Before we start

Review: Consider `func` (base case & non-recursive work omitted). How would you complete the recurrence?

```c
int func (int n) {
    ...
    res += 2 * func(n / 4);
    res += 2 * func(n / 4);
    res += 2 * func(n / 4);
    return res;
}
```

\[
T(n) = \begin{cases}
10 & \text{if } n = 0 \\
3T(n/4) + n & \text{otherwise}
\end{cases}
\]
Announcements

• P1 (Deques) due **TONIGHT 11:59pm PDT!**
 - Make sure to add your partner on your Gradescope submission!

 - Late Policy:
 - 7 penalty-free late days (24hr chunks) for the quarter
 - 5% deduction/day afterward
 - late assignment cutoff is 3 days later
 - Don’t forget your writeup for the P1 experiments

• EX1 (Algo Analysis I) due Friday 7/10 11:59pm PDT
• P2 (Maps) and EX2 (Algo Analysis II) released Friday 7/10
• We’ll see some summation identities in today’s lecture
 - Summations Reference will be posted as a resource on the calendar
Announcements

• We’re deeply disturbed by the recent US federal government announcement concerning F-1 visas in fall quarter requiring at least one in-person class
• UW and CSE are working on a response, hopefully updates soon
• If you need to focus on other things in light of this stressful news, please reach out – we can absolutely give accommodations
• Resources in the meantime:
 - Read Ana Mari Cauce’s (UW President) statement:
 - Allen School Advising & Diversity and Access Team
 - https://www.cs.washington.edu/academics/ugrad/advising
 - UW Counseling Center
 - https://www.washington.edu/counseling/
 - UW Samuel E. Kelly Ethnic Cultural Center
 - https://depts.washington.edu/ecc/
 - International Student Services
 - https://iss.washington.edu/travel-visas/coronavirus-information-for-f1-j1-students/
 - https://iss.washington.edu/
Learning Objectives

After this lecture, you should be able to...

1. **Continued** Describe the 3 most common recursive patterns and identify whether code belongs to one of them.

2. Model a recurrence with the Tree Method and use it to characterize the recurrence with a bound.

3. Use Summation Identities to find closed forms for summations *(Non-Objective: come up with or explain Summation Identities)*
Review Writing Recurrences

```
public int recurse(int n) {
    if (n < 3) {
        return 80;  // Base Case
    }
    for (int i = 0; i < n; i++) {
        System.out.println(i);  // Recursive Case
    }
    int val1 = recurse(n / 3);
    int val2 = recurse(n / 3);
    int val3 = recurse(n / 3);
    return val1 + val2 + val3;  // Recursive Work: +3
}
```

\[
T(n) = \begin{cases}
2 & \text{if } n < 3 \\
3T\left(\frac{n}{3}\right) + n & \text{otherwise}
\end{cases}
\]
Review

Why Include Non-Recursive Work?

```java
public int recurse(int n) {
    if (n < 3) {
        return 80;
    }
    for (int i = 0; i < n; i++) {
        System.out.println(i);
    }
    int val1 = recurse(n / 3);
    int val2 = recurse(n / 3);
    int val3 = recurse(n / 3);
    return val1 + val2 + val3;
}
```

Think of it this way:

- **Base Case**
 - $T(n) = 2$ if $n < 3$

- **Recursive Case**
 - $T(n) = 3T\left(\frac{n}{3}\right) + n$ otherwise

Non-recursive parts of recursive cases are sometimes where the bulk of the work takes place!
Review Master Theorem: Recurrence to Big-Θ

\[
T(n) = \begin{cases}
2 & \text{if } n < 3 \\
2T\left(\frac{n}{3}\right) + n & \text{otherwise}
\end{cases}
\]

- It’s still really hard to tell what the big-O is just by looking at it.
- But fancy mathematicians have a formula for us to use!

<table>
<thead>
<tr>
<th>MASTER THEOREM</th>
</tr>
</thead>
</table>
| \[
T(n) = \begin{cases}
d & \text{if } n \text{ is at most some constant} \\
\frac{a}{b}T\left(\frac{n}{b}\right) + f(n) & \text{otherwise}
\end{cases}
\] |
| Where \(f(n) \) is \(\Theta(n^c) \) |
| If \(\log_b a < c \) then \(T(n) \in \Theta(n^c) \) |
| If \(\log_b a = c \) then \(T(n) \in \Theta(n^c \log n) \) |
| If \(\log_b a > c \) then \(T(n) \in \Theta(n^{\log_b a}) \) |

\text{Case 1: } a=2 \text{, } b=3 \text{ and } c=1

\[
y = \log_b x \text{ is equal to } b^y = x
\]

\[
\log_3 2 = x \quad (3^x = 2 \Rightarrow x \approx 0.63)
\]

\[
\log_3 2 < 1 \quad \text{We’re in case 1}
\]

\[
T(n) \in \Theta(n)
\]
Lecture Outline

- Analyzing Recursive Code: Recursive Patterns

1. Halving the Input
 - Binary Search
 - $\Theta(\log n)$

2. Constant size Input
 - Merge Sort

3. Doubling the Input

- Summations
- The Tree Method
Review Merge Sort

mergeSort(input) {
 if (input.length == 1)
 return
 else
 smallerHalf = mergeSort(new [0, ..., mid])
 largerHalf = mergeSort(new [mid + 1, ...])
 return merge(smallerHalf, largerHalf)
}

\[
T(n) = \begin{cases}
 1 & \text{if } n \leq 1 \\
 2T\left(\frac{n}{2}\right) + n & \text{otherwise}
\end{cases}
\]

Constant size Input
Review Merge Sort Recurrence to Big-Θ

\[T(n) = \begin{cases}
1 & \text{if } n \leq 1 \\
2T\left(\frac{n}{2}\right) + n & \text{otherwise}
\end{cases} \]

MASTER THEOREM

\[T(n) = \begin{cases}
d & \text{if } n \text{ is at most some constant} \\
aT\left(\frac{n}{b}\right) + f(n) & \text{otherwise}
\end{cases} \]

Where \(f(n) \) is \(\Theta(n^c) \)

- If \(\log_b a < c \) then \(T(n) \in \Theta(n^c) \)
- If \(\log_b a = c \) then \(T(n) \in \Theta(n^c \log n) \)
- If \(\log_b a > c \) then \(T(n) \in \Theta(n^{\log_b a}) \)

\(a=2 \), \(b=2 \) and \(c=1 \)

\(y = \log_b x \) is equal to \(b^y = x \)

\[\log_2 2 = x \Rightarrow 2^x = 2 \Rightarrow x = 1 \]

\[\log_2 2 = 1 \]

We’re in case 2

\(T(n) \in \Theta(n \log n) \)
For recursive code, we now have tools that fall under Case Analysis (Writing Recurrences) and Asymptotic Analysis (The Master Theorem).
Lecture Outline

- Analyzing Recursive Code: Recursive Patterns

1. Halving the Input
 - Binary Search
 - $\Theta(\log n)$

2. Constant size Input
 - Merge Sort
 - $\Theta(n \log n)$

3. Doubling the Input
 - Fibonacci

- Summations
- The Tree Method
Calculating Fibonacci (ish)

```java
public int fib(int n) {
    if (n <= 1) {
        return 1;
    }
    return fib(n-1) + fib(n-1);
}
```

- Each call creates 2 more calls
- Each new call has a copy of the input, almost
- Almost doubling the input at each call

3 Doubling the Input
Fibonacci Recurrence to Big-Θ

```java
public int fib(int n) {
    if (n <= 1) {
        return 1;
    }
    return fib(n-1) + fib(n-1);
}
```

$T(n) = \begin{cases}
 d & \text{if } n \leq 1 \\
 2T(n-1) + c & \text{otherwise}
\end{cases}$

Can we use the Master Theorem?

MASTER THEOREM

$T(n) = \begin{cases}
 d & \text{if } n \text{ is at most some constant} \\
 aT\left(\frac{n}{b}\right) + f(n) & \text{otherwise}
\end{cases}$

Uh oh, our model doesn’t match that format...

Can we intuit a pattern?

- $T(1) = d$
- $T(2) = 2T(2-1) + c = 2(d) + c$
- $T(3) = 2T(3-1) + c = 2(2(d) + c) + c = 4d + 3c$
- $T(4) = 2T(4-1) + c = 2(4d + 3c) + c = 8d + 7c$
- $T(5) = 2T(5-1) + c = 2(8d + 7c) + c = 16d + 25c$

Looks like something’s happening, but it’s hard to identify. Maybe geometry can help!
Fibonacci Recurrence to Big-Θ

$T(n) = \begin{cases}
d & \text{if } n \leq 1 \\
2T(n-1) + c & \text{otherwise}
\end{cases}$

How many layers in the function call tree?
How many steps to go from start value of n (4) to base case (1), subtracting 1 each time?
Height of function call tree: n

<table>
<thead>
<tr>
<th>LAYER</th>
<th>FUNCTION CALLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$1 = 2^0$</td>
</tr>
<tr>
<td>1</td>
<td>$2 = 2^1$</td>
</tr>
<tr>
<td>2</td>
<td>$4 = 2^2$</td>
</tr>
<tr>
<td>3</td>
<td>$8 = 2^3$</td>
</tr>
</tbody>
</table>

How many function calls per layer?
2^i

How many function calls on layer i?

How many function calls TOTAL for a tree of k layers?
$1 + 2 + 4 + \ldots + 2^{k-1}$
Fibonacci Recurrence to Big-Θ

<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>How many layers in the function call tree?</td>
<td>n</td>
</tr>
<tr>
<td>How many function calls on layer i?</td>
<td>2^i</td>
</tr>
<tr>
<td>How many function calls TOTAL for a tree of k layers?</td>
<td>$1 + 2 + 4 + 8 + ... + 2^{k-1}$</td>
</tr>
<tr>
<td>Total runtime = (total function calls) * (runtime of each function call)</td>
<td>$(1 + 2 + 4 + 8 + ... + 2^{k-1}) \times (\text{constant work})$</td>
</tr>
<tr>
<td></td>
<td>$1 + 2 + 4 + 8 + ... + 2^{k-1} = \sum_{i=0}^{k-1} 2^i = \frac{2^k - 1}{2 - 1} = 2^k - 1$</td>
</tr>
<tr>
<td></td>
<td>$T(n) = 2^n - 1 \in \Theta(2^n)$</td>
</tr>
</tbody>
</table>

Summation Identity

- **Finite Geometric Series**
 $$\sum_{i=0}^{k-1} x^i = \frac{x^k - 1}{x - 1}$$
3 Patterns for Recursive Code

1. Halving the Input
 - Binary Search
 \(\Theta (\log n) \)

2. Constant size Input
 - Merge Sort
 \(\Theta (n \log n) \)

3. Doubling the Input
 - Fibonacci
 \(\Theta (2^n) \)
Lecture Outline

• Analyzing Recursive Code: Recursive Patterns

1. Halving the Input
 - Binary Search
 \(\Theta (\log n) \)

2. Constant size Input
 - Merge Sort
 \(\Theta (n \log n) \)

3. Doubling the Input
 - Fibonacci
 \(\Theta (2^n) \)

• Summations

• The Tree Method
Which of these functions is a mathematical model for the runtime of this code?

```java
for (int i = 0; i < n; i++) {
    for (int j = 0; j < i; j++) {
        System.out.println("Hello!");
    }
}
```

Keep an eye on the loop bounds!

- a) \(f(n) = 2n \)
- b) \(f(n) = n + n \)
- c) \(f(n) = n^2 \)
- d) \(f(n) = \sum_{i=0}^{n-1} \sum_{j=0}^{i-1} 1 \)
Modeling Complex Loops

for (int i = 0; i < n; i++) {
 for (int j = 0; j < i; j++) {
 System.out.println("Hello!");
 }
}

Modeling the inner loop:

\[f(n) = (0 + 1 + 2 + \ldots + i-1) \]

How do we model this part?

Summations!

\[1 + 2 + 3 + 4 + \ldots + n = \sum_{i=1}^{n} i \]

Modeling the entire code snippet:

\[f(n) = \sum_{i=0}^{n-1} \sum_{j=0}^{i-1} 1 \]

What is the Big-Theta?
Simplifying Summations

\[
\begin{align*}
 f(n) &= \sum_{i=0}^{n-1} \sum_{j=0}^{i-1} 1 \\
 &= \sum_{i=0}^{n-1} 1 \cdot i \\
 &= 1 \sum_{i=0}^{n-1} i \\
 &= \frac{n(n-1)}{2} = \frac{1}{2} n^2 - \frac{1}{2} n \\
 &= \Theta(n^2)
\end{align*}
\]

Summation of a constant: \(\sum_{i=0}^{k-1} c = ck \)
Factoring out a constant: \(\sum_{i=a}^{b} cf(i) = c \sum_{i=a}^{b} f(i) \)
Gauss’s Identity: \(\sum_{i=0}^{n-1} i = \frac{n(n-1)}{2} \)

You don’t have to come up with these or explain why! We’ll publish a list of identities.

The code is \(\Theta(n^2) \), but it is not correct to say \(f(n) = n^2 \) models its runtime!
Lecture Outline

• Analyzing Recursive Code: Recursive Patterns

1. Halving the Input
 - Binary Search
 \(\Theta (\log n) \)

2. Constant size Input
 - Merge Sort
 \(\Theta (n \log n) \)

3. Doubling the Input
 - Fibonacci
 \(\Theta (2^n) \)

• Summations

• The Tree Method
Recurrence to Big-Theta: Our Toolbox

Master Theorem

\[
T(n) = \begin{cases}
 d & \text{if } n \text{ is at most some constant} \\
 aT\left(\frac{n}{b}\right) + f(n) & \text{otherwise}
\end{cases}
\]

Pros: Convenient to plug ‘n’ chug

Cons: Only works for certain format of recurrences

Unrolling the Recurrence

\[
T(1) = d \\
T(2) = 2T(2-1) + c = 2(d) + c \\
T(3) = 2T(3-1) + c = 2(2(d) + c) + c = 4d + 3c
\]

Pros: Least complicated setup

Cons: Requires intuitive pattern matching, no formal technique

Tree Method

(followed by Asymptotic Analysis)

Pros: Convenient to plug ‘n’ chug

Cons: Complicated to set up for a given recurrence
Tree Method (Generalizing from Fibonacci Example)

Draw out the function call tree. What’s the input to each call? How much work is done in each call?

e.g. Merge Sort:

\[T(n) = \begin{cases}
1 & \text{if } n \leq 1 \\
2T\left(\frac{n}{2}\right) + n & \text{otherwise}
\end{cases} \]

mergeSort(input) {
 if (input.length == 1)
 return
 else
 smallerHalf = mergeSort(new [0, ..., mid])
 largerHalf = mergeSort(new [mid + 1, ...])
 return merge(smallerHalf, largerHalf)
}

Where’s that work coming from?
A Θ(n) operation inside of Merge Sort that processes the entire input!
Tree Method

e.g. Merge Sort:

\[
T(n) = \begin{cases}
1 & \text{if } n = 1 \\
2T\left(\frac{n}{2}\right) + n & \text{otherwise}
\end{cases}
\]

How many layers in the function call tree?

How many steps to go from start value of \(n\) to base case (1), dividing by 2 each time?

Think binary search – it takes \(\log_2 n\) “halvings” to take \(n\) down to 1

Height of function call tree: \(\log_2 n\)

How much work done per layer?

Amount of work varies by function call, but remains constant across entire layer

\(n\) work at each layer
Tree Method

\[T(n) = \begin{cases}
1 & \text{if } n \leq 1 \\
\frac{n}{2} + n & \text{otherwise}
\end{cases} \]

Recursive level	How many nodes at each level?	How much work done by each node?	How much work across each level?
0 | 1 | n | n |
1 | 2 | \(\frac{n}{2}\) | n |
2 | 4 | \(\frac{n}{4}\) | n |
3 | 8 | \(\frac{n}{8}\) | n |
\(\log n\) | n | 1 | n |
Tree Method Checklist

<table>
<thead>
<tr>
<th></th>
<th>What’s the size of the input per call on level (i)?</th>
<th>(\frac{n}{2^i})</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>How much work done by each node on level (i) (recursive case)?</td>
<td>(\left(\frac{n}{2^i}\right)^1)</td>
</tr>
<tr>
<td>3</td>
<td>How many nodes at level (i)?</td>
<td>(2^i)</td>
</tr>
<tr>
<td>4</td>
<td>What’s the total work done on level (i) (recursive case)?</td>
<td>(\text{numNodes} \times \text{workPerNode})</td>
</tr>
<tr>
<td></td>
<td>(= 2^i \left(\frac{n}{2^i}\right) = n)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>On what value of (i) does the last level occur (base case)?</td>
<td>(\frac{n}{2^i} = 1)</td>
</tr>
<tr>
<td></td>
<td>(n = 2^i \implies i = \log_2 n)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>How much work done by each node on last level (base case)?</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>What’s the total work on the last level (base case)?</td>
<td>(\text{numNodes} \times \text{workPerNode})</td>
</tr>
<tr>
<td></td>
<td>(= 2^\log_2 n \times 1 = n)</td>
<td></td>
</tr>
</tbody>
</table>

\[
T(n) = \begin{cases}
1 & \text{if } n \leq 1 \\
2T\left(\frac{n}{2}\right) + n & \text{otherwise}
\end{cases}
\]

<table>
<thead>
<tr>
<th>Level (i)</th>
<th>Number of Nodes</th>
<th>Work per Node</th>
<th>Work per Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>(n)</td>
<td>(n)</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>(\frac{n}{2})</td>
<td>(n)</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>(\frac{n}{4})</td>
<td>(n)</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>(\frac{n}{8})</td>
<td>(n)</td>
</tr>
<tr>
<td>(\log_2 n)</td>
<td>(n)</td>
<td>1</td>
<td>(n)</td>
</tr>
</tbody>
</table>
Tree Method Checklist

<table>
<thead>
<tr>
<th></th>
<th>What’s the size of the input per call on level i?</th>
<th>(\frac{n}{2^i})</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>How much work done by each node on level i (recursive case)?</td>
<td>(\left(\frac{n}{2^i} \right))</td>
</tr>
<tr>
<td>3</td>
<td>How many nodes at level i?</td>
<td>(2^i)</td>
</tr>
<tr>
<td>4</td>
<td>What’s the total work done on level i (recursive case)?</td>
<td>(\text{numNodes} \times \text{workPerNode})</td>
</tr>
<tr>
<td>5</td>
<td>On what value of i does the last level occur (base case)?</td>
<td>(\frac{n}{2^i} = 1) (n = 2^i \Rightarrow i = \log_2 n)</td>
</tr>
<tr>
<td>6</td>
<td>How much work done by each node on last level (base case)?</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>What’s the total work on the last level (base case)?</td>
<td>(\text{numNodes} \times \text{workPerNode})</td>
</tr>
</tbody>
</table>

\[
T(n) = \begin{cases}
1 & \text{if } n \leq 1 \\
2T(\frac{n}{2}) + n & \text{otherwise}
\end{cases}
\]

Putting it Together:

\[
T(n) = \sum_{i=0}^{\log_2 n - 1} n + n = n \log_2 n + n = \Theta(n \log n)
\]

Summation of a Constant

\[
\sum_{i=0}^{k-1} c = ck
\]

Power of a Log

\[
x \log_b y = y \log_b x
\]
Next Stop: The Data Structures Part™

• We’re now armed with a toolbox stuffed full of analysis tools
 - It’s time to apply this theory to more practical topics!

• On Friday, we’ll take our first deep dive using those tools on a data structure: Hash Maps!