
Section 07: MSTs, Disjoint Sets, and Graph Modeling

Section Problems

1. Simulating Dijkstra’s

(a) Consider the following graph:

Run Dijkstra’s algorithm on this graph starting from vertex s. Use the table below to keep track of each step
in the algorithm. Also draw the resulting SPT (shortest path tree) after the algorithm has terminated.
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(b) Here is another graph. What are the final costs and resulting SPT (shortest path tree) if we run Dijkstra’s
starting on node A?
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2. MSTs: Unique Minimum Spanning Trees

Consider the following graph:
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(a) What happens if we run Prim’s algorithm starting on node A? What are the final costs and edges selected?
Give the set of edges in the resulting MST.

(b) What happens if we run Prim’s algorithm starting on node E? What are the final cost and edges selected?
Give the set of edges in the resulting MST.

(c) What happens if we run Prim’s algorithm starting on any node? What are the final costs and edges selected?
Give the set of edges in the resulting MST.

(d) What happens if we run Kruskal’s algorithm? Give the set of edges in the resulting MST.

(e) Suppose we modify the graph above and add a heavier parallel edge between A and E, which would result in
the graph shown below. Would your answers for above subparts (a, b, c, and d) be the same for this following
graph as well?

2



A

B

C D

E FG

2

7

11

4
3

1

5 68

9 0

10

3. MSTs: Unique Minimum Spanning Trees

Answer each of these true/false questions about minimum spanning trees.

(a) A MST contains a cycle.

(b) If we remove an edge from a MST, the resulting subgraph is still a MST.

(c) If we add an edge to a MST, the resulting subgraph is still a MST.

(d) If there are V vertices in a given graph, a MST of that graph contains |V | − 1 edges.

4. MSTs: Kruskal’s Algorithm

Answer these questions about Kruskal’s algorithm.

(a) Execute Kruskal’s algorithm on the following graph. Fill the table.
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(b) In this graph there are 6 vertices and 11 edges, and the for loop in the code for Kruskal’s runs 11 times, a few
more times after the MST is found. How would you optimize the pseudocode so the for loop terminates early,
as soon as a valid MST is found.

5. Disjoint Sets

(a) Consider the following trees, which are a part of a disjoint set:
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For these problems, use both the union-by-size and path compression optimizations.

(i) Draw the resulting tree(s) after calling findSet(5) on the above. What value does the method return?

(ii) Draw the final result of calling union(2,6) on the result of part (i).

(b) Consider the disjoint-set shown below:
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What would be the result of the following calls on union if we add the union-by-size and path compression
optimizations? Draw the forest at each stage.

(i) union(2, 13)

(ii) union(4, 12)

(iii) union(2, 8)

6. Design Problem: DJ Kistra

You’ve just landed your first big disk jockeying job as “DJ Kistra.”

During your show you’re playing “Shake It Off,” and decide you want to slow things down with “Wildest Dreams.”
But you know that if you play two songs whose tempos differ by more than 10 beats per minute or if you play only
a portion of a song, that the crowd will be very disappointed. Instead you’ll need to find a list of songs to play to
gradually get you to “Wildest Dreams.” Your goal is to transition to “Wildest Dreams” with a playlist of progressively
slower songs as quickly as possible (in terms of seconds).
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You have a list of all the songs you can play, their speeds in beats per minute, and the length of the songs in
seconds.

(a) Describe a graph you could construct to help you solve the problem. At the very least you’ll want to men-
tion what the vertices and edges are, and whether the edges are weighted or unweighted and directed or
undirected.

(b) Describe an algorithm to construct your graph from the previous part. You may assume your songs are stored
in whatever data structure makes this part easiest. Assume you have access to a method makeEdge(v1, v2,

w) which creates an edge from v1 to v2 of weight w.

(c) Describe an algorithm you could run on the graph you just constructed to find the list of songs you can play
to get to “Wildest Dreams” the fastest without disappointing the crowd.

(d) What is the running time of your plan to find the list of songs? You should include the time it would take to
construct your graph and to find the list of songs. Give a simplified big-O running time in terms of whatever
variables you need.

7. Graph Modeling 1: Snowed In

After 4 snow days last year, UW has decided to improve its snow response plan. Instead of doing “late start” days,
they want an “extended passing period” plan. The goal is to clear enough sidewalks that everyone can get from
every classroom to every other eventually but not necessarily very quickly.

Unfortunately, UW has access to only one snowplow. Your goal is to determine which sidewalks to plow and
whether it can be done in time for Kasey’s 8:30 AM lecture.

You have a map of campus, with each sidewalk labeled with the time it will take to plow to clear it.

(a) Describe a graph that would help you solve this problem. You will probably want to mention at least what
the vertices and edges are, whether the edges are weighted or unweighted, and directed or undirected.

(b) What algorithm would you run on the graph to figure out which sidewalks to plow? Explain why the output
of your algorithm will be able to produce a “extended passing period” plowing plan.

(c) How can you tell whether the plow can actually clear all the sidewalks in time?

8. Graph Modeling 2: Snowden

Consider the following problems, which we can both model and solve as graph problems.

For each problem, describe (i) what your vertices and edges are and (ii) a short (2-3 sentence) description of how
to solve the problem.

We will also include more detailed pseudocode in the solutions.

Your description does not need to explain how to implement any of the algorithms we discussed in lecture. However,
if you modify any of the algorithms we discussed, you must discuss what that modification is.

(a) Suppose you have a bunch of computers networked together (haphazardly) using wires. You want to send a
message to every other computer as fast as possible. Unfortunately, some wires are being monitored by some
shadowy organization that wants to intercept your messages.

After doing some reconnaissance, you were able to assign each wire a “risk factor” indicating the likelihood
that the wire is being monitored. For example, if a wire has a risk factor of zero, it is extremely unlikely to be
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monitored; if a wire has a risk factor of 10, it is more likely to be monitored. The smallest possible risk factor
is 0; there is no largest possible risk factor.

Implement an algorithm that selects wires to send your message such that (a) every computer receives the
message and (b) you minimize the total risk factor. The total risk factor is defined as the sum of the risks of
all of the wires you use.

(b) Explain how you would implement an algorithm that finds any computers where sending a message (from a
given start computer) would force you to transmit a message over a wire with a risk factor of k or higher.
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