Algorithm Analysis III: Recursive
CSE 373 Winter 2020

Instructor: Hannah C. Tang

Teaching Assistants:
Aaron Johnston Ethan Knutson Nathan Lipiarski
Amanda Park Farrell Fileas Sam Long
Anish Velagapudi Howard Xiao Yifan Bai
Brian Chan Jade Watkins Yuma Tou
Elena Spasova Lea Quan
Announcements

❖ No lecture on Monday; MLK Day of Service
 ▪ Please go out there and volunteer to improve your communities
 ▪ DITs cancelled for Monday

❖ HW1 feedback form emailed to your @uw
 ▪ Help us make your homeworks better!

❖ Homeworks:
 ▪ The score you get in Gradescope is your “final” score. No style grading; late deductions already factored in.
 ▪ HW2 due Tuesday; check your Gradle now while the staff is still around!
Questions from Reading Quiz

❖ What’s the base for log N?

❖ What do you mean by “unrolling the recurrence”? How do you get T(N) = T(N / 2) + c?

❖ What is T(N)?
Lecture Outline

❖ Recursion

❖ Pattern #1: (Almost) Doubling the Input

❖ Pattern #2: Halving the Input

❖ Pattern #3: Constant-size Input and Doing Work
Recursion

❖ Recursion
 ▪ An algorithm or a data structure that is defined in terms of itself
 ▪ Usually has a base case that doesn’t use recursion to terminate

❖ Examples:
 ▪ Fibonacci:
 • fib(n) = fib(n-1) + fib(n-2)
 • fib(1) = 1
 ▪ An ancestor is a person who is:
 • Your parent
 • Your parent’s ancestor
 ▪ Sourdough starter
 • A colony of microorganisms
 • Your last loaf’s starter
Lecture Outline

❖ Recursion

❖ Pattern #1: (Almost) Doubling the Input

❖ Pattern #2: Halving the Input

❖ Pattern #3: Constant-size Input and Doing Work
Asymptotic Analysis for Iterative Recursive Problems

❖ Case Analysis != Asymptotic Analysis

❖ Memorize these summations since they’re common:

\[1 + 2 + 3 + 4 + \ldots + (N-1) = \frac{N(N-1)}{2} \in \Theta(N^2) \]

\[1 + 2 + 4 + 8 + \ldots + 2^{\text{floor}(\log_2 N)} = 2N - 1 \in \Theta(N) \]

❖ Strategies for finding an asymptotic bound:

- Use a geometric argument / visualizations
- Find an expression for the exact step count
- Write out examples
Find a tight bound for f’s runtime

A. 1
B. \log \text{N}
C. N
D. \text{N}^2
E. 2^\text{N}
(Almost) Doubling the Input: \(f \)

```c
int f(int n) {
    if (n <= 1)
        return 1;
    return f(n-1) + f(n-1);
}
```

\[T(0) = d \]
\[T(1) = d \]
\[T(2) = T(1) + T(1) + c \]
\[T(N) = 2 \cdot T(N-1) + c \]

Runtime is recursively defined!
(Almost) Doubling the Input, Geometrically

- Draw one node for each function call
 - Why are we counting function calls and not operations?

```c
int f(int n) {
    if (n <= 1)
        return 1;
    return f(n-1) + f(n-1);
}
```

\[f(4) = \]
(Almost) Doubling the Input, Examples

<table>
<thead>
<tr>
<th>N=</th>
<th>Total Function Calls</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1 + 2</td>
</tr>
<tr>
<td>3</td>
<td>1 + 2 + 4</td>
</tr>
<tr>
<td>4</td>
<td>1 + 2 + 4 + 8</td>
</tr>
</tbody>
</table>

```c
int f(int n) {
    if (n <= 1)
        return 1;
    return f(n-1) + f(n-1);
}
```
(Almost) Doubling the Input, Counting

❖ How many “levels” are in the function call tree? \(N \)

❖ How much work occurs at each level \(L \)? \(2^{L-1} \)

```java
int f(int n) {
    if (n <= 1)
        return 1;
    return f(n-1) + f(n-1);
}
```

<table>
<thead>
<tr>
<th>Level</th>
<th>Calls per level</th>
<th>(2^{L-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>(2^0 = 1)</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>(2^1 = 2)</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>(2^2 = 4)</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>(2^3 = 8)</td>
</tr>
</tbody>
</table>
(Almost) Doubling the Input, Counting

We know that f’s runtime looks like:

\[T(4) = 1 + 2 + 4 + 8 \]
\[T(N) = 1 + 2 + 4 + 8 + \ldots + 2^{N-1} \]

And we’ve previously seen:

1 + 2 + 4 + 8 + \ldots + 2^{\text{floor}(\log_2 Q)} = 2Q - 1

If we let \(Q = 2^{N-1} \)

\[T(N) = 1 + 2 + 4 + 8 + \ldots + 2^{N-1} = 2 \cdot 2^{N-1} - 1 \]

\[T(N) = 2^N - 1 \in \Theta(2^N) \]
Out-of-Scope: Recurrence Solution

\[
C(1) = 1
\]
\[
C(N) = 2C(N - 1) + 1
\]
\[
= 2(2C(N - 2) + 1) + 1
\]
\[
= 2(2(2C(N - 2) + 1) + 1) + 1
\]
\[
= 2(\cdots 2 \cdot 1 + 1) + \cdots 1
\]
\[
= 2(\cdots 2 \cdot 1 + 1) + \cdots 1
\]
\[
= 2^{N-1} + 2^{N-2} + \cdots + 1 = 2^N - 1 \in \Theta(2^N)
\]
Lecture Outline

❖ Recursion

❖ Pattern #1: (Almost) Doubling the Input

❖ Pattern #2: Halving the Input

❖ Pattern #3: Halving the Input and Doing Work
public static boolean binarySearch(int[] sorted, int findMe) {
 if (sorted.length == 0)
 return false;

 int mid = sorted.length / 2;
 if (findMe < sorted[mid])
 int[] subrange = Arrays.copyOfRange(sorted, 0, mid);
 return binarySearch(subrange, findMe);
 else if (x > sorted[mid])
 int[] subrange = Arrays.copyOfRange(sorted, mid, sorted.length);
 return binarySearch(subrange, findMe);
 else
 return true;
}
Halving the Input, Geometrically

- Draw one node for each call to binarySearch. If there is more than one case, draw a tree for each case.
Halving the Input, Counting

- $T(1) = d$
 $T(2) = T(1) + c$
 ...
 $T(N) = T(N/2) + c$

- **Worst case**: keep halving the input size until you reach 0, which takes $\log_2 N$ “halve” operations
 - In other words, there are $\log_2 N$ function calls or $\log_2 N$ layers in our function call tree

- Worst case $T(N) \in \Theta(\log_2 N)$
Halving the Input, Counting

- **Worst case**: keep halving the input size until you reach 0, which takes \(\log_2 N \) “halve” operations.

- Similar to f, there is a constant amount of work at each recursive step.

<table>
<thead>
<tr>
<th>Case</th>
<th>Big-Theta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best</td>
<td>(\Theta(1))</td>
</tr>
<tr>
<td>Worst</td>
<td>(\Theta(\log_2 N))</td>
</tr>
<tr>
<td>Overall</td>
<td>(\Theta)</td>
</tr>
</tbody>
</table>
Lecture Outline

❖ Recursion

❖ Pattern #1: (Almost) Doubling the Input

❖ Pattern #2: Halving the Input

❖ Pattern #3: Constant-size Input and Doing Work
MergeSort: The Merge Operation

Given two sorted arrays, the merge operation combines them into a single sorted array by successively copying the smallest item from the two arrays into a target array.
What is the runtime of merge, specified in terms of \(N \), the total number of items?

1. \(\Theta(1) \)
2. \(\Theta(\log_2 N) \)
3. \(\Theta(N) \)
4. \(\Theta(N \log_2 N) \)
5. \(\Theta(N^2) \)
MergeSort

- MergeSort algorithm is recursive
 - If array is of size 1, return
 - MergeSort the left half
 - MergeSort the right half
 - Merge the two sorted halves

```java
void mergeSort(int[] arr) {
    if (arr.length == 1)
        return;

    int mid = arr.length / 2;
    int[] left = Arrays.copyOfRange(arr, 0, mid);
    int[] right = Arrays.copyOfRange(arr, mid, unsorted.length);

    mergeSort(left);
    mergeSort(right);
    System.arraycopy(left, 0, arr, 0, left.length);
    System.arraycopy(right, 0, arr, left.length, right.length);
}
```
MergeSort

- Geometrically:
 - How many layers are in our function call tree?
 - Compare with BinarySearch
 - $7 \text{ layers, or } \log_2 N$
 - How much work is done at each layer?
 - Compare with f
 - $64, \text{or } N$

- Counting:
 - $T(1) = d$
 - $T(2) = T(1) + T(1) + c$
 - ...
 - $T(N) = 2T(N/2) + c$
Counting Calls vs. Work-per-Layer

\(f \): work for each call is constant, so can count the number of calls

\[R(N) \in \Theta(2^N) \]

MergeSort: work for each call is\textit{ variable}. However, the work\textit{ per layer} is the same

\[R(N) = \Theta(N \cdot \log N) \]
Linear vs Linearithmic (N log N) vs Quadratic

Table 2.1 The running times (rounded up) of different algorithms on inputs of increasing size, for a processor performing a million high-level instructions per second. In cases where the running time exceeds 10^{25} years, we simply record the algorithm as taking a very long time.

<table>
<thead>
<tr>
<th>n</th>
<th>n</th>
<th>$n \log_2 n$</th>
<th>n^2</th>
<th>n^3</th>
<th>1.5^n</th>
<th>2^n</th>
<th>$n!$</th>
</tr>
</thead>
<tbody>
<tr>
<td>n = 10</td>
<td>< 1 sec</td>
<td>4 sec</td>
</tr>
<tr>
<td>n = 30</td>
<td>< 1 sec</td>
<td>18 min</td>
<td>10^{25} years</td>
</tr>
<tr>
<td>n = 50</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>11 min</td>
<td>36 years</td>
<td>very long</td>
</tr>
<tr>
<td>n = 100</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>1 sec</td>
<td>12,892 years</td>
<td>10^{17} years</td>
<td>very long</td>
</tr>
<tr>
<td>n = 1,000</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>1 sec</td>
<td>18 min</td>
<td>very long</td>
<td>very long</td>
<td>very long</td>
</tr>
<tr>
<td>n = 10,000</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>2 min</td>
<td>12 days</td>
<td>very long</td>
<td>very long</td>
<td>very long</td>
</tr>
<tr>
<td>n = 100,000</td>
<td>< 1 sec</td>
<td>2 sec</td>
<td>3 hours</td>
<td>32 years</td>
<td>very long</td>
<td>very long</td>
<td>very long</td>
</tr>
<tr>
<td>n = 1,000,000</td>
<td>1 sec</td>
<td>20 sec</td>
<td>12 days</td>
<td>31,710 years</td>
<td>very long</td>
<td>very long</td>
<td>very long</td>
</tr>
</tbody>
</table>

Asymptotic analysis deals with infinities, not specific inputs (e.g., 11274) or classes of input (e.g., best case).
tl;dr Asymptotic Analysis for Iterative Recursive Problems

- Case Analysis != Asymptotic Analysis

- Memorize these summations since they’re common:

 \[
 1 + 2 + 3 + 4 + \ldots + (N-1) = \frac{N(N-1)}{2} \in \Theta(N^2)
 \]

 \[
 1 + 2 + 4 + 8 + \ldots + 2^{\lfloor \log_2 N \rfloor} = 2N - 1 \in \Theta(N)
 \]

 \[
 1 + 2 + 4 + 8 + \ldots + 2^N = 2^{N+1} - 1 \in \Theta(2^N)
 \]

- Strategies for finding an asymptotic bound:

 - Use a geometric argument / visualizations

 - Find an expression for the exact step count

 - Write out examples