CSE 373

# Recurrences, Master Theorem

#### **BEFORE WE START**

Review: Which of the following are evidence that a Big-Theta exists?

- a) Big-Oh == Big-Theta
- b) We're analyzing a function that can be fully expressed as a polynomial
- c) There aren't extra terms (e.g.  $n^2 + n$ )
- d) Runtime isn't affected by array contents

#### pollev.com/uwcse373

Instructor A

**Aaron Johnston** 

TAs

Timothy Akintilo Farrell Fileas
Brian Chan Leona Kazi
Joyce Elauria Keanu Vestil
Eric Fan Howard Xiao
Siddharth Vaidyanathan



### **Learning Objectives**

After this lecture, you should be able to...

- Review Distinguish between Asymptotic Analysis & Case Analysis, and apply both to code snippets
- 2. Describe the 3 most common recursive patterns and identify whether code belongs to one of them
- 3. Model recursive code using a recurrence relation (Step 1)
- 4. Use the Master Theorem to characterize a recurrence relation with Big-Oh/Big-Theta/Big-Omega bounds (Step 2)

#### **Lecture Outline**

• Review Asymptotic Analysis & Case Analysis



Analyzing Recursive Code

## Review Algorithmic Analysis Roadmap



### Review Oh, and Omega, and Theta, oh my

- Big-Oh is an upper bound
  - My code takes at most this long to run
- Big-Omega is a lower bound
  - My code takes at least this long to run
- Big Theta is "equal to"
  - My code takes "exactly"\* this long to run
  - \*Except for constant factors and lower order terms
  - Only exists when Big-Oh == Big-Omega!

#### Big-Oh

f(n) is O(g(n)) if there exist positive constants  $c, n_0$  such that for all  $n \ge n_0$ ,  $f(n) \le c \cdot g(n)$ 

#### Big-Omega

f(n) is  $\Omega(g(n))$  if there exist positive constants  $c, n_0$  such that for all  $n \ge n_0$ ,  $f(n) \ge c \cdot g(n)$ 

#### Big-Theta

f(n) is  $\Theta(g(n))$  if f(n) is O(g(n)) and f(n) is O(g(n)). (in other words: there exist positive constants  $c1, c2, n_0$  such that for all  $n \ge n_0$ )  $c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n)$ 

## A Note on Asymptotic Analysis Tools

- We'll generally use Big-Theta from here on out: most specific
- In industry, people often use Big-Oh to mean "Tight Big-Oh" and use it even when a Big-Theta exists



### **Review** When to do Case Analysis?

- Imagine a 3-dimensional plot
  - Which case we're considering is one dimension
  - Choosing a case lets us take a "slice" of the other dimensions: n and f(n)
  - We do asymptotic analysis on each slice in step 2



### **Review** How to do Case Analysis

- 1. Are there significantly different cases?
  - Do other variables/parameters/fields affect the runtime, other than input size? For many algorithms, the answer is no.
- 2. Figure out how things could change depending on the input (excluding n, the input size)
  - Can you exit loops early?
  - Can you return early?
  - Are some branches much slower than others?

3. Determine what inputs could cause you to hit the best/worst parts of the code.

## Other Useful Cases You Might See

- Overall Case:
  - Model code as a "cloud" that covers all possibilities across all cases. What's

the  $O/\Omega/\Theta$  of that cloud?

- "Assume X Won't Happen Case":
  - E.g. Assume array won't need to resize
- "Average Case":
  - Assume random input
  - Lots of complications what distribution of random?
- "In-Practice Case":
  - Not a real term, but a useful idea
  - Make reasonable assumptions about how the world will work, then do worst-case analysis under those assumptions.



### **How Can You Tell if Best/Worst Cases Exist?**

- Are there other possible models for this code?
- If n is given, are there still other factors that determine the runtime?

Note: sometimes there aren't significantly different cases! Sometimes
we just want to model the code with a single function and go straight
to asymptotic analysis!



pollev.com/uwcse373

#### Can We Choose n=0 as the Best Case?

Top

#### Can We Choose n=0 as the Best Case?

- Remember that each case needs to be a "slice": a function over n
  - The input to asymptotic analysis is a function over all of n, because we're concerned with growth rate
  - Fixing n doesn't work with our tools because it wouldn't let us examine the bound asymptotically
- Think of it as "Best Case as n grows infinitely large", not "Best Case of all inputs, including n"

#### **Lecture Outline**

- Review Asymptotic Analysis & Case Analysis
- Analyzing Recursive Code

Recursive code usually falls into one of 3 common patterns:



1

**Halving the Input** 

**Binary Search** 

2

**Constant size Input** 

3

**Doubling the Input** 

## **Case Study: Binary Search**

```
public int binarySearch(int[] arr, int toFind, int lo, int hi) {
  if (hi < lo) {
    return -1;
  } else if (hi == lo) {
    if (arr[hi] == tofind) {
  return hi;
                                         Base Cases
    return -1;
  int mid = (lo + hi) / 2;
  if (arr[mid] == toFind) {
    return mid;
  } else if (arr[mid] < toFind) {</pre>
                                                              Recursive Cases
    return binarySearch(arr, toFind, mid+1, hi);
  } else {
    return binarySearch(arr, toFind, lo, mid-1);
                                                      Note: the parameters passed
                                                       to recursive call reduce the
                                                         size of the problem!
```

### **Binary Search Runtime**

Binary search: An algorithm to find a target value in a *sorted* array or list by successively eliminating half of the array from consideration.

- Example: Searching the array below for the value **42**:



#### Let's consider the runtime of Binary Search

What's the first step?



pollev.com/uwcse373

### **Binary Search Runtime**

Binary search: An algorithm to find a target value in a *sorted* array or list by successively eliminating half of the array from consideration.

- Example: Searching the array below for the value **42**:



What's the Best Case?

Element found at first index examined (index 8)

 $\Theta(1)$ 

What's the Worst Case?

Element not found, cut input in half, then in half again...



Halving the Input

### **Binary Search Runtime**

• For an array of size n, eliminate ½ until 1 element remains.

- How many divisions does that take?
- Think of it from the other direction:
  - How many times do I have to multiply by 2 to reach n?

- Call this number of multiplications "x".

$$2^{x}= n$$
  
  $x = log_2 n$ 

• Binary search is in the **logarithmic** complexity class.

#### Logarithm – inverse of exponentials

$$y = \log_b x$$
 is equal to  $b^y = x$ 

#### **Examples:**

$$2^2 = 4 \Rightarrow 2 = \log_2 4$$

$$3^2 = 9 \Rightarrow 2 = \log_3 9$$



## We Just Saw: A Leap of Intuition



O(1) $\Theta(1)$ **BIG-THETA** TIGHT  $\Omega(1)$ **BIG-OMEGA**  $O(\log n)$  $\Theta(\log n)$ **BIG-THETA** TIGHT  $\Omega(\log n)$ **BIG-OMEGA** 

- We identified the best and worst cases a good start!
- But we didn't do:
  - Step 1: model the code as a function
  - Step 2: analyze that function to find its bounds

**Our Goal: A Complete Toolchain** 



- We want to be able to use our algorithmic analysis tools
- To do that, we need an essential intermediate: to model the code with runtime functions

## **Modeling Binary Search**

```
public int binarySearch(int[] arr, int toFind, int lo, int hi) {
  if (hi < lo) {
                                            Base Case
    return -1;
  } else if (hi == lo) {
    if (arr[hi] == toFind) {
  return hi;
      return hi;
                                                 Base Case
    return -1;
  int mid = (lo + hi) / 2;
if (arr[mid] == toFind) {
                                                               Recursive Case
                                                                               How do we model a
    return mid;
  } else if (arr[mid] < toFind) {</pre>
                                                                               recursive call?
                                                                  333
    return binarySearch(arr, toFind, mid+1, hi);
  } else {
                                                                               Fortunately, we have a
    return binarySearch(arr, toFind, lo, mid-1);
                                                                               tool for this!
```

#### **Meet the Recurrence**

A recurrence relation is an equation that defines a sequence based on a rule that gives the next term as a function of the previous term(s)

#### It's a lot like recursive code:

- At least one base case and at least one recursive case
- Each case should include the values for n to which it corresponds
- The recursive case should reduce the input size in a way that eventually triggers the base case
- The cases of your recurrence usually correspond exactly to the cases of the code

A generic example of a recurrence:

$$T(n) = \begin{cases} 5 & \text{if } n < 3\\ 2T\left(\frac{n}{2}\right) + 10 & \text{otherwise} \end{cases}$$

## Writing Recurrences: Example 1

```
public int recurse(int n) {
 if (n < 3) {
  return 80;
}</pre>
  int a = n * 2; +2
  int val1 = recurse(n / 3);
  int val2 = recurse(n / 3);
  return val1 + val2; +2
```

**Recursive Case** 

Non-recursive Work: +4

Recursive Work: + 2\*T(n/3)

$$T(n) = \begin{cases} 2 & \text{if } n < 3\\ 2T\left(\frac{n}{3}\right) + 4 & \text{otherwise} \end{cases}$$

### Writing Recurrences: Example 2

```
public int recurse(int n) {
 if (n < 3) {
  return 80;
}</pre>
 int val1 = recurse(n / 3);
 int val2 = recurse(n / 3);
 return val1 + val2;
```

**Recursive Case** 

Non-recursive Work: + n + 2

Recursive Work: + 2\*T(n/3)

$$T(n) = \begin{cases} 2 & \text{if } n < 3\\ 2T\left(\frac{n}{3}\right) + n & \text{otherwise} \end{cases}$$

### Writing Recurrences: Example 3

```
public int recurse(int n) {
  if (n < 3) {
  return 80;
}</pre>
  for (int i = 0; i < n; i++) {
   System.out.println(i);
}</pre>
  int val1 = recurse(n / 3);
  int val2 = recurse(n / 3);
  int val3 = recurse(n / 3);
  return val1 + val2 + val3; +3
```

**Recursive Case** 

Non-recursive Work: + n + 3

Recursive Work: + 3\*T(n/3)

$$T(n) = \begin{cases} 2 & \text{if } n < 3\\ 3T\left(\frac{n}{3}\right) + n & \text{otherwise} \end{cases}$$

**Our Goal: A Complete Toolchain** 



## Recurrence to Big-O

$$T(n) = \begin{cases} 2 & \text{if } n < 3\\ 2T\left(\frac{n}{3}\right) + n & \text{otherwise} \end{cases}$$

- It's still really hard to tell what the big-O is just by looking at it.
- But fancy mathematicians have a formula for us to use!

#### **MASTER THEOREM**

$$T(n) = \begin{cases} d & \text{if } n \text{ is at most some constant} \\ aT\left(\frac{n}{b}\right) + f(n) & \text{otherwise} \end{cases}$$

Where f(n) is  $\Theta(n^c)$ 

If 
$$\log_b a < c$$
 then  $T(n) \in \Theta(n^c)$ 

If 
$$\log_b a = c$$
 then  $T(n) \in \Theta(n^c \log n)$ 

If 
$$\log_b a > c$$
 then  $T(n) \in \Theta(n^{\log_b a})$ 



$$a=2$$
  $b=3$  and  $c=1$ 

$$y = \log_b x$$
 is equal to  $b^y = x$ 

$$\log_3 2 = x (3^x = 2 \Rightarrow x \approx 0.63)$$

$$\log_3 2 < 1$$

We're in case 1

$$T(n) \in \Theta(n)$$

### Aside Understanding the Master Theorem

#### **MASTER THEOREM**

$$T(n) = \begin{cases} d & \text{if } n \text{ is at most some constant} \\ aT\left(\frac{n}{b}\right) + f(n) & \text{otherwise} \end{cases}$$

Where f(n) is  $\Theta(n^c)$ 

$$f \quad \log_b a < c \quad \text{ then } \quad T(n) \in \Theta(n^c)$$

If 
$$\log_b a = c$$
 then  $T(n) \in \Theta(n^c \log n)$ 

If 
$$\log_b a > c$$
 then  $T(n) \in \Theta(n^{\log_b a})$ 

- A measures how many recursive calls are triggered by each method instance
- B measures the rate of change for input
- C measures the dominating term of the non recursive work within the recursive method
- D measures the work done in the base case

- The  $\log_b a < c$  case
  - Recursive case does a lot of non recursive work in comparison to how quickly it divides the input size
  - Most work happens in beginning of call stack
  - Non recursive work in recursive case dominates growth, no term
- The  $\log_b a = c$  case
  - Recursive case evenly splits work between non recursive work and passing along inputs to subsequent recursive calls
  - Work is distributed across call stack
- The  $\log_b a > c$  case
  - Recursive case breaks inputs apart quickly and doesn't do much non recursive work
  - Most work happens near bottom of call stack

#### **Lecture Outline**

- Review Asymptotic Analysis & Case Analysis
- Analyzing Recursive Code

Recursive code usually falls into one of 3 common patterns:







## **Merge Sort**



### Merge Sort

```
mergeSort(input) {
   if (input.length == 1)
      return
   else
      smallerHalf = mergeSort(new [0, ..., mid])
      largerHalf = mergeSort(new [mid + 1, ...])
      return merge(smallerHalf, largerHalf)
}
```

$$T(n) = \begin{cases} 1 & \text{if } n \le 3\\ 2T\left(\frac{n}{2}\right) + n & \text{otherwise} \end{cases}$$

**2** Constant size Input





#### pollev.com/uwcse373

Take a guess: What is the Big-Theta of worst-case Merge Sort?

$$T(n) = \begin{cases} 1 & \text{if } n \le 3\\ 2T\left(\frac{n}{2}\right) + n & \text{otherwise} \end{cases}$$

Take a guess: What is the Big-Theta of worst-case Merge Sort? Why?

Top



## Merge Sort Recurrence to Big-O

$$T(n) = \begin{cases} 1 & \text{if } n \le 3\\ 2T\left(\frac{n}{2}\right) + n & \text{otherwise} \end{cases}$$

#### **MASTER THEOREM**

$$T(n) = \begin{cases} d & \text{if } n \text{ is at most some constant} \\ aT\left(\frac{n}{b}\right) + f(n) & \text{otherwise} \end{cases}$$

Where f(n) is  $\Theta(n^c)$ 

If 
$$\log_b a < c$$
 then  $T(n) \in \Theta(n^c)$ 

If 
$$\log_b a = c$$
 then  $T(n) \in \Theta(n^c \log n)$ 

If 
$$\log_b a > c$$
 then  $T(n) \in \Theta(n^{\log_b a})$ 



$$a=2 b=2 and c=1$$

$$y = \log_b x$$
 is equal to  $b^y = x$ 

$$\log_2 2 = x \Rightarrow 2^x = 2 \Rightarrow x = 1$$

$$\log_2 2 = 1$$

#### We're in case 2

$$T(n) \in \Theta(n \log n)$$



For recursive code, we now have tools that fall under Case Analysis (Writing Recurrences) and Asymptotic Analysis (The Master Theorem).

#### **Lecture Outline**

- Review Asymptotic Analysis & Case Analysis
- Analyzing Recursive Code

Recursive code usually falls into one of 3 common patterns:





**Halving the Input** 

Binary Search
Θ (log n)



**Constant size Input** 

Merge Sort Θ (n log n)



**Doubling the Input** 

Fibonacci

#### **Lecture Outline**

- Review Asymptotic Analysis & Case Analysis
- Analyzing Recursive Code

Recursive code usually falls into one of 3 common patterns:







## **Calculating Fibonacci**

```
public int fib(int n) {
    if (n <= 1) {
       return 1;
    }
    return fib(n-1) + fib(n-1);
}</pre>
```

- Each call creates 2 more calls
- Each new call has a copy of the input, almost
- Almost doubling the input at each call



3

**Doubling the Input** 

## Fibonacci Recurrence to Big-O

```
public int fib(int n) {
    if (n <= 1) {
       return 1;
    }
    return fib(n-1) + fib(n-1);
}</pre>
```

Can we use the Master Theorem?

#### **MASTER THEOREM**

$$T(n) = \begin{cases} d & \text{if } n \text{ is at most some constant} \\ aT\left(\frac{n}{b}\right) + f(n) & \text{otherwise} \end{cases}$$

$$T(n) = \begin{cases} d & \text{if } n \le 1\\ 2T(n-1) + c & \text{otherwise} \end{cases}$$

Uh oh, our model doesn't match that format...

Can we intuit a pattern?

$$T(1) = d$$
  
 $T(2) = 2T(2-1) + c = 2(d) + c$ 

$$T(3) = 2T(3-1) + c = 2(2(d) + c) + c = 4d + 3c$$

$$T(4) = 2T(4-1) + c = 2(4d + 3c) + c = 8d + 7c$$

$$T(5) = 2T(5-1) + c = 2(8d + 7c) + c = 16d + 25c$$

Looks like something's happening but it's tough

Maybe geometry can help!

## Fibonacci Recurrence to Big-O

#### How many layers in the function call tree?

How many layers will it take to transform "n" to the base case of "1" by subtracting 1

For our example, 4 -> Height = n

| $T(n) = \langle$ | d when $n \leq 1$ |
|------------------|-------------------|
|                  |                   |

f(4)

#### How many function calls per layer?

| LAYER | FUNCTION CALLS |  |
|-------|----------------|--|
| 1     | 1              |  |
| 2     | 2              |  |
| 3     | 4              |  |
| 4     | 8              |  |

How many function calls on layer k?

**2**k-1

How many function calls TOTAL for a tree of k layers?





f(3)

## Fibonacci Recurrence to Big-O

#### Patterns found:

How many layers in the function call tree? n

How many function calls on layer k?  $2^{k-1}$ 

How many function calls TOTAL for a tree of k layers?

$$1 + 2 + 4 + 8 + ... + 2^{k-1}$$

Total runtime = (total function calls) x (runtime of each function call)

Total runtime =  $(1 + 2 + 4 + 8 + ... + 2^{k-1}) \times (constant work)$ 

$$1 + 2 + 4 + 8 + \dots + 2^{k-1} = \sum_{i=1}^{k-1} 2^i = \frac{2^k - 1}{2 - 1} = 2^k - 1$$

$$T(n) = 2^n - 1 \in \Theta(2^n)$$

Summation Identity
Finite Geometric Series

$$\sum_{i=1}^{k-1} x^i = \frac{x^k - 1}{x - 1}$$

## Fibonacci Recurrence to Big-Θ

| How many layers in the function call tree?                         | n                                                    |                    |
|--------------------------------------------------------------------|------------------------------------------------------|--------------------|
| How many function calls on layer k?                                | 2 <sup>k-1</sup>                                     |                    |
| How many function calls TOTAL for a tree of k layers?              | 1 + 2 + 4 + 8 + + 2 <sup>k-1</sup>                   |                    |
| Total runtime = (total function calls) * (runtime of each function | $(1 + 2 + 4 + 8 + + 2^{k-1}) \times (constant work)$ | Summation Identity |

call)

$$1 + 2 + 4 + 8 + \dots + 2^{k-1} = \sum_{i=1}^{k-1} 2^i = \frac{2^k - 1}{2 - 1} = 2^k - 1$$

$$T(n) = 2^n - 1 \in \Theta(2^n)$$

Finite Geometric Series

$$\sum_{i=1}^{k-1} x^i = \frac{x^k - 1}{x - 1}$$

#### **3 Patterns for Recursive Code**





1

**Halving the Input** 

Binary Search
Θ (log n)

2

**Constant size Input** 

Merge Sort Θ (n log n)

3

**Doubling the Input** 

Fibonacci Θ (2<sup>n</sup>)