of elements in the

deque.

• Elements can be added

to the front or back.

• Optionally, elements can

be removed from the

front or back.

Queue ADT. A collection

storing an ordered

sequence of elements.

• A queue has a size

defined as the

number of elements

in the queue.

• Elements can only be

added to one end and

removed from the

other (“FIFO”)

Stack ADT. A collection

storing an ordered

sequence of elements.

• A stack has a size

defined as the

number of elements

in the stack.

• Elements can only be

added and removed

from the top (“LIFO”)

CSE373, Winter 2020L07: Binary Search Trees

Set ADT

13

Set ADT. A collection of values.

• A set has a size defined as the

number of elements in the set.

• You can add and remove values.

• Each value is accessible via a “get”

or “contains” operation.

class Item<Value> {

Value v;

}

LinkedList<Item> set;

❖ Naïve implementation: a list of
items

▪ add(v):

▪ contains(v):

▪ remove(v):

CSE373, Winter 2020L07: Binary Search Trees

Map ADT

❖ Also known as “Dictionary ADT”

❖ Naïve implementation: a set of
(key, value) pairs

▪ add(k, v):

▪ find(k):

▪ contains(k):

▪ remove(k):

14

Map ADT. A collection of keys, each

associated with a value.

• A map has a size defined as the

number of elements in the map.

• You can add and remove (key,

value) pairs.

• Each value is accessible by its key

via a “get” or “contains” operation.

class KVPair<Key, Value> {

Key k;

Value v;

}

LinkedList<KVPair> map;

CSE373, Winter 2020L07: Binary Search Trees

Lecture Outline

❖ Binary Search vs Binary Range Search

❖ ADTs: Sets and Maps

❖ Binary Search Trees as Sets and Maps

❖ BST Operations:

▪ Find/Contains

▪ Add

▪ Remove

15

CSE373, Winter 2020L07: Binary Search Trees

Tree Data Structure

❖ A Tree is a collection of nodes; each node has <= 1 parent and

>= 0 children

▪ Root node: the “top” of the tree and the

only node with no parent

▪ Leaf node: a node with no children

▪ Edge: the connection between a parent

and child

▪ There is exactly one path between

any pair of nodes

❖ Subtree: a node and all of its

descendants

▪ Trees are defined recursively!
16

class Node<Value> {

Value v;

List<Node> children;

}

Nodes

Edges Purple

Green Red

Blue Indigo OrangeYellow

Pink

CSE373, Winter 2020L07: Binary Search Trees

Binary Tree Data Structure

❖ A Binary Tree is a tree where each node has 0 <= children <= 2

17

class BinaryNode<Value> {

Value v;

BinaryNode left;

BinaryNode right;

}

1

5 31

8 179

5

CSE373, Winter 2020L07: Binary Search Trees

Review: Binary Search

❖ Remember Binary Search’s “function call tree”?

18

2 3 6 10 11

6

3

2 11

10

binarySearch(3)

6

3

2 11

10

binarySearch(11)

6

3

2 11

10

binarySearch(6)

CSE373, Winter 2020L07: Binary Search Trees

Binary Search Trees

❖ A Binary Search Tree is a binary tree with the following

invariant: for every node with value k in the BST:

▪ The left subtree only contains values <k

▪ The right subtree only contains values >k

19

class BSTNode<Value> {

Value v;

BSTNode left;

BSTNode right;

}

9

5 17

8 311

Reminder: the BST ordering applies recursively to the entire subtree

CSE373, Winter 2020L07: Binary Search Trees

pollev.com/uwcse373

❖ Are these Binary Search Trees?

A. Yes / Yes

B. Yes / No

C. No / Yes

D. No / No

20

4

3 7

6 52 9

8 5

Apple

Banana

Cantaloupe

Durian

Elderberry

CSE373, Winter 2020L07: Binary Search Trees

BST Ordering Applies Recursively

21

9

5 17

8 311

9

5 17

8 311

< 9 > 9

9

5 17

8 311

< 9 > 9

< 9 and < 5 < 9 and > 5

CSE373, Winter 2020L07: Binary Search Trees

Binary Search Trees as Maps

❖ Since BSTs contain keys, they can also contain (key, value) pairs

22

class BSTNode<Key, Value> {

Key k;

Value v;

BSTNode left;

BSTNode right;

}

9: Banana

5: Cantaloupe 17: Apple

8: Apple 31: Fig1: Elderberry

CSE373, Winter 2020L07: Binary Search Trees

Lecture Outline

❖ Binary Search vs Binary Range Search

❖ ADTs: Maps and Sets

❖ Binary Search Trees as Maps and Sets

❖ BST Operations:

▪ Find/Contains

▪ Add

▪ Remove

23

CSE373, Winter 2020L07: Binary Search Trees

Binary Search Trees: Find/Contains

❖ Unsurprisingly, this looks a lot like binary search

❖ Can you implement contains by putting the following

statements in the correct order?

▪ Hint: remember BST’s invariants

❖ What is find’s worst-case runtime?

24

9

5 17

8 311

boolean contains(BSTNode n,

Key k) {

}

if (n == null)

return false;

if (k.equals(n.key))

return true;

if (k < n.k) {

return contains(

n.left, k);

}

if (k >= n.k) {

return contains(

n.right, k);

}

A B C D

CSE373, Winter 2020L07: Binary Search Trees

BST Find/Contains’s runtime

❖ What is find’s worst-case runtime, as a function of n?

❖ What is find’s worst-case runtime, as a function of height?

25

Apple

Banana

Cantaloupe

Durian

Elderberry

4

3 7

6 52 9

8 5

CSE373, Winter 2020L07: Binary Search Trees

BST Height (or depth)

❖ The height of a binary search tree is the number of edges on
the longest path between the root node and any leaf

▪ A path is a connected sequence of edges that join parent-child
nodes

▪ The height of this tree is 3

❖ We don’t have a tight bound for
the tree’s height as a function
of its size!

26

1

2

3

CSE373, Winter 2020L07: Binary Search Trees

Lecture Outline

❖ Binary Search vs Binary Range Search

❖ ADTs: Maps and Sets

❖ Binary Search Trees as Maps and Sets

❖ BST Operations:

▪ Find/Contains

▪ Add

▪ Remove

27

CSE373, Winter 2020L07: Binary Search Trees

Binary Search Trees: Add

❖ Where does the new key belong?

❖ How do we use BST invariants to
ensure the leaf is added correctly?

28

dog

baby glug

ant

frog

cat ears hippo

28

BSTNode add(BST t, Key k) {

// Implement by putting statements

// in the correct order

}

return t; if (k < t.key)) {

t.left

= add(t.left, k);

}

if (k > t.key) {

t.right

= add(t.right, k);

}

if (t == null){

return

new BSTNode(k);

}

A B C D

CSE373, Winter 2020L07: Binary Search Trees

Lecture Outline

❖ Binary Search vs Binary Range Search

❖ ADTs: Maps and Sets

❖ Binary Search Trees as Maps and Sets

❖ BST Operations:

▪ Find/Contains

▪ Add

▪ Remove (to be continued Friday)

29

