
CSE 373 Summer 2020LEC 06:, Recurrences, Master Theorem

CSE 373

Timothy Akintilo
Brian Chan
Joyce Elauria
Eric Fan

Farrell Fileas
Leona Kazi
Keanu Vestil
Howard Xiao

Aaron JohnstonInstructor

TAs

Siddharth Vaidyanathan

L E C 0 6

Recurrences,
Master Theorem

BEFORE WE START

Review: Which of the following are evidence
that a Big-Theta exists?

a) Big-Oh == Big-Theta
b) We’re analyzing a function that can be fully

expressed as a polynomial
c) There aren’t extra terms (e.g. n2 + n)
d) Runtime isn’t affected by array contents

pollev.com/uwcse373

CSE 373 Summer 2020LEC 06:, Recurrences, Master Theorem

Announcements

Project 1 (Deques)
due Wednesday 7/8
11:59pm PDT

Exercise 1 (written,
individual) due Friday
7/10 11:59pm PDT

Remember you can submit
Anonymous Feedback!
Especially in this online
world, we are extremely
grateful for your insight!

Section Review Videos are
provided if you can’t make it
to section, or want to
review! Often focus on
specific worksheet problems.

Starting today, many lectures will have
OPTIONAL review questions. Worth extra
credit (no points, doing a lot of them can
bump you up 0.1). Not worthwhile for credit,
but may be helpful for your review!

CSE 373 Summer 2020LEC 06:, Recurrences, Master Theorem

Learning Objectives

1. Review Distinguish between Asymptotic Analysis & Case Analysis,
and apply both to code snippets

2. Describe the 3 most common recursive patterns and identify
whether code belongs to one of them

3. Model recursive code using a recurrence relation (Step)

4. Use the Master Theorem to characterize a recurrence relation with
Big-Oh/Big-Theta/Big-Omega bounds (Step)

After this lecture, you should be able to...

1

2

CSE 373 Summer 2020LEC 06:, Recurrences, Master Theorem

Lecture Outline
• Review Asymptotic Analysis & Case Analysis

• Analyzing Recursive Code

CSE 373 Summer 2020LEC 06:, Recurrences, Master Theorem

Review Algorithmic Analysis Roadmap

CODE

BEST CASE
FUNCTION

for (i = 0; i < n; i++) {
if (arr[i] == toFind) {

return i;
}

}
return -1;

f(n) = 2

TIGHT
BIG-OH2

TIGHT
BIG-OMEGA

BIG-THETA

O(1)

𝛺(1)

Θ(1)
1 Asymptotic

Analysis

WORST CASE
FUNCTION

OTHER CASE
FUNCTION

Case
Analysis

f(n) = 3n+1

CSE 373 Summer 2020LEC 06:, Recurrences, Master Theorem

Review Oh, and Omega, and Theta, oh my
• Big-Oh is an upper bound

- My code takes at most this long to
run

• Big-Omega is a lower bound
- My code takes at least this long to

run

• Big Theta is “equal to”
- My code takes “exactly”* this long to run
- *Except for constant factors and lower order

terms
- Only exists when Big-Oh == Big-Omega!

𝑓(𝑛) is Ω(𝑔 𝑛) if there exist positive constants
𝑐, 𝑛! such that for all 𝑛 ≥ 𝑛!,

𝑓 𝑛 ≥ 𝑐 ⋅ 𝑔 𝑛

Big-Omega

𝑓(𝑛) is Θ(𝑔 𝑛) if
𝑓 𝑛 is 𝑂(𝑔 𝑛) and 𝑓 𝑛 is Ω(𝑔 𝑛).
(in	other	words:	there exist positive constants 𝑐1, c2, 𝑛! such
that for all 𝑛 ≥ 𝑛!)

c1 ⋅ 𝑔 𝑛 ≤ 𝑓 𝑛 ≤ c2 ⋅ 𝑔 𝑛

Big-Theta

𝑓(𝑛) is 𝑂(𝑔 𝑛) if there exist positive
constants 𝑐, 𝑛! such that for all 𝑛 ≥ 𝑛!,

𝑓 𝑛 ≤ 𝑐 ⋅ 𝑔 𝑛

Big-Oh

CSE 373 Summer 2020LEC 06:, Recurrences, Master Theorem

A Note on Asymptotic Analysis Tools

When to use Big-Theta (most of the time): When you have to use Big-Oh/Big-Omega:

for any function that's just the sum of its terms like

f(n) = 2^n + 3n^3 + 4n - 5 we can always just do the
approach of dropping constant multipliers / removing the
lower order terms to find the big-Theta at a glance.

f(n) { n if n is prime, 1 otherwise}

since in this case, the big-Oh (n) and the big-Omega (1)
don't overlap at the same complexity class, there is no
reasonable big-Theta and we couldn't use it here.

• We’ll generally use Big-Theta from here on out: most specific
• In industry, people often use Big-Oh to mean “Tight Big-Oh” and use it even when a Big-Theta exists

CSE 373 Summer 2020LEC 06:, Recurrences, Master Theorem

Review When to do Case Analysis?
• Imagine a 3-dimensional plot

- Which case we’re considering is one dimension
- Choosing a case lets us take a “slice” of the other dimensions: n and f(n)
- We do asymptotic analysis on each slice in step 2

f(n) n

toFind position

At front
(Best Case)

Not present
(Worst Case)

CSE 373 Summer 2020LEC 06:, Recurrences, Master Theorem

Review How to do Case Analysis
1. Are there significantly different cases?

- Do other variables/parameters/fields affect the runtime, other than input
size? For many algorithms, the answer is no.

2. Figure out how things could change depending on the input
(excluding n, the input size)
- Can you exit loops early?
- Can you return early?
- Are some branches much slower than others?

3. Determine what inputs could cause you to hit the best/worst parts
of the code.

CSE 373 Summer 2020LEC 06:, Recurrences, Master Theorem

Other Useful Cases You Might See
• Overall Case:

- Model code as a “cloud” that covers all possibilities across all cases. What’s
the O/Ω/Θ of that cloud?

• “Assume X Won’t Happen Case”:
- E.g. Assume array won’t need to resize

• “Average Case”:
- Assume random input
- Lots of complications – what distribution of random?

• “In-Practice Case”:
- Not a real term, but a useful idea
- Make reasonable assumptions about how the world will work, then do worst-

case analysis under those assumptions.

Worst

Best

Other CasesOverall

CSE 373 Summer 2020LEC 06:, Recurrences, Master Theorem

How Can You Tell if Best/Worst Cases Exist?
• Are there other possible models for this code?
• If n is given, are there still other factors that determine the runtime?

• Note: sometimes there aren’t significantly different cases! Sometimes
we just want to model the code with a single function and go straight
to asymptotic analysis!

CSE 373 Summer 2020LEC 06:, Recurrences, Master Theorem

pollev.com/uwcse373

CSE 373 Summer 2020LEC 06:, Recurrences, Master Theorem

Can We Choose n=0 as the Best Case?
• Remember that each case needs to be a “slice”: a function over n

- The input to asymptotic analysis is a function over all of n, because we’re
concerned with growth rate

- Fixing n doesn’t work with our tools because it wouldn’t let us examine the
bound asymptotically

• Think of it as “Best Case as n grows infinitely large”, not “Best Case of
all inputs, including n”

CSE 373 Summer 2020LEC 06:, Recurrences, Master Theorem

Lecture Outline
• Review Asymptotic Analysis & Case Analysis

• Analyzing Recursive Code

1 2 3

Halving the Input Constant size Input Doubling the Input

Recursive code usually falls into
one of 3 common patterns:

Binary Search

CSE 373 Summer 2020LEC 06:, Recurrences, Master Theorem

Case Study: Binary Search
public int binarySearch(int[] arr, int toFind, int lo, int hi) {

if (hi < lo) {
return -1;

} else if (hi == lo) {
if (arr[hi] == toFind) {

return hi;
}
return -1;

}

int mid = (lo + hi) / 2;
if (arr[mid] == toFind) {

return mid;
} else if (arr[mid] < toFind) {

return binarySearch(arr, toFind, mid+1, hi);
} else {

return binarySearch(arr, toFind, lo, mid-1);
}

}

Base Cases

Recursive Cases

Note: the parameters passed
to recursive call reduce the

size of the problem!

CSE 373 Summer 2020LEC 06:, Recurrences, Master Theorem

Binary Search Runtime
Binary search: An algorithm to find a target value in a sorted array or list by successively
eliminating half of the array from consideration.
- Example: Searching the array below for the value 42:

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value -4 2 7 10 15 20 22 25 30 36 42 50 56 68 85 92 103

lo mid hi

Let’s consider the runtime of Binary Search
What’s the first step?

CSE 373 Summer 2020LEC 06:, Recurrences, Master Theorem

pollev.com/uwcse373

Binary Search Runtime
Binary search: An algorithm to find a target value in a sorted array or list by successively
eliminating half of the array from consideration.
- Example: Searching the array below for the value 42:

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value -4 2 7 10 15 20 22 25 30 36 42 50 56 68 85 92 103

lo mid hi

What’s the Best Case?

What’s the Worst Case?
Element found at first index examined (index 8)

Element not found, cut input in half, then in half again...

Θ(1)

??? 1 Halving the Input

CSE 373 Summer 2020LEC 06:, Recurrences, Master Theorem

Binary Search Runtime
• For an array of size n, eliminate ½

until 1 element remains.
n, n/2, n/4, n/8, ..., 4, 2, 1

- How many divisions does that take?

• Think of it from the other direction:
- How many times do I have to multiply by

2 to reach n?
1, 2, 4, 8, ..., n/4, n/2, n

- Call this number of multiplications "x".

2x= n
x = log2 n

• Binary search is in the logarithmic
complexity class.

Logarithm – inverse of exponentials

Examples:

2& = 4 ⇒ 2 = log& 4

3& = 9 ⇒ 2 = log' 9

0

1

2

3

4

5

6

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Log(n)

𝑦 = log" 𝑥 𝑖𝑠 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝑏# = 𝑥

CSE 373 Summer 2020LEC 06:, Recurrences, Master Theorem

We Just Saw: A Leap of Intuition

binarySearch

TIGHT
BIG-OH

TIGHT
BIG-OMEGA

BIG-THETA

O(1)

𝛺(1)

Θ(1)

TIGHT
BIG-OH

TIGHT
BIG-OMEGA

BIG-THETA

O(log n)

𝛺(log n)

Θ(log n)

CODE

Best Case:
First element matches

Worst Case:
Split log(n) times

• We identified the best and worst cases – a good start!
• But we didn’t do:

• Step 1: model the code as a function
• Step 2: analyze that function to find its bounds

CSE 373 Summer 2020LEC 06:, Recurrences, Master Theorem

Our Goal: A Complete Toolchain

binarySearch

TIGHT
BIG-OH

TIGHT
BIG-OMEGA

BIG-THETA

O(1)

𝛺(1)

Θ(1)Asymptotic
Analysis

TIGHT
BIG-OH

TIGHT
BIG-OMEGA

BIG-THETA

O(log n)

𝛺(log n)

Θ(log n)

BEST CASE
FUNCTION

Asymptotic
Analysis

WORST CASE
FUNCTION

CODE

???

???

2

2

Case
Analysis

1

• We want to be able to use our algorithmic analysis tools
• To do that, we need an essential intermediate: to model

the code with runtime functions

CSE 373 Summer 2020LEC 06:, Recurrences, Master Theorem

Modeling Binary Search
public int binarySearch(int[] arr, int toFind, int lo, int hi) {

if (hi < lo) {
return -1;

} else if (hi == lo) {
if (arr[hi] == toFind) {

return hi;
}
return -1;

}

int mid = (lo + hi) / 2;
if (arr[mid] == toFind) {

return mid;
} else if (arr[mid] < toFind) {

return binarySearch(arr, toFind, mid+1, hi);
} else {

return binarySearch(arr, toFind, lo, mid-1);
}

}

+2

+4

+6

???

How do we model a
recursive call?

Fortunately, we have a
tool for this!

Base Case

Base Case

Recursive Case

CSE 373 Summer 2020LEC 06:, Recurrences, Master Theorem

Meet the Recurrence
A recurrence relation is an equation that defines a sequence based
on a rule that gives the next term as a function of the previous
term(s)
It’s a lot like recursive code:

- At least one base case and at least one recursive case
- Each case should include the values for n to which it corresponds
- The recursive case should reduce the input size in a way that eventually triggers

the base case
- The cases of your recurrence usually correspond exactly to the cases of the code

𝑇 𝑛 = /
5 if 𝑛 < 3

2𝑇
𝑛
2
+ 10 otherwise

A generic example of
a recurrence:

CSE 373 Summer 2020LEC 06:, Recurrences, Master Theorem

Writing Recurrences: Example 1
public int recurse(int n) {

if (n < 3) {
return 80;

}

int a = n * 2;

int val1 = recurse(n / 3);
int val2 = recurse(n / 3);

return val1 + val2;
}

+2 Base Case

+2 Recursive Case

+2

Non-recursive Work: +4

Recursive Work: + 2*T(n/3)

𝑇 𝑛 = $
2 if 𝑛 < 3

2𝑇
𝑛
3
+ 4 otherwise

CSE 373 Summer 2020LEC 06:, Recurrences, Master Theorem

Writing Recurrences: Example 2
public int recurse(int n) {

if (n < 3) {
return 80;

}

for (int i = 0; i < n; i++) {
System.out.println(i);

}

int val1 = recurse(n / 3);
int val2 = recurse(n / 3);

return val1 + val2;
}

+2 Base Case

+n Recursive Case

+2

Non-recursive Work: + n + 2

Recursive Work: + 2*T(n/3)

𝑇 𝑛 = $
2 if 𝑛 < 3

2𝑇
𝑛
3 + 𝑛 otherwise

CSE 373 Summer 2020LEC 06:, Recurrences, Master Theorem

Writing Recurrences: Example 3
public int recurse(int n) {

if (n < 3) {
return 80;

}

for (int i = 0; i < n; i++) {
System.out.println(i);

}

int val1 = recurse(n / 3);
int val2 = recurse(n / 3);
int val3 = recurse(n / 3);

return val1 + val2 + val3;
}

+2 Base Case

+n
Recursive Case

+3

Non-recursive Work: + n + 3

Recursive Work: + 3*T(n/3)

𝑇 𝑛 = $
2 if 𝑛 < 3

3𝑇
𝑛
3 + 𝑛 otherwise

CSE 373 Summer 2020LEC 06:, Recurrences, Master Theorem

Our Goal: A Complete Toolchain
TIGHT
BIG-OH

TIGHT
BIG-OMEGA

BIG-THETA
Asymptotic
Analysis

TIGHT
BIG-OH

TIGHT
BIG-OMEGA

BIG-THETA

BEST CASE
FUNCTION

Asymptotic
Analysis

WORST CASE
FUNCTION

CODE

2

2

Case
Analysis

1

Write a
Recurrence

CSE 373 Summer 2020LEC 06:, Recurrences, Master Theorem

Recurrence to Big-Θ
• It’s still really hard to tell what the big-O is just by

looking at it.
• But fancy mathematicians have a formula for us to use!

𝑇 𝑛 = $
2 if 𝑛 < 3

2𝑇
𝑛
3
+ 𝑛 otherwise

𝑇 𝑛 = $
𝑑 if 𝑛 is at most some constant
𝑎𝑇

𝑛
𝑏 + 𝑓 𝑛 otherwise

Where 𝑓 𝑛 is Θ 𝑛!

𝑇 𝑛 ∈ Θ 𝑛!log" 𝑎 < 𝑐
log" 𝑎 = 𝑐 𝑇 𝑛 ∈ Θ 𝑛! log 𝑛
log" 𝑎 > 𝑐 𝑇 𝑛 ∈ Θ 𝑛#$%! &

If

If
If

then

then
then

MASTER THEOREM

a=2 b=3 and c=1

log@ 2 = 𝑥 (3A = 2 ⇒ 𝑥 ≅ 0.63)
log@ 2 < 1
We’re in case 1
𝑇 𝑛 ∈ Θ(𝑛)

𝑦 = log" 𝑥 𝑖𝑠 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝑏# = 𝑥

CSE 373 Summer 2020LEC 06:, Recurrences, Master Theorem

Aside Understanding the Master Theorem
• The case

- Recursive case does a lot of non recursive work
in comparison to how quickly it divides the
input size

- Most work happens in beginning of call stack
- Non recursive work in recursive case dominates

growth, nc term
• The case

- Recursive case evenly splits work between non
recursive work and passing along inputs to
subsequent recursive calls

- Work is distributed across call stack

• The case
- Recursive case breaks inputs apart quickly and

doesn’t do much non recursive work
- Most work happens near bottom of call stack

log" 𝑎 < 𝑐

log" 𝑎 = 𝑐

log" 𝑎 > 𝑐§ A measures how many recursive calls are
triggered by each method instance

§ B measures the rate of change for input
§ C measures the dominating term of the non

recursive work within the recursive method
§ D measures the work done in the base case

𝑇 𝑛 = $
𝑑 if 𝑛 is at most some constant
𝑎𝑇

𝑛
𝑏 + 𝑓 𝑛 otherwise

Where 𝑓 𝑛 is Θ 𝑛!

𝑇 𝑛 ∈ Θ 𝑛!log" 𝑎 < 𝑐
log" 𝑎 = 𝑐 𝑇 𝑛 ∈ Θ 𝑛! log 𝑛
log" 𝑎 > 𝑐 𝑇 𝑛 ∈ Θ 𝑛#$%! &

If

If
If

then

then
then

MASTER THEOREM

CSE 373 Summer 2020LEC 06:, Recurrences, Master Theorem

Lecture Outline
• Review Asymptotic Analysis & Case Analysis

• Analyzing Recursive Code

1 2 3

Halving the Input Constant size Input Doubling the Input

Recursive code usually falls into
one of 3 common patterns:

Binary Search
Θ (log n)

Merge Sort

CSE 373 Summer 2020LEC 06:, Recurrences, Master Theorem

Merge Sort
0 1 2 3 4 5 6 7 8 9

8 2 91 22 57 1 10 6 7 4

Divide

0 1 2 3 4

8 2 91 22 57

5 6 7 8 9

1 10 6 7 4

Conquer
0

8

0

8

0 1 2 3 4

2 8 22 57 91

5 6 7 8 9

1 4 6 7 10

0 1 2 3 4 5 6 7 8 9

1 2 4 6 7 8 10 22 57 91

Combine

CSE 373 Summer 2020LEC 06:, Recurrences, Master Theorem

Merge Sort
mergeSort(input) {

if (input.length == 1)
return

else
smallerHalf = mergeSort(new [0, ..., mid])
largerHalf = mergeSort(new [mid + 1, ...])
return merge(smallerHalf, largerHalf)

}

0 1 2 3 4

8 2 57 91 22

0 1

8 2

0 1 2

57 91 22

0

8

0

2

0

57

0 1

91 22

0

91

0

22

0 1

22 91

0 1 2

22 57 91

0 1

2 8

0 1 2 3 4

2 8 22 57 91

𝑇 𝑛 = $
1 if 𝑛 ≤ 3

2𝑇
𝑛
2 + 𝑛 otherwise

2 Constant size Input

CSE 373 Summer 2020LEC 06:, Recurrences, Master Theorem

pollev.com/uwcse373

Take a guess: What is the Big-Theta of
worst-case Merge Sort?

0 1

8 2

0 1 2

57 91 22

0

8

0

2

0

57

0 1

91 22

0

91

0

22

0 1

22 91

0 1 2

22 57 91

0 1

2 8

0 1 2 3 4

2 8 22 57 91

𝑇 𝑛 = *
1 if 𝑛 ≤ 3

2𝑇
𝑛
2 + 𝑛 otherwise

CSE 373 Summer 2020LEC 06:, Recurrences, Master Theorem

Merge Sort Recurrence to Big-Θ

a=2 b=2 and c=1

logD 2 = 𝑥 ⇒ 2A = 2 ⇒ 𝑥 = 1
logD 2 = 1
We’re in case 2
𝑇 𝑛 ∈ Θ(𝑛 log 𝑛)

𝑦 = log" 𝑥 𝑖𝑠 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝑏# = 𝑥𝑇 𝑛 = $
𝑑 if 𝑛 is at most some constant
𝑎𝑇

𝑛
𝑏 + 𝑓 𝑛 otherwise

Where 𝑓 𝑛 is Θ 𝑛!

𝑇 𝑛 ∈ Θ 𝑛!log" 𝑎 < 𝑐
log" 𝑎 = 𝑐 𝑇 𝑛 ∈ Θ 𝑛! log 𝑛
log" 𝑎 > 𝑐 𝑇 𝑛 ∈ Θ 𝑛#$%! &

If
If
If

then
then
then

MASTER THEOREM

𝑇 𝑛 = $
1 if 𝑛 ≤ 3

2𝑇
𝑛
2 + 𝑛 otherwise

CSE 373 Summer 2020LEC 06:, Recurrences, Master Theorem

Recursive Toolchain
TIGHT
BIG-OH

TIGHT
BIG-OMEGA

BIG-THETA
Asymptotic
Analysis

TIGHT
BIG-OH

TIGHT
BIG-OMEGA

BIG-THETA

BEST CASE
FUNCTION

Asymptotic
Analysis

WORST CASE
FUNCTION

CODE

2

2

Case
Analysis

1

For recursive code, we now have tools that fall under Case
Analysis (Writing Recurrences) and Asymptotic Analysis (The
Master Theorem).

Write a
Recurrence

Master Theorem

Master Theorem

CSE 373 Summer 2020LEC 06:, Recurrences, Master Theorem

Lecture Outline
• Review Asymptotic Analysis & Case Analysis

• Analyzing Recursive Code

1 2 3

Halving the Input Constant size Input Doubling the Input

Recursive code usually falls into
one of 3 common patterns:

Binary Search
Θ (log n)

Merge Sort
Θ (n log n)

Fibonacci

CSE 373 Summer 2020LEC 06:, Recurrences, Master Theorem

Lecture Outline
• Review Asymptotic Analysis & Case Analysis

• Analyzing Recursive Code

1 2 3

Halving the Input Constant size Input Doubling the Input

Recursive code usually falls into
one of 3 common patterns:

Binary Search
Θ (log n)

Merge Sort
Θ (n log n)

Fibonacci
NEXT LECTURE

CSE 373 Summer 2020LEC 06:, Recurrences, Master Theorem

Calculating Fibonacci

f(4)

f(3) f(3)

f(2) f(2) f(2) f(2)

f(1) f(1)f(1) f(1)f(1) f(1)f(1) f(1)

• Each call creates 2 more calls
• Each new call has a copy of the

input, almost
• Almost doubling the input at

each call

public int fib(int n) {
if (n <= 1) {

return 1;
}
return fib(n-1) + fib(n-1);

}

3 Doubling the Input

Almost

CSE 373 Summer 2020LEC 06:, Recurrences, Master Theorem

Fibonacci Recurrence to Big-Θ
Can we use the Master Theorem?

Uh oh, our model doesn’t match that format…

Maybe geometry can help!

Can we intuit a pattern?
T(1) = d
T(2) = 2T(2-1) + c = 2(d) + c
T(3) = 2T(3-1) + c = 2(2(d) + c) + c = 4d + 3c
T(4) = 2T(4-1) + c = 2(4d + 3c) + c = 8d + 7c
T(5) = 2T(5-1) + c = 2(8d + 7c) + c = 16d +25c
Looks like something’s happening but it’s tough

public int fib(int n) {
if (n <= 1) {

return 1;
}
return fib(n-1) + fib(n-1);

}

𝑇 𝑛 = E 𝑑 if 𝑛 ≤ 1
2𝑇 𝑛 − 1 + 𝑐 otherwise

𝑇 𝑛 = $
𝑑 if 𝑛 is at most some constant
𝑎𝑇

𝑛
𝑏
+ 𝑓 𝑛 otherwise

MASTER THEOREMd

2T(n-1) + c

CSE 373 Summer 2020LEC 06:, Recurrences, Master Theorem

Fibonacci Recurrence to Big-Θ

f(4)

f(3) f(3)

f(2) f(2) f(2) f(2)

f(1) f(1)f(1) f(1)f(1) f(1)f(1) f(1)

𝑇 𝑛 = E 𝑑 𝑤ℎ𝑒𝑛 𝑛 ≤ 1
2𝑇 𝑛 − 1 + 𝑐 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

How many layers in the function call tree?
How many layers will it take to transform “n”
to the base case of “1” by subtracting 1
For our example, 4 -> Height = n

How many function calls per layer?

LAYER FUNCTION
CALLS

1 1

2 2

3 4

4 8

How many function calls on layer k?

2k-1

How many function calls TOTAL
for a tree of k layers?

1 + 2 + 3 + 4 + … + 2k-1

CSE 373 Summer 2020LEC 06:, Recurrences, Master Theorem

Fibonacci Recurrence to Big-Θ
• Patterns found:

How many function calls on layer k? 2k-1

How many function calls TOTAL for a tree of k layers?

1 + 2 + 4 + 8 + … + 2k-1

Total runtime = (total function calls) x (runtime of each function call)

Total runtime = (1 + 2 + 4 + 8 + … + 2k-1) x (constant work)

1 + 2 + 4 + 8 + … + 2k-1 = O
'()

*+)

2' =
2* − 1
2 − 1 = 2* − 1

How many layers in the function call tree? n

𝑻 𝒏 = 𝟐𝒏 − 𝟏 ∈ 𝚯(𝟐𝒏)

Summation Identity
Finite Geometric Series

O
'()

*+)

𝑥' =
𝑥* − 1
𝑥 − 1

CSE 373 Summer 2020LEC 06:, Recurrences, Master Theorem

Fibonacci Recurrence to Big-Θ

How many layers in the function call
tree?

O
'()

*+)

2' =
2* − 1
2 − 1 = 2* − 1

Summation Identity
Finite Geometric Series

O
'()

*+)

𝑥' =
𝑥* − 1
𝑥 − 1

n

2k-1

1 + 2 + 4 + 8 + … + 2k-1

(1 + 2 + 4 + 8 + … + 2k-1) x (constant work)

1 + 2 + 4 + 8 + … + 2k-1 =

𝑻 𝒏 = 𝟐𝒏 − 𝟏 ∈ 𝚯(𝟐𝒏)

Total runtime = (total function
calls) * (runtime of each function
call)

How many function calls TOTAL for
a tree of k layers?

How many function calls on layer k?

CSE 373 Summer 2020LEC 06:, Recurrences, Master Theorem

3 Patterns for Recursive Code

1 2 3

Halving the Input Constant size Input Doubling the Input

Binary Search
Θ (log n)

Merge Sort
Θ (n log n)

Fibonacci
Θ (2n)

0
5
10
15
20
25
30
35

1 2 3 4 5

Runtime Comparison

logn nlogn 2^n

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10

Runtime Comparison

logn nlogn 2^n

