
Case Analysis, Asymptotic Analysis, and Clarity

What is Case Analysis?

Ultimately, Case Analysis is an assessment of the scenarios that an algorithm (or a data structure)
will encounter. Another way to think of this is what kind of input might this algorithm have to deal
with, or how might a data structure’s “shape” impact the operation we want to perform?
For example, what if we’re searching for a specific value in a Binary Search Tree?

• Best Case: the scenario that we expect the algorithm to do really well in, or the shape that
we expect to result in our best performance for our data structure.

• Worst Case: the scenario that we expect the algorithm to do poorly in, or the shape that
we expect to result in the worst performance for our data structure.

• Overall Case: no matter what scenario we encounter, how should we expect the algorithm to
do? Or, no matter what shape our data structure has, how long should we expect an operation
to take?

– Note that, no matter what, we know that whatever we’re trying to do won’t have any
worse performance than worst we can expect in our Worst Case and it won’t be any
better than the best we can expect from our Best Case.

We can assess algorithms on their own, or data structures on their own, or we can talk about them
in conjunction with each other. For our find operation on our BST, for example:

• Algorithm Cases:

– Best Case: value is in root

– Worst Case: value isn’t in the tree

• Data Structure Cases:

– Best Case: Tree is “bushy” and has the smallest height it could have

– Worst Case: Tree is a linked list and has the greatest height it could have

What is Asymptotic Analysis then?

Asymptotic Analysis is a way to determine the order of growth for this particular algorithm for a
particular case. How do we categorize this algorithm’s efficiency in relation to the size of the input?

• Big-O: in this case what’s the worst growth this algorithm could have?

• Big-Omega: in this case what’s the best growth this algorithm could have?

• Big-Theta: in this case can I always expect the order of growth to be about the same? In
other words, in order for Big-Theta to exist for a given case, we expect the order of growth to
be the same across all inputs.

1



This idea is probably most easily shown in a table, so let’s look again at the example of searching
for a value in a BST:

Algorithm Case Data Structure Case Big-O Big-Omega Big-Theta

Best: value in root Best: “bushy” tree O(1) Ω(1) Θ(1)

Best: value in root Worst: “list” tree O(1) Ω(1) Θ(1)

Worst: value not in tree Best: “bushy” tree O(log(N)) Ω(log(N)) Θ(log(N))

Worst: value not in tree Worst: “list” tree O(N) Ω(N) Θ(N)

So what about Overall? Remember that Overall is a combination of the Best and Worst cases–in
fact, it will have the same Big-O as the Best Case, and the same Big-Omega as the Worst Case:

Algorithm Overall Data Structure Overall Combined Overall

Big-O O(N) O(N) O(N)

Big-Omega Ω(1) Ω(1) Ω(1)

Big-Theta DNE DNE DNE

Visual Examples from Hannah’s Slides (Explained)

Let’s assume these functions show different algorithms’ behavior in the Worst Case (which is our
default assumption if no case is specified):

This function pretty clearly
has a Big-Theta, since
there’s just a single line:
Θ(N2)

Big-O is represented by the
darker line above the
function, and Big-Omega is
represented by the green
line below the function.
Since both lines grow at
the same rate, this function
has a Big-Theta: Θ(N)

This function has the same
situation as the one just
above. The Big-O and
Big-Omega lines have the
same growth rate, so
Big-Theta exists for this
function: Θ(1)

2



This function is different!
Notice that the Big-O line
increases linearly but the
Big-Omega line stays
constant, so this function
would be O(N) and Ω(1) in
this case, and it doesnt
have a Big-Theta.

In other words, theres no single function that we can use to describe the bounds of this function.

Hopefully this definition from lecture makes a little more sense now:

Still not sure about the formal definition for Big-Theta?

Suppose we use the last example from above–the one in which Big-Theta doesn’t exist. If you follow
the link below, it will take you to a demo with this same function, as well as the functions for Ω(1)
and O(N). There are some sliders for the k values (the constant multipliers)for you to experiment
with. Hopefully this helps give you an intuitive understanding of why Big-Theta doesn’t exist for
this function!

Slider Demo: Visual Example

The Formal Definitions (And Another Example)

The example (below) on the right looks at the function 4n2 and explores possible functions for Big-O
and Big-Omega. If the proposed function meets the requirements for the definition of Big-Omega
(in the right column) or Big-O (in the left column) then true can be seen underneath. Note that
the gold box is drawn around the case where the proposed function meets the requirements for
both Big-O and Big-Omega, which means that it also meets the requirements for Big-Theta.

3

https://www.desmos.com/calculator/0wtc06hl3k


Visual for Comparing Orders of Growth

https://www.bigocheatsheet.com/

(Consider visiting the site where we got this image–it has lots of visuals and neat stuff!)

4

https://www.bigocheatsheet.com/

