Overall Asymptotic Runtime Bound for dup1

$$
\begin{aligned}
R_{\text {best }}(N) & =2 \\
R_{\text {worst }}(N) & =\frac{N^{2}+3 N+2}{2}
\end{aligned}
$$

Give an overall asymptotic runtime bound for R as a combination of $\boldsymbol{\Theta}, \mathbf{0}$, and/or $\mathbf{\Omega}$ notation. Take into account both the best and the worst case runtimes ($R_{\text {best }}$ and $R_{\text {worst }}$).

Q Print Party: Attempt 1

Find a simple $f(N)$ such that the runtime $R(N) \in \Theta(f(N))$.
A. 1
B. $\log N$
C. N
D. $N \log N$
E. N^{2}
F. Other

```
void printParty(int N) {
    for (int i = 1; i <= N; i *= 2) {
        for (int j = 0; j < i; j += 1) {
        System.out.println("hello");
    }
    }
}
```

Note that there's only one case. No separate case analysis!

Q1: Find a simple $f(N)$ such that the runtime $R(N) \in \Theta(f(N))$.
?: How do we know that there's only one case to consider?

Repeat After Me...

There is no magic shortcut for these problems (except in a few well-behaved cases). We'll expect you to know these two summations since they're common patterns

$$
\begin{array}{ll}
1+2+3+4+\cdots+Q=\frac{Q(Q+1)}{2} & \in \Theta\left(Q^{2}\right) \\
1+2+4+8+\cdots+Q=2 Q-1 & \in \Theta(Q)
\end{array}
$$

Strategies.

1. Find the exact count of steps.
2. Write out examples.
3. Use a geometric argument-visualizations!

Print Party: Attempt 2 representative operation for figuring out the runtime.
?: For each N, predict $C(N)$.

Real world programs are often messy and difficult to model.
?: What's different between these two summations?
?: How did we apply these strategies to analyze printParty?

Q Informal Recursion Analysis
Find a simple $f(N)$ such that the runtime $R(N) \in \Theta(f(N))$.
Inspect the example and give the order of growth of the runtime as a function of N .
A. 1
B. $\log N$
C. N
D. N^{2}
E. 2^{N}

```
public static int f3(int n) {
    if (n <= 1)
        return 1;
    return f3(n-1) + f3(n-1);
}
```


Q Recursion and Exact Counts
Find a simple $f(N)$ such that the runtime $R(N) \in \Theta(f(N))$.
Approach 2: Count number of calls to f3, given by $\mathrm{C}(\mathrm{N})$.
$C(4)=1+2+4+8$
$C(N)=1+2+4+8+\cdots+$?
Give a simple, exact expression for $\mathrm{C}(\mathrm{N})$.

$$
C(N)=
$$

```
public static int f3(int n) {
    if (n <= 1)
        return 1;
    return f3(n-1) + f3(n-1);
}
```


?: What is the exact value of the last term in the sum for $\mathrm{C}(\mathrm{N})$?

Q1: Give a simple, exact expression for $\mathrm{C}(\mathrm{N})$.

The Merge Operation

Given two sorted arrays, the merge operation combines them into a single sorted array by successively copying the smallest item from the two arrays into a target array

Merge Sort

Merge sort algorithm merges every layer.

1. If array is of size 1 , return.
2. Merge sort the left half.
3. Merge sort the right half
4. Merge the two sorted halves.

For $\mathrm{N}=64$, the total runtime is $\sim 384 \mathrm{AU}$.

- Top layer: ~64 AU
- Second layer: 2(~32 AU) = ~64 AU
- Third layer: $4(\sim 16 \mathrm{AU})=\sim 64 \mathrm{AU}$
- $i^{\text {th }}$ layer: $2^{i-1}\left(\sim 64 \mathrm{AU} / 2^{\mathrm{i}-1}\right)=\sim 64$ AU

?: What is a cost model that we can use to evaluate the runtime of the merge operation?
?: How does the call tree for merge sort differ from the example we saw in f3?
?: How do these differences affect our runtime analysis?

