
CSE 373 Summer 2020LEC 09: BSTs, AVL Trees

CSE 373

Timothy Akintilo
Brian Chan
Joyce Elauria
Eric Fan
Farrell Fileas

Melissa Hovik
Leona Kazi
Keanu Vestil

Howard Xiao

Aaron JohnstonInstructor

TAs

Siddharth Vaidyanathan

L E C 0 9

BSTs, AVL Trees

BEFORE WE START

pollev.com/uwcse373

1. What’s the load factor?

2. Which of the following is a good choice of
threshold for the load factor before we resize?

n log n 1

CSE 373 Summer 2020LEC 09: BSTs, AVL Trees

Announcements
• Current Assignments: P2 (Due in 1.5 weeks), EX2 (Due Friday)

- Tonight is the late cutoff for P1, Wednesday is the late cutoff for EX1
- P2: Iterator Overview video now available!

• Lectures are now also available via Panopto
- Panoptos will be linked under each lecture on website within a few hours
- Still available via Zoom tab on Canvas – use whichever one you prefer

• Anonymous feedback: sound quality (lecture, review videos)! Thanks
for letting us know J

- For section videos: find higher-quality audio in video description

• Course Feedback survey sent tonight
- Now that you’ve seen lectures, sections, projects, and exercises – please let

us know what’s working for you and what could be improved!

CSE 373 Summer 2020LEC 09: BSTs, AVL Trees

Exam I Logistics
• You’ll have 48 hours (no time limit once you start

or anything. Just submit by the deadline!)
• Released 7/24 12:01 AM PDT
• Due 7/25 11:59 PM PDT

- No late submissions!

• Open notes and open friends: you’ll be able to
work on and submit in groups
• Covers content up through this Friday’s lecture

(Memory & Caching, B-Trees)
• Will focus on conceptual questions. Be prepared

to explain why things are true and defend your
reasoning

LEC 01 - 11

SEC 01 - 05 P 0 - 2

EX 1 - 2

EXAM I

• Topics list released tonight so you
can start looking things over, more
thorough review materials will be
published later

• Great place to start: Learning
Objectives at the beginning of
every lecture!

STUDYING

CSE 373 Summer 2020LEC 09: BSTs, AVL Trees

Learning Objectives

1. Describe the properties of a good hash function and the role of a
hash function in making a Hash Map efficient

2. Evaluate invariants based on their strength and maintainability, and
come up with the invariants for data structure implementations

3. Compare and contrast the properties and runtimes of BTs, BSTs, and
AVL Trees

4. Describe the AVL invariant, explain how it affects AVL Tree runtimes,
and compare it with the BST invariant

After this lecture, you should be able to...

CSE 373 Summer 2020LEC 09: BSTs, AVL Trees

Lecture Outline
• Hash Map (Wrap-Up)

- Hashing & Applications

• Binary Trees & Binary Search Trees (BSTs)

• Case Analysis on BSTs

• Choosing a Good Invariant (AVL Trees)

CSE 373 Summer 2020LEC 09: BSTs, AVL Trees

(7,blue) (77,aqua)

(4,orange)

Review Separate Chaining
• If two values want to live in the same index,

let’s just let them be roommates!
• Each index is a “bucket”

- Linked Nodes are a common implementation
for these bucket “chains”

• When item x hashes to index h:
- If bucket at h is empty, create new list with x
- Else, add x to the list

• But if multiple keys can hash to the same
index, need to store the key too!

0

1

2

3

4

5

6

7

8

9

(1,red) (21,pink)

(22,tan)

CSE 373 Summer 2020LEC 09: BSTs, AVL Trees

Review Separate Chaining... In Practice
• A well-implemented separate chaining

hash map will stay very close to the best
case

- Most of the time, operations are fast.
Rarely, do an expensive operation that
restores the map close to best case.

• How to stay close to best case?
- Good distribution & Resizing!

• We can describe the “in-practice” case
as what almost always happens:

- (1) items are fairly evenly distributed
- (2) assume resizing doesn’t occur on this

particular operation
- This is similar to the concept of “amortized”

Operation Case Runtime

put(key,value)

best Θ(1)

In-practice Θ(1)

worst Θ(n)

get(key)

In-practice Θ(1)

average Θ(1)

worst Θ(n)

remove(key)

best Θ(1)

In-practice Θ(1)

worst Θ(n)

CSE 373 Summer 2020LEC 09: BSTs, AVL Trees

Review When to Resize?
• In ArrayList, we were forced to resize when we ran out of room

- In SeparateChainingHashMap, never forced to resize, but we want to make
sure the buckets don’t get too long for good runtime

• How do we quantify “too full”?
- Look at the average bucket size: number of elements / number of buckets

LOAD FACTOR λ

n: total number of key/value pairs
c: capacity of the array (# of buckets)

𝜆 =
𝑛
𝑐

• If we resize when λ hits some constant
value like 1:

- We expect to see 1 element per bucket:
constant runtime!

- If we double the capacity each time, the
expensive resize operation becomes less and
less frequent

CSE 373 Summer 2020LEC 09: BSTs, AVL Trees

Hashing
• What about non-integer data?

- Remember the definition -- Hash Function: any function that can be used to
map data of an arbitrary size to fixed-size values.

HASH FUNCTION

“Melissa”

“Joyce”

“Howard”

• Considerations for Hash Functions:
1. Deterministic – same input should generate the same output
2. Efficient – reasonable runtime
3. Uniform – inputs spread “evenly” across output range

504

1

9002

CSE 373 Summer 2020LEC 09: BSTs, AVL Trees

Hashing
Implementation 1: Simple aspect of values
public int hashCode(String input) {

return input.length();
}

Implementation 2: More aspects of value
public int hashCode(String input) {

int output = 0;
for(char c : input) {

out += (int)c;
}
return output;

}

Implementation 3: Multiple aspects of value + math!
public int hashCode(String input) {

int output = 1;
for (char c : input) {

int nextPrime = getNextPrime();
out *= Math.pow(nextPrime, (int)c);

}
return Math.pow(nextPrime, input.length());

}

Pro: super fast
Con: lots of collisions!

Pro: still really fast
Con: some collisions

Pro: few collisions
Con: slower, gigantic integers

CSE 373 Summer 2020LEC 09: BSTs, AVL Trees

Hashing
• Fortunately, experts have made most of these design decisions for us!

- All objects in Java have a .hashCode() method that does some magic to
make a “good” hash for any object type (e.g. String, ArrayList, Scanner)

- The built-in hashCode() has a good distribution/not a lot of collisions

• More precisely, hashCode() just gets us an int representation: then we
% by size

504

1

9002

0
1
2
3
4

HASH FUNCTION

“Melissa”

“Joyce”

“Howard”

1. call key.hashCode() to get
int representation of object

2. Mod (%) by the number of
buckets to get our index

CSE 373 Summer 2020LEC 09: BSTs, AVL Trees

Content Hashing: Applications
• Caching:

- You’ve downloaded a large video file. You want to know if a new
version is available. Rather than re-downloading the entire file,
compare your file’s hash value with the server’s hash value.

• File Verification / Error Checking:
- Same implementation
- Can be used to verify files on your machine,

files spread across multiple servers, etc.

• Fingerprinting
- Git hashes (“identification”)
- Ad tracking (“identification”): see https://panopticlick.eff.org/
- YouTube ContentID (“duplicate detection”)

https://panopticlick.eff.org/

CSE 373 Summer 2020LEC 09: BSTs, AVL Trees

Content Hashing: Defining a Salient Feature
• Hash function implementors can choose what’s salient:

- hash(“cat”) == hash(“CAT”) ???

• What’s salient in detecting that an image or video is unique?

• What’s salient in determining that a user is unique?

13

CSE 373 Summer 2020LEC 09: BSTs, AVL Trees

Review Iterators
• Iterator: a Java interface that dictates how a collection of data should be

traversed. Can only move forward and in a single pass.

hasNext() – returns true if the iteration has more elements yet to
be examined

next() – returns the next element in the iteration and moves the
iterator forward to next item

ArrayList<Integer> list;

Iterator itr = list.iterator();
while (itr.hasNext()) {

int item = itr.next();
}

ArrayList<Integer> list;

for (int i : list) {
int item = i;

}

Iterator Interface

Behavior
hasNext() – true if
elements remain
next() – returns next
element

Two ways to use an iterator in Java:

CSE 373 Summer 2020LEC 09: BSTs, AVL Trees

P2 Reminders
• Implementing an iterator for a Hash Map is
complex!

- You need to iterate through the elements of a
bucket, but when you reach the end of the
chain, have to move to the next bucket

- “you’re not iterating over some linear data
structure, you’re playing 2D chess”
– Howard Xiao

• Start early! P2 available for over 1.5 weeks,
but for good reason!

- Especially the ChainedHashMap iterator

• Remember to read the entire Tips section of
the instructions!

(7,blue) (77,aqua)

(4,orange)

0

1

2

3

4

5

6

7

8

9

(1,red) (21,pink)

(22,tan)

CSE 373 Summer 2020LEC 09: BSTs, AVL Trees

Lecture Outline
• Hash Map (Wrap-Up)

- Hashing & Applications

• Binary Trees & Binary Search Trees (BSTs)

• Case Analysis on BSTs

• Choosing a Good Invariant (AVL Trees)

CSE 373 Summer 2020LEC 09: BSTs, AVL Trees

143 Review Binary Trees
• A binary tree is a collection of nodes where

each node has at most 1 parent and anywhere
from 0 to 2 children

- Similar to linked lists (just add an extra child field!)

• Root node: the single node with no parent,
“top” of the tree. Often called the
‘overallRoot’
• Leaf node: a node with no children
• Subtree: a node and all its descendants
• Height: the number of edges contained in the

longest path from root node to any leaf node
17

1

2 5

3 6 7

4 8

public class Node<K> {
K data;
Node<K> left;
Node<K> right;

}

CSE 373 Summer 2020LEC 09: BSTs, AVL Trees

143 Review Tree Height
• What is the height of the following binary trees?

- Height: the number of edges contained in the longest path from root node to any leaf node

18

2 Minutes

1

2 5

7

overallRoot

1

overallRoot overallRoot

null

height: 2 height: 0 height: -1 (or N/A)

CSE 373 Summer 2020LEC 09: BSTs, AVL Trees

Other Useful Binary Tree Numbers

Max number of leaves: 2%

Max number of nodes: 2%&' − 1

h=3

Min number of leaves: 1
Min number of nodes: ℎ + 1

For a binary tree of height ℎ:

CSE 373 Summer 2020LEC 09: BSTs, AVL Trees

143 Review Binary Search Tree (BST)
• Invariants

- The rules for your data structure or algorithm
- Whenever you implement any operation on your

data structure:
- You know the invariants are true at the beginning.

Great! Simpler code, fewer cases
- But you must leave the invariants true at the end.

- Accidentally violating invariants a common source of
bugs. Defensive programming: check invariants at
beginning/end of methods!

20

9

3 10

1 5 30

2 14

Binary Search Tree Invariant:
For every node with key 𝑘:

• The left subtree has only keys smaller
than 𝑘.

• The right subtree has only keys greater
than 𝑘.

IN
VA

RI
A

N
T

public boolean containsKeyBST(node, key) {
if (node == null) {

return false;
} else if (node.key == key) {

...

return result;
}

}

INVARIANT

INVARIANT

CSE 373 Summer 2020LEC 09: BSTs, AVL Trees

BST Ordering Applies Recursively

9

3 10

1 5 30
9

3 10

1 5 30

< 9 > 9

9

3 10

1 5 30

< 9 > 9

< 3 & < 9 > 3 & < 9

CSE 373 Summer 2020LEC 09: BSTs, AVL Trees

Aside Anything Can Be a Map
• Want to make a tree implement the Map ADT?

- No problem – just add a value field to the nodes, so each node represents a
key/value pair.

public class Node<K, V> {
K key;
V value;
Node<K, V> left;
Node<K, V> right;

}

• For simplicity, we’ll just talk about the keys
- Interactions between nodes are based off of keys (e.g. BST sorts by keys)
- In other words, keys determine where the nodes go

1

aqua

CSE 373 Summer 2020LEC 09: BSTs, AVL Trees

Lecture Outline
• Hash Map (Wrap-Up)

- Hashing & Applications

• Binary Trees & Binary Search Trees (BSTs)

• Case Analysis on BSTs

• Choosing a Good Invariant (AVL Trees)

CSE 373 Summer 2020LEC 09: BSTs, AVL Trees

Binary Tree vs. BST: containsKey(5)

10

9 1

3 2 30

14 5

9

3 10

1 5 30

2 14

Without BST Invariant With BST Invariant

Nodes that
are searched

CSE 373 Summer 2020LEC 09: BSTs, AVL Trees

Binary Tree vs. BST: containsKey(5)

public boolean containsKeyBinaryTree(node, key) {
if (node == null) {

return false;
} else if (node.key == key) {

return true;
} else {

return containsKeyBT(node.left) ||
containsKeyBT(node.right);

}
}

public boolean containsKeyBST(node, key) {
if (node == null) {

return false;
} else if (node.key == key) {

return true;
} else {

if (key <= node.key) {
return containsKeyBST(node.left);

} else {
return containsKeyBST(node.right);

}
}

}

1 Halving the Input

RECURSIVE PATTERN

2 Constant size Input

RECURSIVE PATTERN

Θ (log n)

Where n is the number of nodes in the tree

Θ (n)

CSE 373 Summer 2020LEC 09: BSTs, AVL Trees

pollev.com/uwcse373

BST containsKey runtime
public boolean containsKeyBST(node, key) {

if (node == null) {
return false;

} else if (node.key == key) {
return true;

} else {
if (key <= node.key) {

return containsKeyBST(node.left);
} else {

return containsKeyBST(node.right);
}

}
}

For containsKey on a BST, what are some interesting cases for us to consider?

What’s the best? The worst? Are there other interesting cases?
For example, consider what values of key could change the behavior on the above tree.

9

3 10

1 5 30

2 14

CSE 373 Summer 2020LEC 09: BSTs, AVL Trees

BST containsKey Cases: Varying key

𝑇 𝑛 = $𝑇
𝑛
2
+ 1 if 𝑛 > 1

3 otherwise

𝑇(𝑛) = Θ(log 𝑛)

9

3 10

1 5 30

2 14

For containsKey on a BST, what are some
interesting cases for us to consider?

What’s the best? The worst? Are there other interesting cases?
For example, consider what values of key could change the
behavior on this tree.

We can analyze with recurrences:
Best Case

Worst Case

key=9 seems pretty nice! Find it immediately. Θ(1)

key=100 is terrible. Have to search the entire tree (and you
don’t even get the satisfaction of returning true). Θ(log n)

CSE 373 Summer 2020LEC 09: BSTs, AVL Trees

• Sources of variation that affect the runtime:

Is it possible to do worse than 𝚯(𝐥𝐨𝐠𝒏)? 😈

Our new recurrence:

𝑇 𝑛 = $𝑇 𝑛 − 1 + 1 if 𝑛 > 1
3 otherwise

𝑇 𝑛 = Θ(𝑛)

Can we do worse by varying this?

Number of elements in the tree (n)

Position of searched-for key in tree

Arrangement of elements in tree

0

1

2

3

15

...

1

2

3

CSE 373 Summer 2020LEC 09: BSTs, AVL Trees

BST Extremes
• Here are two different extremes our BST could end up in:

Perfectly balanced – for every node, its
descendants are split evenly between left
and right subtrees.

Degenerate – for every node, all of its
descendants are in the right subtree.

9

2

1 3

6

5 7

4

8

10

12

15

14

11 13

0

1

2

3

15

...

CSE 373 Summer 2020LEC 09: BSTs, AVL Trees

Can we do better?
• Key observation: what ended up being important was the height of

the tree!
- Height: the number of edges contained in the longest path from root node to

any leaf node
- In the worst case, this is the number of recursive calls we’ll have to make

• If we can limit the height of our tree, the BST invariant can take care
of quickly finding the target

- How do we limit?
- Let’s try to find an invariant that forces the height to be short

INVARIANT

INVA
RIAN

TIN
VA

RI
AN

T

IN
VA

RIA
NT

CSE 373 Summer 2020LEC 09: BSTs, AVL Trees

Lecture Outline
• Hash Map (Wrap-Up)

- Hashing & Applications

• Binary Trees & Binary Search Trees (BSTs)

• Case Analysis on BSTs

• Choosing a Good Invariant (AVL Trees)

CSE 373 Summer 2020LEC 09: BSTs, AVL Trees

In Search of a “Short BST” Invariant: Take 1
• What about this?

BST Height Invariant
The height of the tree must not exceed Θ(logn)

IN
VA

R
IA

N
T

public void insertBST(node, key) {
...

}

INVARIANT

INVARIANT

• This is technically what we want (would be amazing if true on entry)
• But how do we implement it so it’s true on exit?

- Should the insertBST method rebuild the entire tree balanced every time?
This invariant is too broad to have a clear implementation

• Invariants are tools – more of an art than a science, but we want to
pick one that is specific enough to be maintainable

??

