

D (M) Q

$$R_{\text{worst}}(N) = 2$$
$$R_{\text{worst}}(N) = \frac{N^2 + 3N + 2}{2}$$

Give an overall asymptotic runtime bound for R as a combination of Θ , O, and/or Ω notation. Take into account both the best and the worst case runtimes (R_{best} and R_{worst}).

Q1: Give an overall asymptotic runtime bound for R as a combination of **O**, **O**, and/or **O** notation. Take into account both the best and the worst case runtimes (R_{best} and R_{worst}).

Q1: Find a simple f(N) such that the runtime $R(N) \in \Theta(f(N))$.

?: How do we know that there's only one case to consider?

Demo

3

Let the cost model C(N) be the number of calls to println for a given N. This is our representative operation for figuring out the runtime.

?: For each N, predict C(N).

Real world programs are often messy and difficult to model.

?: What's different between these two summations?

?: How did we apply these strategies to analyze printParty?

?: What does each node represent in the tree on the right?

?: What is the exact value of the last term in the sum for C(N)?

Q1: Find a simple f(N) such that the runtime $R(N) \in \Theta(f(N))$.

Q1: Give a simple, exact expression for C(N).

?: What is a cost model that we can use to evaluate the runtime of the merge operation?

?: How does the call tree for merge sort differ from the example we saw in f3?

?: How do these differences affect our runtime analysis?