
CSE 373 Summer 2020LEC 08: Hash Maps

CSE 373

Timothy Akintilo
Brian Chan
Joyce Elauria
Eric Fan
Farrell Fileas

Melissa Hovik
Leona Kazi
Keanu Vestil

Howard Xiao

Aaron JohnstonInstructor

TAs

Siddharth Vaidyanathan

L E C 0 8

Hash Maps

BEFORE WE START

If the input to a function call on level i
is (!

"!
), and we have this recurrence,

what level i is the base case?

𝑇 𝑛 = $
4 if 𝑛 ≤ 1
𝑇
𝑛
3
+ 𝑛 otherwise

pollev.com/uwcse373

CSE 373 Summer 2020LEC 08: Hash Maps

Announcements
• EX1 (Algo Analysis I) due TONIGHT 11:59pm PDT

- You can use late days on exercises, just like projects!

• P2 (Maps) and EX2 (Algo Analysis II) released today
• Don’t forget to fill out the P2 Partner Form!

- Even if you want the default, please confirm for us by filling it out!
- https://courses.cs.washington.edu/courses/cse373/tools/20su/partner/p2/

• Summations Reference published (on course calendar under
Wednesday’s lecture)

https://courses.cs.washington.edu/courses/cse373/tools/20su/partner/p2/

CSE 373 Summer 2020LEC 08: Hash Maps

P2: Maps
• Implement everyone’s good pal: the Hash Map!
• Like P1, look at multiple data structures under

a single ADT
- But this time, we have the algorithmic analysis tools

to reason about more complicated situations
(especially Case Analysis!)

• 3 Parts:
- ArrayMap
- ChainedHashMap
- Experiments

• Start early! In particular, the ChainedHashMap
iterator can take a long time!

ArrayMap
ChainedHashMap

MAP ADT

State
Set of keys, Collection of values
Count of keys

Behavior
put(key, value) add value to
collection, associated with key
get(key) return value associated
with key
containsKey(key) return if key
is associated
remove(key) remove key and
associated value
size() return count

clear() remove all
iterator() get an iterator

CSE 373 Summer 2020LEC 08: Hash Maps

STUDENT FEEDBACK

• THANK YOU for letting us know how optional review questions could be more
helpful for you! Don’t stop here: your feedback & ideas are how we make this
the best course it can be!

• Post-Lecture Optional Review Questions:
- New We’ll publish solutions at the same time as problems. Use however you prefer!
- New Reflection: what’s one conception you cleared up, or one question you still have?
- Extra credit: No points, but doing lots can round up your GPA 0.1 (completion only, not

graded on correctness)
- No deadline: Complete anytime during the quarter. Recommendation: before next lecture

Fresh from the grapevine, the latest

CSE 373 Summer 2020LEC 08: Hash Maps

Announcements
• Regarding the fall F-1 online classes visa situation:

- “The Allen School stands with our international students and is vehemently opposed to the planned
visa changes that would upend lives and put people at risk during a pandemic. This action goes against
our values as a school, a campus community, and a nation, and it should not stand. I want you all to
know that school leadership, the University of Washington, and the broader higher education and
computing communities are doing everything within our power to try to prevent these changes from
taking effect.” – Magdalena Balazinska (Director, Paul G. Allen School)

• We know this is a stressful time, and you may need flexibility to work on things
that aren’t this class

- Effective immediately, we’re giving everyone two extra late days
- Apply to P1, EX1, whatever you need. Everyone now has 9 for the quarter.

- P1 and EX1 late cutoffs are now 5 days after the due date
- Next week, we’ll offer increased OH coverage and 1:1 meetings availability

• These changes are designed to give flexibility, but we know it’s not a one-size-fits-
all situation. Please reach out if you would benefit from further accommodations –
this class should not be a burden as you handle more important things.

CSE 373 Summer 2020LEC 08: Hash Maps

Welcome to the Data Structures Part™
• We’re now armed with

a toolbox stuffed full of
analysis tools

- Wednesday was the
last algorithmic
analysis lecture

- It’s time to apply this
theory to more
practical topics!

• Today, we’ll take our
first deep dive using
those tools on a data
structure: Hash Maps!

Algorithmic
Analysis

Hash Maps

Binary Search Trees

AVL Trees

Heaps
B-Trees

Graphs

BFS

DFS

Dijkstra’s

Disjoint Sets

Sorting

CSE 373 Summer 2020LEC 08: Hash Maps

Learning Objectives

1. Compare the relative pros/cons of various Map implementations,
especially given a design like the ones we cover today

2. Trace operations in a Separate Chaining Hash Map on paper (such
as insertion, getting an element, resizing)

3. Implement a Separate Chaining Hash Map in code (P2)

4. Differentiate between the “worst” and “in practice” runtimes of a
Separate Chaining Hash Map, and describe what assumptions allow
us to consider the “in practice” case

After this lecture, you should be able to...

CSE 373 Summer 2020LEC 08: Hash Maps

Lecture Outline

ArrayMap

DirectAccessMap

SimpleHashMap

SeparateChaining
HashMap

4
3

2
1

FASTER: Jump directly to
element, only int keys

MORE FLEXIBLE: Hash
function supports any
type of key

YOUR BEST FRIEND:
Addresses limitations
with hash collisions,
but still fast!

Review

MAP ADT

As seen on
Project 2

As seen on
Project 2

CSE 373 Summer 2020LEC 08: Hash Maps

Lecture Outline

ArrayMap

DirectAccessMap

SimpleHashMap

SeparateChaining
HashMap

4
3

2
1

FASTER: Jump directly to
element, only int keys

MORE FLEXIBLE: Hash
function supports any
type of key

YOUR BEST FRIEND:
Addresses limitations
with hash collisions,
but still fast!

Review

MAP ADT

CSE 373 Summer 2020LEC 08: Hash Maps

Review The Map ADT
• Map: an ADT representing a set of distinct

keys and a collection of values, where each
key is associated with one value.

- Also known as a dictionary
- If a key is already associated with something,

calling put(key, value) replaces the old value

• Used all over the place
- It’s hard to work on a big project without

needing one sooner or later
- CSE 143 introduced:

- Map<String, Integer> map1 = new HashMap<>();
- Map<String, String> map2 = new TreeMap<>();

MAP ADT

State
Set of keys, Collection of values
Count of keys

Behavior
put(key, value) add value to
collection, associated with key
get(key) return value associated
with key
containsKey(key) return if key
is associated
remove(key) remove key and
associated value
size() return count

clear() remove all
iterator() get an iterator

CSE 373 Summer 2020LEC 08: Hash Maps

Review Implementing a Map with an Array
Big-Oh Analysis – (if key is the last
one looked at / not in the
dictionary)
put()

get()

containsKey()

remove()

size() O(1) constant

O(n) linear
O(n) linear

O(n) linear

O(n) linear

0 1 2 3
put(‘b’, 97)
put(‘e’, 20) (‘a’, 1) (‘b’, 2) (‘c’, 3)(‘b’,97) (‘d’, 4)

Big-Oh Analysis – (if the key is the
first one looked at)
put()

get()

containsKey()

remove()

size() O(1) constant

O(1) constant
O(1) constant

O(1) constant

O(1) constant
4

(‘e’,20)

MAP ADT

State
Set of keys, Collection of values
Count of keys

Behavior
put(key, value) add value to
collection, associated with
key
get(key) return value
associated with key
containsKey(key) return if key
is associated
remove(key) remove key and
associated value
size() return count

ArrayMap<K, V>

State

Behavior
put find key, overwrite value if there.
Otherwise create new pair, add to next
available spot, grow array if necessary
get scan all pairs looking for given
key, return associated item if found
containsKey scan all pairs, return if
key is found
remove scan all pairs, replace pair to
be removed with last pair in collection
size return count of items in dictionary

Pair<K, V>[] data

CSE 373 Summer 2020LEC 08: Hash Maps

Review Implementing a Map with Linked Nodes
MAP ADT

State
Set of keys, Collection of values
Count of keys

Behavior
put(key, value) add value to
collection, associated with
key
get(key) return value
associated with key
containsKey(key) return if key
is associated
remove(key) remove key and
associated value
size() return count

LinkedMap<K, V>

State

Behavior
put if key is unused, create new with
pair, add to front of list, else replace
with new value
get scan all pairs looking for given
key, return associated item if found
containsKey scan all pairs, return if
key is found
remove scan all pairs, skip pair to be
removed
size return count of items in dictionary

front
size

containsKey(‘c’)
get(‘d’)
put(‘b’, 20)

front

‘c’ 9‘b’ 7 ‘d’ 4‘a’ 1 20

Big O Analysis – (if key is the last
one looked at / not in the
dictionary)
put()

get()

containsKey()

remove()

size() O(1) constant

O(n) linear
O(n) linear

O(n) linear

O(n) linear

Big O Analysis – (if the key is the first
one looked at)
put()

get()

containsKey()

remove()

size() O(1) constant

O(1) constant
O(1) constant

O(1) constant

O(1) constant

CSE 373 Summer 2020LEC 08: Hash Maps

Could we do better?
• put, get, and remove have Θ(n) runtimes. Could we use

a Θ(1) operation to improve?
• What about array indexing?

- data[i] (array access) and data[i] = 2 (array update) are constant
runtime!

- What if we could jump directly to the requested key?
- We could simplify the problem: only allow integer keys

CSE 373 Summer 2020LEC 08: Hash Maps

Lecture Outline

ArrayMap

DirectAccessMap

SimpleHashMap

SeparateChaining
HashMap

4
3

2
1

FASTER: Jump directly to
element, only int keys

MORE FLEXIBLE: Hash
function supports any
type of key

YOUR BEST FRIEND:
Addresses limitations
with hash collisions,
but still fast!

Review

MAP ADT

CSE 373 Summer 2020LEC 08: Hash Maps

DirectAccessMap
• put, get, and remove have Θ(n) runtimes. Could we use

a Θ(1) operation to improve?
• What about array indexing?

- data[i] (array access) and data[i] = 2 (array update) are constant
runtime!

- What if we could jump directly to the requested key?
- We could simplify the problem: only allow integer keys

DirectAccessMap<K, V>

State

Behavior
put put item at given index
get get item at given index
containsKey if data[] null at
index, return false, return
true otherwise
remove nullify element at index
size return count of items in
dictionary

data[]
size

index 0 1 2 3 4 5 6 7 8 9

data

put(3, “Melissa”)

Melissa

get(3)

CSE 373 Summer 2020LEC 08: Hash Maps

DirectAccessMap Implementation
public void put(int key, V value) {

this.array[key] = value;
}

public boolean containsKey(int key) {
return this.array[key] != null;

}

public V get(int key) {
return this.array[key];

}

public void remove(int key) {
this.array[key] = null;

}

DirectAccessMap<K, V>

State

Behavior
put put item at given index
get get item at given index
containsKey if data[] null at
index, return false, return
true otherwise
remove nullify element at index
size return count of items in
dictionary

data[]
size

Operation Case Runtime

put(key,value)
best Θ(1)

worst Θ(1)

get(key)
best Θ(1)

worst Θ(1)

containsKey(key)
best Θ(1)

worst Θ(1)

CSE 373 Summer 2020LEC 08: Hash Maps

pollev.com/uwcse373

Pros and Cons of DirectAccessMap
What’s a benefit of using it? What’s a drawback?

CSE 373 Summer 2020LEC 08: Hash Maps

Pros and Cons of DirectAccessMap
• Super Fast!

- Everything is Θ(1)

• Wasted Space
- Say we want to store 0 and 999999999. This implementation would waste all

the space inbetween L

• Only Integer Keys
- Would be nice to store any type of data L
- But note what’s so useful here: being able to go quickly from key to array

index

CSE 373 Summer 2020LEC 08: Hash Maps

Can We Store Any Integer?

• Create a GIANT array with every
possible integer as an index
• Problems:

- Can we allocate an array big
enough?

- Super wasteful

IDEA 1
• Create a smaller array, with a

translation from integer keys into
available indices
• Problems:

- How can we construct a
translation?

IDEA 2

1

504

9002

...

...
504

1

9002

0

1

504

9002

1

9002

504

1

9002

0

1

2

3

504 4

5

0
1
2
3
4

CSE 373 Summer 2020LEC 08: Hash Maps

Hash Functions
• Hash Function: any function that can be used to map data of an

arbitrary size to fixed-size values.
- We want to translate from the set of all integers to the set of valid indexes in

our array

HASH FUNCTION

504

1

9002

0
1
2

...
9% by size

- One simple approach: take the key and % (mod) it by size of the array

9002 % 10 = 2 (so store it in index 2 of the array)

CSE 373 Summer 2020LEC 08: Hash Maps

Lecture Outline

ArrayMap

DirectAccessMap

SimpleHashMap

SeparateChaining
HashMap

4
3

2
1

FASTER: Jump directly to
element, only int keys

MORE FLEXIBLE: Hash
function supports any
type of key

YOUR BEST FRIEND:
Addresses limitations
with hash collisions,
but still fast!

Review

MAP ADT

CSE 373 Summer 2020LEC 08: Hash Maps

Mod: Remainder
• The % operator computes the remainder from integer division.

3 43
4) 14 5) 218

12 20
2 18

15
3

• Applications of % operator:
- Obtain last digit of a number: 230857 % 10 is 7
- See whether a number is odd: 7 % 2 is 1, 42 % 2 is 0

- Limit integers to specific range: 8 % 12 is 8, 18 % 12 is 6

218 % 5 is 3

For more review/practice, check out https://www.khanacademy.org/computing/computer-science/cryptography/modarithmetic/a/what-is-modular-arithmetic

Limit keys to indices
within array

Equivalently, to find a % b (for a,b > 0):
while(a > b-1)

a -= b;
return a;

14 % 4 is 2

https://www.khanacademy.org/computing/computer-science/cryptography/modarithmetic/a/what-is-modular-arithmetic

CSE 373 Summer 2020LEC 08: Hash Maps

SimpleHashMap: “% by size” as Hash Function

put(0, “I”) 0 % 10 = 0
put(8, “Maps”) 8 % 10 = 8
put(11, “<3”) 11 % 10 = 1
put(23, “Hash”) 23 % 10 = 3

index 0 1 2 3 4 5 6 7 8 9

data I <3 Hash Maps

public void put(int key, int value) {
data[hashToValidIndex(key)] = value;

}

public V get(int key) {
return data[hashToValidIndex(key)];

}

public int hashToValidIndex(int k) {
return k % this.data.length;

}

IMPLEMENTATION

CSE 373 Summer 2020LEC 08: Hash Maps

SimpleHashMap: Collisions?!

put(0, “I”) 0 % 10 = 0
put(8, “Maps”) 8 % 10 = 8
put(11, “<3”) 11 % 10 = 1
put(23, “Hash”) 23 % 10 = 3
put(20, “We”) 20 % 10 = 0

index 0 1 2 3 4 5 6 7 8 9

data I <3 Hash Maps

public void put(int key, int value) {
data[hashToValidIndex(key)] = value;

}

public V get(int key) {
return data[hashToValidIndex(key)];

}

public int hashToValidIndex(int k) {
return k % this.data.length;

}

IMPLEMENTATION

We

CSE 373 Summer 2020LEC 08: Hash Maps

Lecture Outline

ArrayMap

DirectAccessMap

SimpleHashMap

SeparateChaining
HashMap

4
3

2
1

FASTER: Jump directly to
element, only int keys

MORE FLEXIBLE: Hash
function supports any
type of key

YOUR BEST FRIEND:
Addresses limitations
with hash collisions,
but still fast!

Review

MAP ADT

CSE 373 Summer 2020LEC 08: Hash Maps

Handling Collisions
• Two common strategies to handle collisions:

1. Separate Chaining

”Chain” together multiple
values stored in a single

bucket

2. Open Addressing

If a bucket is taken, find a new
bucket using some strategy:

Linear Probing
Quadratic Probing

Double Hashing

We’ll focus on separate chaining this
quarter, much more common in practice

Bonus topic beyond the
scope of the class

CSE 373 Summer 2020LEC 08: Hash Maps

aqua

Separate Chaining
0

1

2

3

4

5

6

7

8

9

• If two values want to live in the same index,
let’s just let them be roommates!
• Each index is a “bucket”

- Linked Nodes are a common implementation
for these bucket “chains”

• When item x hashes to index h:
- If bucket at h is empty, create new list with x
- Else, add x to the list

red pink

blue

orange

tan

CSE 373 Summer 2020LEC 08: Hash Maps

(7,blue) (77,aqua)

(4,orange)

Separate Chaining
• If two values want to live in the same index,

let’s just let them be roommates!
• Each index is a “bucket”

- Linked Nodes are a common implementation
for these bucket “chains”

• When item x hashes to index h:
- If bucket at h is empty, create new list with x
- Else, add x to the list

• But if multiple keys can hash to the same
index, need to store the key too!

0

1

2

3

4

5

6

7

8

9

(1,red) (21,pink)

(22,tan)

CSE 373 Summer 2020LEC 08: Hash Maps

Separate Chaining

(7,blue) (77,aqua)

(4,orange)

0

1

2

3

4

5

6

7

8

9

(1,red) (21,pink)

(22,tan)
public boolean get(int key) {

int bucketIndex = key % data.length;

loop through each pair in data[bucketIndex]
if pair.key == key

return pair.value
return null if we get here

}

PSEUDOCODE

• Implementation of get/put/containsKey very similar

Let’s analyze the runtime. First, are there different possible states for
this HashMap to make the code faster or slower, assuming n
key/value pairs are already stored?

CSE 373 Summer 2020LEC 08: Hash Maps

(51,blue)(11,tan)

Separate Chaining Worst Case

• It’s possible that everything
hashes to the same bucket by
chance!

- get would take Θ(n) time L

• Consider get(51)
- Use hash function (% 10) to get

index (5)
- Check every element in bucket for

key 51

• We’ve lost that Θ(1) runtime

0

1

2

3

4

5

6

7

8

9

(1,red) (21,pink) (91,orange) (41,aqua)

public boolean get(int key) {

int bucketIndex = key % data.length;

loop through each pair in data[bucketIndex]

if pair.key == key

return pair.value

return null if we get here

}

PSEUDOCODE

CSE 373 Summer 2020LEC 08: Hash Maps

Separate Chaining Best Case
• However, if everything is spread evenly

across the buckets, get takes Θ(1)

• Consider get(22)
- Use hash function (% 10) to get index (2)
- Check the single element in bucket for key 22 – a

constant time operation!

• Key to a successful Hash Map
implementation: how can we keep the
buckets as close to this distribution as
possible?

(7,blue)

(85,aqua)

(4,orange)

0

1

2

3

4

5

6

7

8

9

(1,red)

(60,pink)

(22,tan)

CSE 373 Summer 2020LEC 08: Hash Maps

Separate Chaining... In Practice
• A well-implemented separate chaining

hash map will stay very close to the best
case

- Most of the time, operations are fast.
Rarely, do an expensive operation that
restores the map close to best case.

• How to stay close to best case?
- Good distribution & Resizing!

• We can describe the “in-practice” case
as what almost always happens:

- (1) items are fairly evenly distributed
- (2) assume resizing doesn’t occur

- This is similar to the concept of “amortized”

Operation Case Runtime

put(key,value)

best Θ(1)

In-practice Θ(1)

worst Θ(n)

get(key)

In-practice Θ(1)

average Θ(1)

worst Θ(n)

remove(key)

best Θ(1)

In-practice Θ(1)

worst Θ(n)

CSE 373 Summer 2020LEC 08: Hash Maps

(22,tan)

Resizing
• The runtime to scan each

bucket is creeping up
- If we don’t intervene, our in-

practice runtime is going to hit
Θ(n)

- number of buckets is a constant,
so n / (# buckets) is Θ(n)

(7,blue) (77,aqua)

(4,orange)

0

1

2

3

4

(1,red) (6,pink)

(8,lilac) (53,puce)

CSE 373 Summer 2020LEC 08: Hash Maps

Resizing Don’t forget to re-distribute your keys! As seen on
Project 2

0

1

2

3

4

5

6

7

8

9

(7,blue)

(4,orange)

0

1

2

3

4

5

6

7

8

9

(1,red)

(22,tan)(22,tan) (7,blue) (77,aqua)

(4,orange)

(1,red) (6,pink)

(8,lilac) (53,puce)

(6,pink)

(77,aqua)

(53,puce)

(8,lilac)

If we just expand
the buckets array,
several values are
hashed in the
wrong place

How to Resize:
1. Expand the buckets array
2. For every element in the old

hash table, re-distribute!
Recompute its position by
taking the mod with the new
length

CSE 373 Summer 2020LEC 08: Hash Maps

When to Resize?
• In ArrayList, we were forced to resize when we ran out of room

- In SeparateChainingHashMap, never forced to resize, but we want to make
sure the buckets don’t get too long for good runtime

• How do we quantify “too full”?
- Look at the average bucket size: number of elements / number of buckets

LOAD FACTOR λ

n: total number of key/value pairs
c: capacity of the array (# of buckets)

𝜆 =
𝑛
𝑐

(22,tan) (7,blue) (77,aqua)

(4,orange)

0

1

2

3

4

(1,red) (6,pink)

(8,lilac) (53,puce)

𝜆 =
8
5 = 1.6

CSE 373 Summer 2020LEC 08: Hash Maps

When to Resize?
• In ArrayList, we were forced to resize when we ran out of room

- In SeparateChainingHashMap, never forced to resize, but we want to make
sure the buckets don’t get too long for good runtime

• How do we quantify “too full”?
- Look at the average bucket size: number of elements / number of buckets

LOAD FACTOR λ

n: total number of key/value pairs
c: capacity of the array (# of buckets)

𝜆 =
𝑛
𝑐

• If we resize when λ hits some constant
value like 1:

- We expect to see 1 element per bucket:
constant runtime!

- If we double the capacity each time, the
expensive resize operation becomes less and
less frequent

CSE 373 Summer 2020LEC 08: Hash Maps

Hashing
• What about non-integer data?

- Remember the definition -- Hash Function: any function that can be used to
map data of an arbitrary size to fixed-size values.

HASH FUNCTION

“Melissa”

“Joyce”

“Howard”

• Considerations for Hash Functions:
1. Deterministic – same input should generate the same output
2. Efficient – reasonable runtime
3. Uniform – inputs spread “evenly” across output range

504

1

9002

CSE 373 Summer 2020LEC 08: Hash Maps

Hashing
Implementation 1: Simple aspect of values
public int hashCode(String input) {

return input.length();
}

Implementation 2: More aspects of value
public int hashCode(String input) {

int output = 0;
for(char c : input) {

out += (int)c;
}
return output;

}

Implementation 3: Multiple aspects of value + math!
public int hashCode(String input) {

int output = 1;
for (char c : input) {

int nextPrime = getNextPrime();
out *= Math.pow(nextPrime, (int)c);

}
return Math.pow(nextPrime, input.length());

}

Pro: super fast
Con: lots of collisions!

Pro: still really fast
Con: some collisions

Pro: few collisions
Con: slower, gigantic integers

CSE 373 Summer 2020LEC 08: Hash Maps

Hashing
• Fortunately, experts have made most of these design decisions for us!

- All objects in Java have a .hashCode() method that does some magic to
make a “good” hash for any object type (e.g. String, ArrayList, Scanner)

- The built-in hashCode() has a good distribution/not a lot of collisions

• More precisely, hashCode() just gets us an int representation: then we
% by size

504

1

9002

0
1
2
3
4

HASH FUNCTION

“Melissa”

“Joyce”

“Howard”

1. call key.hashCode() to get
int representation of object

2. Mod (%) by the number of
buckets to get our index

CSE 373 Summer 2020LEC 08: Hash Maps

Review Iterators
• Iterator: a Java interface that dictates how a collection of data should be

traversed. Can only move forward and in a single pass.

hasNext() – returns true if the iteration has more elements yet to
be examined

next() – returns the next element in the iteration and moves the
iterator forward to next item

ArrayList<Integer> list;

Iterator itr = list.iterator();
while (itr.hasNext()) {

int item = itr.next();
}

ArrayList<Integer> list;

for (int i : list) {
int item = i;

}

Iterator Interface

Behavior
hasNext() – true if
elements remain
next() – returns next
element

Two ways to use an iterator in Java:

CSE 373 Summer 2020LEC 08: Hash Maps

P2 Reminders
• Implementing an iterator for a Hash Map is
complex!

- You need to iterate through the elements of a
bucket, but when you reach the end of the
chain, have to move to the next bucket

- “you’re not iterating over some linear data
structure, you’re playing 2D chess”
– Howard Xiao

• Start early! P2 available for over 1.5 weeks,
but for good reason!

- Especially the ChainedHashMap iterator

• Remember to read the entire Tips section of
the instructions!

(7,blue) (77,aqua)

(4,orange)

0

1

2

3

4

5

6

7

8

9

(1,red) (21,pink)

(22,tan)

