Section 05: Heaps

Section Problems

1. Ternary Heaps

Consider the following sequence of numbers:
5,20,10,6,7,3,1,2
(a) Insert these numbers into a min-heap where each node has up to three children, instead of two.
(So, instead of inserting into a binary heap, we’re inserting into a ternary heap.)

Draw out the tree representation of your completed ternary heap.

(b) Draw out the array representation of the above tree. In your array representation, you should start at index 0
(not index 1).

(c) Given a node at index i, write a formula to find the index of the parent.

(d) Given a node at index ¢, write a formula to find the j-th child. Assume that 0 < j < 3.

2. Heaps — More Basics

(a) Insert the following sequence of numbers into a min heap:

[10, 7,15, 17, 12, 20, 6, 32]

(b) Now, insert the same values into a max heap.
(c) Now, insert the same values into a min heap, but use Floyd’s buildHeap algorithm.
(d) Insert 1, 0, 1, 1, O into a min heap.

(e) Call removeMin on the min heap stored as the following array: [2,5,7,8,10,9]

3. Sorting and Reversing (with Heaps)

(a) Suppose you have an array representation of a heap. Must the array be sorted?



(b) Suppose you have a sorted array (in increasing order). Must it be the array representation of a valid min-
heap?

(c) You have an array representation of a min-heap. If you reverse the array, does it become an array represen-
tation of a max-heap?

(d) Describe the most efficient algorithm you can think of to convert the array representation of a min-heap into
a max-heap. What is its running time?

4. Project Prep: Contains

You just finished implementing your heap of ints when your boss tells you to add a new method called contains.
Your solution should not, in general, examine every element in the heap(do it recursively!)

public class DankHeap {
// NOTE: Data starts at index 0!
private int[] heapArray;
private int heapSize;

// Other heap methods here....

/**
* examine whether element k exists in the heap
* @param int k, the element to find.
* @return true if found, false otherwise
*/
public boolean contains(int k) {
// TODO!
3
3

(a) How efficient do you think you can make this method?

(b) Write code for contains. Remember that heapArray starts at index 0!

5. Challenge: Debugging Heaps of Problems

For this problem, we will consider a hypothetical hash table that uses linear probing and implements the IDictionary
interface. Specifically, we will focus on analyzing and testing one potential implementation of the remove method.

(a) Come up with at least 4 different test cases to test this remove(...) method. For each test case, describe what
the expected outcome is (assuming the method is implemented correctly).

Try and construct test cases that check if the remove(. ..) method is correctly using the key’s hash code. (You
may assume that you can construct custom key objects that let you customize the behavior of the equals(...)
and hashCode () method.)



(b) Now, consider the following (buggy) implementation of the remove(...) method. List all the bugs you can
find.

public class LinearProbingDictionary<K, V> implements IDictionary<K, V> {
// Field invariants:
//
// 1. Empty, unused slots are null
// 2. Slots that are actually being used contain an instance of a Pair object

private Pair<K, V>[] array;
// ...snip...

public V remove(K key) {
int index = key.hashCode();

while ((this.array[index] != null) && !this.array[index].key.equals(key)) {
index = (index + 1) % this.array.length;

b

if (this.array[index] == null) {
throw new NoSuchKeyException();
3
V returnValue = this.array[index].value;
this.array[index] = null;
return returnValue;

(c) Briefly describe how you would fix these bug(s).



	1 Ternary Heaps
	2 Heaps – More Basics
	3 Sorting and Reversing (with Heaps)
	4 Project Prep: Contains
	5 Challenge: Debugging Heaps of Problems

