
Section 02: Solutions

Section Problems

1. Comparing growth rates

(a) Simplify each of the following functions to a tight big-O bound in terms of n. Then order them from fastest
to slowest in terms of asymptotic growth. (By “fastest”, we mean which function increases the most rapidly
as n increases.)

• log4(n) + log2(n)
•

n

2
+ 4

• 2n + 3
• 750, 000, 000
• 8n+ 4n2

Solution:

(i) 2n + 3 = O(2n)
(ii) 8n+ 4n2 = O(n2)

(iii)
n

2
+ 4 = O(n)

(iv) log4(n) + log2(n) = O(log(n))
(v) 750, 000, 000 = O(1)

(b) Order each of thesemore esoteric functions from fastest to slowest in terms of asymptotic growth. (By “fastest”,
we mean which function increases the most rapidly as n increases.) Also state a simplified tight O bound for
each.

• 2n/2

• 3n

• 2n

Solution:

• 3n, which is in O (3n)
• 2n, which is in O (2n)

• 2n/2, which is in O
(√

2
n
) (

or O
(
2n/2

))
.

Constant multipliers don’t matter in big-O nota-
tion, but a constant factor in the exponent does
matter, since it corresponds to multiplying by
some constant to the nth power. Saying 2n/2 is
in O (2n) would be true, but it would not be a
tight bound.

2. True or false?

(a) In the worst case, finding an element in a sorted array using binary search is O (n).

(b) In the worst case, finding an element in a sorted array using binary search is Ω(n).

(c) If a function is in Ω(n), then it could also be in O
(
n2

)
.

(d) If a function is in Θ(n), then it could also be in O
(
n2

)
.

(e) If a function is in Ω(n), then it is always in O (n).

1



Solution:

(a) True

(b) False

(c) True

(d) True

(e) False

As a reminder, we can think aboutO informally as an upper bound. If a function f(n) is inO (g(n)), then g(n) is
a function that dominates f(n), and this domination can be really overshooting the mark. Every (correct) piece

of code we write in this class will have a running time that is O
(
n!n!

n!
)
. Conversely, we can think about Ω

informally as a lower bound. If a function f(n) is in Ω(g(n)), then f(n) is a function that dominates g(n), and
this domination can be really overshooting the mark also. The running time of any piece of code is always in
Ω(1). And finally, Θ is a much stricter definition. f(n) is in Θ(g(n)) (if and only if) f(n) is in O (g(n)) and in
Ω(g(n)). Usually when people say O, they mean Θ.

For questions a and b: note that binary search takes log(n) time to complete. log(n) is upper-bounded by n, so
log(n) ∈ O (n). However, log(n) is not lower-bounded by n, which means log(n) ∈ Ω(n) is false.

3. Modeling code

For each of the following code blocks, give a summation that represents the worst-case runtime in terms of n.

(a)

int x = 0;

for (int i = 0; i < n; i++) {

for (int j = 0; j < i; j++) {

x++;

}

}

Solution:

One possible solution is

T (n) = 1 +

n−1∑
i=0

i−1∑
k=0

1

(b)

int x = 0;

for (int i = n; i >= 1; i /= 2) {

x += i;

}

Solution:

One possible solution is

T (n) = 1 +

log(n)∑
i=1

1

4. Finding bounds

For each of the following code blocks, construct a mathematical function modeling the worst-case runtime of the
code in terms of n. Then, give a tight big-O bound of your model.

2



(a) int x = 0;

for (int i = 0; i < n; i++) {

for (int j = 0; j < n * n / 3; j++) {

x += j;

}

}

Solution:

One possible answer is T (n) = n3

3 . The inner loop performs approximately n2

3 iterations; the outer loop
repeats that n times, and each inner iteration does a constant amount of work.

So the tight worst-case runtime is O
(
n3

)
.

The exact constant you get doesn’t matter here, since we’ll ignore the constant when we put it into O
notation anyway. For example, saying we do 3 operations per inner-loop iteration (checking the loop
condition, updating j, and updating x) and getting n3 instead of n3/3 is also completely reasonable.

(b) int x = 0;

for (int i = n; i >= 0; i -= 1) {

if (i % 3 == 0) {

break;

} else {

x += n;

}

}

Solution:

The tightest possible big-O bound is O (1) because exactly one of n, n − 1, or n − 2 will be divisible by
three for all possible values of n. So, the loop runs at most 3 times.

3



(c) int x = 0;

for (int i = 0; i < n; i++) {

if (i % 5 == 0) {

for (int j = 0; j < n; j++) {

if (i == j) {

x += i * j;

}

}

}

}

Solution:

While the inner-most if statement executes only once per loop, we must check if i == j is true once per
each iteration. This will take some non-zero constant amount of time, so the inner-most loop will perform
approximately n work (setting the constant factors equal to 1, is conventional, since constant factors can
depend on things like system architecture, what else the computer is doing, the temperature of the room,
etc.).

The outer-most loop and if statement will perform n work during only 1/5th of the iterations and will
perform a constant amount of work the remaining 4/5ths of the time. So, the total amount work done

is approximately
n

5
· n +

4n

5
· 1. If we simplify, this means we can ultimately model the runtime as

approximately T (n) =
n2

5
+

4n

5
.

Therefore, the tightest worst-case asymptotic runtime will be O
(
n2

)
.

(d) int x = 0;

for (int i = 0; i < n; i++) {

if (n < 100000) {

for (int j = 0; j < n; j++) {

x += 1;

}

} else {

x += 1;

}

}

Solution:

Recall that when computing the asymptotic complexity, we only care about the behavior for large inputs.
Once n is large enough, we will only execute the second branch of the if statement, which means the
runtime of the code can be modeled as just T (n) = n. So, the tightest worst-case runtime is O (n).

4



(e) int x = 0;

if (n % 2 == 0) {

for (int i = 0; i < n * n * n * n; i++) {

x++;

}

} else {

for (int i = 0; i < n * n * n; i++) {

x++;

}

}

Solution:

We can model the runtime of this function in the general case as:

Tg(n) =

{
n4 when n is even
n3 when n is odd

Note that when we talk about worst-case analysis, the “cases” are different ways the code could run even
after we know the value of n. For this piece of code, once we know n, there is only one way for the code
to execute. So worst-case and best-case are identical for this function, it’s exactly Tg(n).

Something interesting to note is that the model has differing tight big-O and tight big-Ω bounds and so
therefore has no big-Θ bound.

That is, the best big-O bound we can give for Tg(n) is Tg(n) ∈ O
(
n4

)
; the best big-Ω bound we can give

is Tg(n) ∈ Ω
(
n3

)
. These two bounds (n4 and n3) are different so there is no big-Θ for Tg.

5. Case Analysis

For each of the following methods:
i) What are the possible code models (runtime functions) in terms of n, the size of the data structure?
ii) What’s the best case / worst case code model? Or are they the same and there’s only one case? Talk about
what specific inputs / state of the data structure are required to trigger the best / worst case code model you’re
discussing.

5



(a) ArrayList
data; // a field for the array that stores all the values
size; // a field to keep track of the number of valid values

insert(index, value) // inserts the given value at the given index

public void insert (index, value) {

for (int i = size; i > index; i–) {

data[i] = data[i - 1];

}

data[index] = value;

size++;

}

size() // returns the number of valid elements in the list

public int size () {

return size;

}

Solution:

ArrayList
insert(index, value)
Best: constant runtime if inserting at the end / no shifting required
Worst: linear runtime if inserting at the beginning and that loop needs to shift over every element
size()
Always: constant runtime

(b) LinkedDictionary
ListNode front; // just imagine that this is just like ListNode
// with a .next field, but also has a .key and
// .value field

get(key) // returns the value associated with the given key

public V get (key) {

ListNode current = front;

while (current != null) {

if (current.key == key) {

return current.value;

} else {

current = current.next;

}

}

return null;

}

Solution:

get(key)
Best: constant runtime if key we’re looking for is at the beginning (no looping to get to it)
Worst: linear runtime if we have to search the whole list for the key and it’s not there / at the end

6



(c) BubbleSort(array)

public void bubbleSort(int arr[]) {

boolean swapped;

for (int i = 0; i < arr.length; i++) {

swapped = false;

for (int j = 0; j < arr.length - 1; j++) {

if (arr[j] > arr[j + 1]) {

// swap arr[j] and arr[j+1]

int temp = arr[j];

arr[j] = arr[j + 1];

arr[j + 1] = temp;

swapped = true;

}

}

// IF no two elements were

// swapped by inner loop, then finish method

if (swapped == false) {

return;

}

}

}

Solution:

Best: linear runtime (already sorted) the outer loop only has to run one time and the inner loop just does
linear runtime
Worst: quadratic runtime (for every value actually go over every value in the list and don’t end early)

6. Applying definitions

For each of the following, choose a c and n0 which show f(n) ∈ O(g(n)). Explain why your values of c and n0

work.

Solution:

These solutions are divided into “scratch work” which is algebra you have to do before you start writing the
proof and the “proof” itself. The scratch work technically doesn’t belong in a final answer, but the proofs are
difficult to understand without them.

For these, the proof will just be the scratch work algebra, possibly done in a different order, with some connecting
words.

7



(a) f(n) = 3n+ 4, g(n) = 5n2

Solution:

scratch work: Our goal is to bound f by a function with n2 terms so comparing to g is easier.

3n ≤ 3n2 =
3

5
· 5n2 if n ≥ 1

4 ≤ 4n2 =
4

5
· 5n2 if n ≥ 1

We add together the inequalities to get:

f(n) = 3n+ 4 ≤
(
3

5
+

4

5

)
5n2 =

7

5
g(n)

proof: One possible solution is c =
7

5
and n0 = 1.

We note that 3n ≤ 3n2 and 4 ≤ 4n2 as long as n ≥ n0. Adding these two inequalities, we have f(n) =
3n+ 4 ≤ 7n2 = 7

5g(n) is true for all n ≥ 1.

Therefore, we know that 3n+ 4 ≤ c · 5n2 is true for our chosen values of c and for all n ≥ n0.

(b) f(n) = 33n3 +
√
n− 6, g(n) = 17n4

Solution:

scratch work: Since g’s dominating term is n4, we will try to bound f by a function with only n4 terms.
Going term by term of f :

33n3 ≤ 33n4 as long as muliplying by n increases the function (i.e. as long as n ≥ 1).√
n ≤ n4 as long as n ≥ 1.

−6 ≤ 0n4 (always).

Combining these we want to get: 33n3 +
√
n− 6 ≤ 33n4 + n4 ≤ 34n4 ≤ c · 17n4 c being 2 is enough.

proof: One possible solution is c = 2 and n0 = 1.

We note that 33n3 ≤ 33n4,
√
n ≤ n4, and −6 leq0n4 all hold for n ≥ n0 = 1.

Next, note that 34n4 ≤ c · 17n4 is true for all values of n and when c = 2.

Therefore, we know that 33n3 +
√
n− 6 ≤ c · 17n4 is true for our chosen value of c and for all n ≥ n0.

8



(c) f(n) = 17 log(n), g(n) = 32n+ 2n log(n)

Solution:

scratch work: There are a lot of ways to do this one. Normally we would compare to the highest order
term in g, but because the constant is larger on the n term, it will be easier to compare to that.

17 log(n) ≤ 17n as long as log(n) < n. log(n) < n whenever n > 2. Then we can compare immediately to
g: 17 log(n) ≤ 17n ≤ 32n ≤ 32n+ 2n log(n) ≤ c(32n+ 2n log(n)) where it’s good enough to set c to 1

proof: One possible solution is c = 1 and n0 = 2.

We can convince ourselves this is true by examining our inequalities: 17 log(n) ≤ 17n ≤ 1 ·32n for n ≥ n0.
Since 2n log(n) is always positve, we have So, since 17 log(n) ≤ c · (32 + 2n log(n)) is true for our chosen
values of c and n0, we know that f(n) ∈ O (2n log(n)).

7. Using our definitions

Most of the time in the real world, we don’t write formal big-O proofs. The point of having these definitions is
not to use them every single time we think about big-O. Instead, we use the formal definitions when a question is
particularly tricky, or we want to make a very general statement.

Here are some particularly tricky or general statements that are easier to justify with the formal definitions than
with just your intuition.

(a) We almost never say a function is O (5n), we always say it is O (n) instead. Show that this transformation is
ok, i.e. that if f(n) is O (5n) then it is O (n) as well.

Solution:

Let f(n) be the running time of the function. Since f(n) is O (5n), there exist positive constants c, n0 such
that f(n) ≤ c · 5n for all n ≥ n0. We need to find positive constants c′, n′

0 such that f(n) ≤ c′ · n for all
n ≥ n′

0. If we look at the inequality we have, it seems like a good idea to take c′ = 5c and n′
0 = n0. Then

plugging in we have: f(n) ≤ c · 5n = c′ · n for all n ≥ n0 = n′
0, which is what we needed to show f(n) is

O (n).

9



(b) When we decide on the big-O running time of a function, we like to say that whatever happens on small
n doesn’t matter. Let’s see why with an actual proof. You write two functions to solve the same problem:
method1 and method2. method1 takes O

(
n2

)
time and method2 takes O (n) time. What is the big-O running

time of the following function:

public void combined(n){

if(n < 10000)

method1(n);

else

method2(n);

}

Solution:

Let’s denote the number of operations needed to run method2 by g(n). What does it mean that method2
runs in O (n) time? It means that there exist numbers c, n0 such that for all n ≥ n0, g(n) ≤ cn. Let’s try to
argue about combined. When n ≥ 10000 how many operations does it do? Something like 2 + g(n). But
we already know that g(n) ≤ cn whenever n ≥ n0. Now let’s try to find a c′, n′

0 for combined.

If n < 10000 we won’t be using method2, so we want to take n ≥ 10, 000. We also want to take n ≥ n0, so
that we will be able to bound g(n). So set n′

0 = max{10000, n0}.

For n ≥ n′
0, the number of operations is 2 + g(n). We have 2 + g(n) ≤ 2g(n) ≤ 2cn for all n ≥ n′

0. So if
we take c′ = 2c, we have exactly the definition of O (n), so the running time of combined is O (n).

10



(c) Consider this code for telling whether an integer n is prime:

public boolean isPrime(int n){

for(int i = 2; i < n; i++){

if(n % i == 0)

return false;

}

return true;

}

The running time of isPrime is O (n), but is it also Ω(n)? Hint: these definitions will be useful: f(n) is
Ω(g(n)) if there exist positive c, n0 such that for all n ≥ n0, f(n) ≥ c · g(n) for all n ≥ n0.

f(n) is not Ω(g(n)) if for all positive c, n0 there exists and n ≥ n0 such that f(n) < c · g(n).

Solution:

Our intution for big-Ω is that it is a lower bound on the running time of the function. isPrime is a strange
function though, on every even input, it does only about 4 operations (it only goes through the loop once),
but on every prime number, it goes through the loop n times. So is the lower bound Ω(1) or Ω(n)?

Let’s see if the running time of isPrime is Ω(1). Regardless of input, the function always goes through the
loop at least once, which is 4 operations. So we set n0 = 1 and c = 4. For every n ≥ n0, the number of
operations is at least 4 · 1, which means the function is Ω(1).

What about Ω(n)? If we try to do the proof, we’re going to get stuck. We want to say for every n ≥ n0

we’ll take at least cn operations, but no matter what n0 is, if we take an even number just a bit larger, we’ll
only do 4 steps and be done. Let’s try the other definition (that it’s not Ω(n)).

The definition of “not big-Ω” says we need to show something for every c, n0. So let’s think about some
arbitrary c, n0. We need to show there exists an n ≥ n0 such that f(n) < c ·g(n), where f(n) is the number
of operations.

Well, we already know that on every even input, we’ll always do only 4 operations, which is another way
of saying that f(n) = 4 when n is even. Can we always choose a big enough even number? Yes! Pick one
bigger than n0 and bigger than 4/c. For that n we have c · n > c · 4/c = 4 = f(n), so c · n > f(n), which is
what we needed to find.

8. Memory analysis

For each of the following functions, construct a mathematical function modeling the amount of memory used by
the algorithm in terms of n. Then, give a Θ bound of your model.

11



(a) List<Integer> list = new LinkedList<Integer>();

for (int i = 0; i < n * n; i++) {

list.insert(i);

}

Iterator<Integer> it = list.iterator();

while (it.hasNext()) {

System.out.println(it.next());

}

Solution:

We insert n2 items into our linked list. Each inserted item will create a new node, which uses up a constant
amount of memory. The iterator itself will only view the underlying data, without making a copy.

So, the overall memory usage can be modeled as:

M(n) =

n2−1∑
i=0

c

...where c is the amount of memory used per each node.

This is in Θ
(
n2

)
.

(b) int[] arr = {0, 0, 0};

for (int i = 0; i < n; i++) {

arr[0]++;

}

Solution:

While we iterate n times, this algorithm only uses up a constant amount of memory. So, the overall
memory usage can be modeled as roughly M(n) = 3c, where c is the amount of memory used by each int
in the array.

This is in Θ(1).

12



(c) ArrayDictionary<Integer, String> dict = new ArrayDictionary<>();

for (int i = 0; i < n; i++) {

String curr = ””;

for (int j = 0; j < i; j++) {

for (int k = 0; k < j; k++) {

curr += ”?”;

}

}

dict.put(i, curr);

}

Note: for simplicity, assume the dictionary has an internal capacity of exactly n.

Solution:

This problem is best solved intuitively first, then rigorously after we know what to look for.

We know that the loops run (from outer-most to inner-most) from i = 0, n, j = 0, i, and k = 0, j. If we
consider just i and j, we can imagine a sort of “triangle” of values, where i always iterates to n overall
but j iterates to 0, then 1, then 2, on and on until j iterates to n. This approximates to M(n) = 1

2n
2, but

because we don’t care about constants so much, this really approximates Θ
(
n2

)
. The same logic follows

if we include k, such that overall, this section of code approximates Θ
(
n3

)
. Now that we know what to

expect, the rigorous derivation comes next.

Note that the two nested loops ultimately construct a string of length
i−1∑
j=0

j−1∑
k=0

c, where c is the amount of

memory used per character.

The code will then insert each string along with the int into the internal array. If we let x represent the
amount of memory used per int, we can model the overall memory usage as:

M(n) =

n−1∑
i=0

x+

i−1∑
j=0

j−1∑
k=0

c


If we apply summation rules, we can simplify this into:

∑
i = 0n−1

x+

i−1∑
j=0

j−1∑
k=0

c

 =

n−1∑
i=0

x+ c

i−1∑
j=0

j


=

n−1∑
i=0

(
x+ c

i(i− 1)

2

)
= xn+ c

1

6
(n− 2)(n− 1)n

This is in Θ
(
n3

)
.

Food for thought

9. LRU Caching

When writing programs, it turns out to be the case that opening and loading data in files can be a very slow
process. If we plan on reading information from those files very frequently (for example, if we want to implement
a database), what we might want to do is cache the data we loaded from the files – that is, keep that information

13



in-memory.

That way, if the user requests information already present in our cache, we can return it directly without needing
to open and read the file again.

However, computers have a much smaller amount of RAM then they have hard drive space. This means that our
cache can realistically contain only a certain amount of data. Often, once we run out of space in our cache, we get
rid of the items we used the least recent. We call these caches Least-Recently-Used (LRU) caches.

Discuss how you might apply or adapt the ADTs and data structures you know so far to develop an LRU cache.
Your data type should store the most recently used data, and handle the logic of whether it can find the data in the
cache, or if it needs to read it from the disk. Assume you have a helper function that handles fetching the data from
disk.

Your cache should implement our IDictionary interface and optimize its operations with the LRU caching strategy.
After you’ve decided on a solution, describe the tradeoffs of your structure, possibly including a worst-case and
average-case analysis.

Solution:

We can use two ADTs: a dictionary, which stores each request and the corresponding file data, and a list, which
keeps track of the last n requests made.

Here, we will probably want to use a hashmap (which hasΘ(1) lookup) rather then our ArrayDictionarywhich
has Θ(n) lookup.

Every time somebody makes a request, we search to see if it’s located inside the list. If it is, we remove it and
re-add that request to the very front. If the request is new, we just add it directly to the front.

This will cause the least-frequently made requests to naturally end up near the end of the list. If the list increases
beyond a certain length (beyond our cache size), we’ll remove them from both list and our dictionary.

This makes any lookup in the worst case Θ(n), where n is the size of our cache. However, the most frequently
made requests will be located near the front of the list, which makes their lookup time roughly constant.

14


	1 Comparing growth rates
	2 True or false?
	3 Modeling code
	4 Finding bounds
	5 Case Analysis
	6 Applying definitions
	7 Using our definitions
	8 Memory analysis
	9 LRU Caching

