Algorithm Analysis II: Iterative CSE 373 Winter 2020

Instructor: Hannah C. Tang

Teaching Assistants:

Aaron Johnston
Amanda Park
Anish Velagapudi
Brian Chan
Elena Spasova

Ethan Knutson
Farrell Fileas
Howard Xiao
Jade Watkins
Lea Quan

Nathan Lipiarski
Sam Long
Yifan Bai
Yuma Tou

Announcements

* I don't have add codes
- CS Advisors closed registration on Monday; if you're a senior and don't have an add code yet ... let us know ASAP
- Otherwise, 373 is closed
* I got my first anonymous feedback!
- Can you please clarify what is "too fast"?
: HW1 is due, HW2 is released
- Late policy: ~5\% first day, ~10\% second day, 20\% third day
- Survey coming out soon
* Hint for HW2's confusingTest(): commenting out resize() is not the answer

Questions from Reading Quiz

. I'm still confused how $\mathrm{N}(\mathrm{N}-1) / 2$ was derived

* It's not easy to find the exact count/cost, and it's especially easy to be off by one. Will we have to calculate the exact count at some point?
\% I found it interesting how selection sort has no best or worst case
* Are there any better ways to sort? $\mathrm{N}^{\wedge} 2$ seems like a pretty bad runtime.

Derivation: $\mathbf{N}(\mathbf{N}-1) / 2$

$+C=(N-1)+(N-2)+(N-3)+\cdots+3+2+1$
$2 C=N+N+N+\cdots+N+N+N$
$2 C=(N-1) N$
$\therefore \quad C=N(N-1) / 2$

Lecture Outline

* Intro to Deques
* Asymptotic Analysis Formalisms: O, Θ, and Ω
* Case Analyses: Best, Worst, Overall
* Asymptotic Analysis Case Study: PrintParty

Deques

Deque ADT. A collection storing an ordered sequence of elements.

- Each element is accessible by a zero-based index.
- A deque has a size defined as the number of elements in the deque.
- Elements can be added to the front or back.
- Optionally, elements can be removed from the front or back.

List ADT. A collection storing an ordered sequence of elements.

- Each element is accessible by a zero-based index.
- A list has a size defined as the number of elements in the list.
- Elements can be added to the front, back, or any index in the list.
- Optionally, elements can be removed from the front, back, or any index in the list.

Deques

* What series of List ADT methods or Deque ADT methods can build this sequence:
- Deque has addFirst, addLast
- List has those two, plus addAt(idx, val) and reserve(capacity)

A	B	C	D

* Example:
- addFirst(D), addFirst(C), addFirst(B), addFirst(A)
- Works for either Deque or List

Lecture Outline

* Intro to Deques
* Asymptotic Analysis Formalisms: 0, 0, and Ω
* Case Analyses: Best, Worst, Overall
* Asymptotic Analysis Case Study: PrintParty

Review: Algorithm Analysis: Our Destination

* "The worst-case order-ofgrowth for dup1's runtime is quadratic (parabolic)"
* "The best-case order-of-growth for dup1's runtime is constant"

Big-O: Intuition

* Suppose we have a function $R(N)$ with order of growth $f(N)$. In Big-O notation, we write this as: 7 "element of"

$$
R(N) \in O(f(N))
$$

* Big-O can informally be thought of as something like "less-than or equals"

Function	Big-O
$\mathrm{N}^{3}+3 \mathrm{~N}^{4}$	$\mathrm{O}\left(\mathrm{N}^{4}\right)$
$(1 / \mathrm{N})+\mathrm{N}^{3}$	$O\left(\mathrm{~N}^{3}\right)$
$\mathrm{Ne}^{N}+\mathrm{N}$	$\mathrm{O}\left(\mathrm{Ne}^{\mathrm{N}}\right)$
$40 \sin (\mathrm{~N})+4 \mathrm{~N}^{2}$	$\mathrm{O}\left(\mathrm{N}^{2}\right)$

Big-O: Intuition

* ... and also ...

Function	Big-O	Also Big-O
$\mathrm{N}^{3}+3 \mathrm{~N}^{4}$	$\mathrm{O}\left(\mathrm{N}^{4}\right)$	$\mathrm{O}\left(\mathrm{N}^{5}\right)$
$(1 / N)+N^{3}$	$\mathrm{O}\left(\mathrm{N}^{3}\right)$	$<\mathrm{O}\left(\mathrm{N}^{423421531542}\right)$
$\mathrm{Ne}^{\mathrm{N}}+\mathrm{N}$	$\mathrm{O}\left(\mathrm{Ne}^{\mathrm{N}}\right)$	$<\mathrm{O}\left(\mathrm{N}^{*} 3^{\mathrm{N}}\right)$
$40 \sin (\mathrm{~N})+4 \mathrm{~N}^{2}$	$\mathrm{O}\left(\mathrm{N}^{2}\right)$	$<\mathrm{O}\left(\mathrm{N}^{2.1}\right)$

Big-O: Mathematical Definition

$R(N) \in O(f(N))$
means there exists a positive constant k such that
$R(N) \leq k \cdot f(N)$ \} " l e s s ~ t h a n ~ o r ~ for all values of N greater thar some N_{0}.

$k=5$

Demo:

Big-Theta: Intuition

* Whereas Big-O can informally be thought of as something like "less-than or equals", Big-Theta more closely resembles "equals"

$$
R(N) \in \Theta(f(N))
$$

Function	Big-Theta
$\mathrm{N}^{3}+3 \mathrm{~N}^{4}$	$\Theta\left(\mathrm{~N}^{4}\right)$
$(1 / \mathrm{N})+\mathrm{N}^{3}$	$\Theta\left(\mathrm{~N}^{3}\right)$
$\mathrm{NeN}+\mathrm{N}$	$\Theta\left(\mathrm{Ne}^{\mathrm{N}}\right)$
$40 \sin (\mathrm{~N})+4 \mathrm{~N}^{2}$	$\Theta\left(\mathrm{~N}^{2}\right)$

Big-Theta: Intuition

. ... but not ...

Function		Big-Theta		$\begin{gathered} \text { Big-0 } \\ \text { (but not big-theta) } \end{gathered}$
$\mathrm{N}^{3}+3 \mathrm{~N}^{4}$	$=$	$\Theta\left(N^{4}\right)$	$<$	$\mathrm{O}\left(\mathrm{N}^{5}\right)$
$(1 / N)+N^{3}$	$=$	$\Theta\left(N^{3}\right)$	$<$	$\mathrm{O}\left(\mathrm{N}^{423421531542}\right)$
$\mathrm{Ne}^{\mathrm{N}}+\mathrm{N}$	$=$	$\Theta\left(\mathrm{Ne}^{\mathrm{N}}\right)$		$\mathrm{O}\left(\mathrm{N}^{*} 3^{\mathrm{N}}\right)$
$40 \sin (N)+4 N^{2}$	$=$	$\Theta\left(\mathrm{N}^{2}\right)$	$<$	$\mathrm{O}\left(\mathrm{N}^{2.1}\right)$

Big-Theta: Mathematical Definition

$R(N) \in \Theta(f(N))$
means there exist positive constants k_{1} and k_{2} such that
$k_{1} \cdot f(N) \leq R(N) \leq k_{2} \cdot f(N)^{*}$ for all values of N greater than some N_{0}.

Demo:

$$
\begin{aligned}
& \therefore 40 \sin (N)+4 N^{2} \in \Theta\left(N^{2}\right) \\
& \text { since } k_{1}=3, k_{2}=5, N_{0} \approx 5
\end{aligned}
$$

https://www.desmos.com/calculator/wsej7ymhtc

Big-Theta Challenge

Find a simple $f(N)$ and corresponding k_{1} and k_{2}.

$$
R(N)=\frac{4 N^{2}+3 N \ln N}{2}
$$

Remember: $R(N) \in \Theta(f(N))$ means there exist positive constants k_{1} and k_{2} such that

$$
k_{1} \cdot f(N) \leq R(N) \leq k_{2} \cdot f(N)
$$

for all values of N greater than some N_{0}.

Big-Omega: Intuition

* Big-Omega is our "greater than or equals"

$$
R(N) \in \Omega(f(N))
$$

Function	Big-Omega	Also Big-Omega
$\mathrm{N}^{3}+3 \mathrm{~N}^{4}$	$\geq \Omega\left(\mathrm{N}^{4}\right)$	$>$

Big-Omega: Mathematical Definition

$R(N) \in \Omega(f(N))$
means there exists a positive constant k such that
$k \cdot f(N) \leq R(N)$
for all values of N greater than some N_{0}.

Big-O, Big-Theta, Big-Omega Relationship

* If a function f is in Big-Theta, what does it mean for its membership in Big-O and Big-Omega? Vice versa?

Function	Big-O	Big-Theta	Big-Omega
$N^{3}+3 N^{4}$	$O\left(N^{4}\right)$	$\Theta\left(N^{4}\right)$	$\Omega\left(N^{4}\right)$
$(1 / N)+N^{3}$		$\Theta\left(N^{3}\right)$	
$N^{N}+N$		$\Theta\left(N^{N}\right)$	
$40 \sin (N)+4 N^{2}$		$\Theta\left(N^{2}\right)$	

Algorithm Analysis: Our Destination

* "The worst-case runtime for dup1 is $\Theta\left(\mathrm{N}^{2}\right)^{\prime \prime}$
* "The best-case runtime for dup1 is $\Theta(1)$ "
* Unless otherwise specified, we typically mean Big-Theta of worst case

Lecture Outline

* Intro to Deques
* Asymptotic Analysis Formalisms: O, Θ, and Ω
* Case Analyses: Best, Worst, Overall
* Asymptotic Analysis Case Study: PrintParty

Case Analysis, Redux

* Asymptotic analysis describes the function's behavior as it approaches infinity, without regard to its input
* Case analysis looks at a specific input or class of inputs These analyois types are orthogonal!
* We've seen best case and worst case
* There is also the "all case" aka "overall case"
- This is the case corresponding to all possible inputs
- (there's also an amortized case, which we don't discuss in 373)

	O	Ω	Ω
best			
worst			
overall			

Overall Asymptotic Runtime Bound for dup1

\longrightarrow all inputs, incluchng best and werst

* Give overall asymptotic bounds for dup1's runtime
- Reminder: $\left(\mathrm{N}^{2}+3 \mathrm{~N}+2\right) / 2$

Case	Big-0	Big-Theta	Big-Omega
Best		$\Theta(1)$	
Worst		$\Theta\left(\mathrm{N}^{2}\right)$	
Overall		\varnothing	

* Demo: https://www.desmos.com/calculator/xjkrsyvxus
* Even though case analysis != asymptotic analysis, we can sometimes infer the overall case from asymptotic analyses

More Practice: Mystery

```
boolean mystery(int[] a, int target) {
    int N = a.length;
    for (int i = 0; i < N; i += 1)
        if (a[i]== target) < conditional
        return true;
    return false;
} early termination may Indicate bound does not
\begin{tabular}{|c|c|}
\hline Case & Big-Theta \\
\hline Best & \(\theta(1)\) \\
\hline Worst & \(\theta(N)\) \\
\hline Overall & \(\varnothing\) \\
\hline
\end{tabular}
```


More Practice: Selection Sort

```
void selectionSort(int[] a) {
    int N = a.length;
    for (int i = 0; i < N; i++) {
        int smallestSoFar = a[i];
        for (int j = i + 1; j < N; j++) {
            if (a[j] < a[smallestSoFar]) {
                smallestSoFar = j;
            }
        }
        int tmp = a[i];
        a[i] = a[smallestSoFar];
        a[smallestSoFar] = tmp;
    }
}
```


Lecture Outline

* Intro to Deques
* Asymptotic Analysis Formalisms: O, Θ, and Ω
* Case Analyses: Best, Worst, Overall
* Asymptotic Analysis Case Study: PrintParty

(II) Poll Everywhere

Find an $f(N)$ such that the runtime $R(N) \in \Theta(f(N))$.
A. 1
B. $\quad \log \mathrm{N}$
c. N
D. $\mathrm{N} \log \mathrm{N}$
E. $\quad N^{2}$
F. I'm not sure ...

```
void printParty(int N) {
    for (int i = 1; i <=N; i *= 2)
        for (int j = 0; j< i; j += 1) {
        System.out.println("hello");
        }
    }
}
```

Why don't we have multiple cases to consider?
No conditional exits. So let's find the overall bound

PrintParty, Geometrically


```
void printParty(int N) {
    for (int i = 1; i <= N; i *= 2) {
        for (int j = 0; j < i; j += 1) {
            System.out.println("hello");
        }
    }
}
```

j

N:	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
$\underset{C}{ }(\mathrm{~N}):$			Same		$\begin{aligned} & \text { ame } \\ & \text { as } \end{aligned}$				$\begin{aligned} & \text { same } \\ & \hline \end{aligned}$			e	tc			\triangle	$\begin{aligned} & \text { Same } \\ & \text { as } \end{aligned}$	1

PrintParty, Geometrically

$\mathbf{N}:$
$\mathbf{C}(\mathbf{N}):$ $\mathbf{1} \mathbf{1}$

PrintParty, Counting

PrintParty, Using Examples

N	$C(N)$	$1 / 2 N$	$2 N$
1	1	0.5	2
4	$1+2+4=7$	2	14
7	$1+2+4=7$	3.5	14
8	$1+2+4+8=15$	4	16
27	$1+2+4+8+16=31$	13.5	54
185	$\ldots+32+64+128=255$	92.5	370
715	$\ldots+256+512=1023$	357.5	1430

let $k_{1}=1 / 2$ and $k_{2}=2 \mathrm{~N}$ $\therefore c(N) \in \theta(N)$

tl;dr: Asymptotic Analysis for Iterative Problems

* Case Analysis != Asymptotic Analysis
* Memorize these summations since they're common:

$$
\begin{array}{ll}
1+2+3+4+\ldots+(N-1) & =N(N-1) / 2
\end{array} \in \Theta\left(N^{2}\right)
$$

* Strategies for finding an asymptotic bound:
- Use a geometric argument / visualizations
- Find an expression for the exact step count
- Write out examples

