
CSE 373 Summer 2020LEC 05: O/Ω/𝝝, Case Analysis

CSE 373

Timothy Akintilo
Brian Chan
Joyce Elauria
Eric Fan

Farrell Fileas
Leona Kazi
Keanu Vestil
Howard Xiao

Aaron JohnstonInstructor

TAs

Siddharth Vaidyanathan

L E C 0 5

O/Ω/𝝝, Case
Analysis

BEFORE WE START

Review: Which of the following
functions are in O(n2)?

f(n) = 30n3 + 10
g(n) = 10000000
h(n) = 2n2 + 5n + 20

pollev.com/uwcse373

CSE 373 Summer 2020LEC 05: O/Ω/𝝝, Case Analysis

Announcements
• Project 0 (CSE 143 Review) due TONIGHT 11:59pm
• Project 1 (Deques) comes out this evening, due next Wednesday 7/8

11:59pm PDT
- Remember to read the partner set-up instructions!

• Friday (July 3rd) is a holiday: Independence Day (observed)
- No lecture or office hours (we’ll still check Piazza)

• Exercise 1 (written, individual) released Friday, due next Friday 7/10
11:59pm PDT
• We found the culprit who forgot to publish last lecture’s recording

promptly
- (It was me)

CSE 373 Summer 2020LEC 05: O/Ω/𝝝, Case Analysis

P1: Deques
• Deque ADT: a double-ended queue

- Add/remove from both ends, get in middle

• This project builds on ADTs vs. Data
Structure Implementations, Queues, and a
little bit of Asymptotic Analysis

- Practice the techniques and analysis covered
in LEC 02 & LEC 03!

• 3 components:
- Debug ArrayDeque implementation
- Implement LinkedDeque
- Run experiments

DEQUEUE ADT

State
Collection of ordered items
Count of items

Behavior
addFirst(item) add to front
addLast(item) add to end
removeFirst() remove from front
removeLast() remove from end
size() count of items
isEmpty() count is 0?
get(index) get 0-indexed element

ArrayDeque
LinkedDeque

CSE 373 Summer 2020LEC 05: O/Ω/𝝝, Case Analysis

P1: Sentinel Nodes

• Reduce code complexity & bugs
• Tradeoff: a tiny amount of extra

storage space for more reliable,
easier-to-develop code

Tired of running into these?
Find yourself writing case after case
in your linked node code?

Client View:

Implementation:

[3, 9]Introducing

Sentinel Nodes

CSE 373 Summer 2020LEC 05: O/Ω/𝝝, Case Analysis

P1: Gradescope & Testing
• From this project onward, we’ll have some Gradescope-only tests

- Run & give feedback when you submit, but only give a general name!

• The practice of reasoning about your code and writing your own tests is crucial
- Use Gradescope tests as a double-check that your tests are thorough
- To debug Gradescope failures, your first step should be writing your own test case

• You can submit as many times as you want on Gradescope (we’ll only grade the
last active submission)

- If you’re submitting a lot (more than ~6 times/hr) it will ask you to wait a bit
- Intention is not to get in your way: to give server a break, and guess/check is not usually an

effective way to learn the concepts in these assignments

1. Write
Implementation

2. Think about edge
cases, Write your

own tests
3. Run your own tests

4. Run Gradescope
tests as a double-

check

CSE 373 Summer 2020LEC 05: O/Ω/𝝝, Case Analysis

P1: Working with a Partner
• P1 Instructions talk about collaborating with your partner

- Adding each other to your GitLab repos
• Recommendations for partner work:

- Pair programming! Talk through and write the code together
- Two heads are better than one, especially when spotting edge cases J

- Meet in real-time! Consider screen-sharing via Zoom
- Be kind! Collaborating in our online quarter can be especially difficult, so

please be patient and understanding – partner projects are usually an
awesome experience if we’re all respectful

• We expect you to understand the full projects, not just half
- Please don’t just split the projects in half and only do part
- Please don’t come to OH and say “my partner wrote this code, I don’t

understand it, can you help me debug it?”

CSE 373 Summer 2020LEC 05: O/Ω/𝝝, Case Analysis

Learning Objectives

1. Differentiate between Big-Oh, Big-Omega, and Big-Theta

2. Come up with Big-Oh, Big-Omega, and Big-Theta bounds for a given
function

3. Perform Case Analysis to identify the Best Case and Worst Case for
a given piece of code

4. Describe the difference between Case Analysis and Asymptotic
Analysis

After this lecture, you should be able to...

CSE 373 Summer 2020LEC 05: O/Ω/𝝝, Case Analysis

Lecture Outline
• Big-O, Big-Omega, Big-Theta

• Case Study: Linear Search

• A New Tool: Case Analysis

CSE 373 Summer 2020LEC 05: O/Ω/𝝝, Case Analysis

COMPLEXITY
CLASS

Review Algorithmic Analysis Roadmap

CODE Code Modeling
RUNTIME

FUNCTION Asymptotic Analysis

• Algorithmic Analysis: The overall process of characterizing code with a
complexity class, consisting of:

- Code Modeling: Code à Function describing code’s runtime
- Asymptotic Analysis: Function à Complexity class describing asymptotic behavior

1 2

for (i = 0; i < n; i++) {
a[i] = 1;
b[i] = 2;

}

O(n)f(n) = 2n

CSE 373 Summer 2020LEC 05: O/Ω/𝝝, Case Analysis

Review Asymptotic Analysis
• Given a function that models some piece of

code, characterize that function’s growth rate
asymptotically (as n approaches infinity)

- We usually think of n as the “size of the input”, so
we typically only care about non-negative
integers

• Big-Oh is an upper bound on that function’s
growth rate

- Constants and smaller terms ignored
- We prefer a tight bound (e.g. n2), but doesn’t

have to be – also in O(n3)

𝑇 𝑛

𝑛

n3

10n2 + 8

n5

n4

f(n) = 10n2 + 8

CSE 373 Summer 2020LEC 05: O/Ω/𝝝, Case Analysis

f(n) = 0.5n is O()g(n) = n

0.5n always ≤ n!
Straightforward O(n).

n

Review Big-Oh Definition
• Intuitively, f(n) is O(g(n)) if it’s smaller than a

constant factor of g(n), asymptotically
• To prove that, all we need is:

- (c): What is the constant factor?
- (n0): From what point onward is f(n) smaller?

𝑓(𝑛) is 𝑂(𝑔 𝑛) if there exist positive
constants 𝑐, 𝑛! such that for all 𝑛 ≥ 𝑛!,

𝑓 𝑛 ≤ 𝑐 ⋅ 𝑔 𝑛

Big-Oh

f(n) = 2n is O()g(n) = n

Just need to use constant factor
c=2 so 2n ≤ c ⋅ n

n

Proof: c=0 n0=0 Proof: c=2 n0=0

f(n) = n is O()g(n) = n2

n ≤ n2, but only after n=1. Choose
that as n0.

n

Proof: c=0 n0=1

CSE 373 Summer 2020LEC 05: O/Ω/𝝝, Case Analysis

Review What about Multiple Terms?

f(n) = 10n is O()g(n) = n

Just need to use constant factor
c=10 so 10n ≤ c ⋅ n

n

f(n) = 15 is O()g(n) = n

One way: use c=15, then 15 ≤ 15n
becomes true starting at n=1

n

Proof: c=10 n0=0 Proof: c=15 n0=1

+ =

f(n) = 15n+10 is O()g(n) = n

Just add up the proofs we came up
with for individual terms!

n

Proof: c=25 n0=1

CSE 373 Summer 2020LEC 05: O/Ω/𝝝, Case Analysis

Uncharted Waters: Prime Checking
• Find a model 𝑓 𝑛 for the running

time of this code on input 𝑛 →
What’s the Big-O?

- We know how to count the
operations

- But how many times does this loop
run?

• Sometimes it can stop early
• Sometimes it needs to run n times

boolean isPrime(int n) {
int toTest = 2;
while(toTest < n) {

if (n % toTest == 0) {
return false;

} else {
toTest += 1;

}
}
return true;

}

+1

+2

+1

+1
+2

+1

~+5 *?

CSE 373 Summer 2020LEC 05: O/Ω/𝝝, Case Analysis

Prime Checking Runtime
Is the runtime O(1) or
O(n)?

More than half the
time we need 3 or
fewer iterations. Is it
O(1)?

But we can always
come up with another
value of n to make it
take n iterations. So
O(n)?

This is why we have definitions!

𝑓(𝑛)

CSE 373 Summer 2020LEC 05: O/Ω/𝝝, Case Analysis

𝑓(𝑛) is 𝑂(𝑔 𝑛) if there exist positive
constants 𝑐, 𝑛! such that for all 𝑛 ≥ 𝑛!,

𝑓 𝑛 ≤ 𝑐 ⋅ 𝑔 𝑛

Big-O

Is the runtime O(n)?
Can you find constants 𝑐 and 𝑛!?

How about 𝑐 = 1 and 𝑛! = 5,
𝑓 𝑛 =smallest divisor of 𝑛 ≤ 1 ⋅ 𝑛 for 𝑛 ≥ 5

Is the runtime O(1)?
Can you find constants 𝑐 and 𝑛!?

No! Choose your value of 𝑐. I can find a prime
number 𝑘 bigger than 𝑐.
And 𝑓 𝑘 = 𝑘 > 𝑐 ⋅ 1 so the definition isn’t met!

Using our definitions, we
see it’s O(n) and not O(1)

𝑓(𝑛)

CSE 373 Summer 2020LEC 05: O/Ω/𝝝, Case Analysis

Big-Oh isn’t everything
• Our prime finding code is O(n) as a tight bound. But so is printing all

the elements of a list (a basic for loop).

Your experience running these two pieces of code is going to be very different.
It’s disappointing that the Big-Ohs are the same – that’s not very precise!
Could we have some way of pointing out the list code always takes AT LEAST 𝑛 operations?

𝑂(𝑛) 𝑂(𝑛)

CSE 373 Summer 2020LEC 05: O/Ω/𝝝, Case Analysis

Big-𝛀 [Omega]
𝑓(𝑛) is Ω(𝑔 𝑛) if there exist positive
constants 𝑐, 𝑛! such that for all 𝑛 ≥ 𝑛-,

𝑓 𝑛 ≥ 𝑐 ⋅ 𝑔 𝑛

Big-Omega

𝑂(𝑛)

Ω(1)

The formal definition of Big-Omega is the
flipped version of Big-Oh!

“f(n) is O(g(n))” : f(n) grows at most as fast as
g(n)

“f(n) is Ω(g(n))” : f(n) grows at least as fast as
g(n)

𝑓(𝑛) is 𝑂(𝑔 𝑛) if there exist positive
constants 𝑐, 𝑛! such that for all 𝑛 ≥ 𝑛!,

𝑓 𝑛 ≤ 𝑐 ⋅ 𝑔 𝑛

Big-O

CSE 373 Summer 2020LEC 05: O/Ω/𝝝, Case Analysis

Big-Omega Also Doesn’t Have to be Tight

• 2𝑛/ is Ω(1)
• 2𝑛/ is Ω(n)
• 2𝑛/ is Ω(𝑛0)
• 2𝑛/ is Ω(𝑛/)

• 2𝑛/ is lowerbounded by all the complexity classes listed above (1, n, 𝑛0, 𝑛/)

𝑇 𝑛

𝑛

2n3

n2

n

1

n3

CSE 373 Summer 2020LEC 05: O/Ω/𝝝, Case Analysis

Tight Big-O and Big-𝛀 Bounds Together

Note: most functions look like the one on the right,
with the same tight Big-Oh and Big-Omega bound.
But we’ll see important examples of the one on the
left.

f(n) = nPrime runtime function

𝑂(𝑛) 𝑂(𝑛)

Ω(1) Ω(n)

CSE 373 Summer 2020LEC 05: O/Ω/𝝝, Case Analysis

Oh, and Omega, and Theta, oh my
• Big-Oh is an upper bound

- My code takes at most this long to
run

• Big-Omega is a lower bound
- My code takes at least this long to

run

• Big Theta is “equal to”
- My code takes “exactly”* this long to run
- *Except for constant factors and lower order

terms
- Only exists when Big-Oh == Big-Omega!

𝑓(𝑛) is Ω(𝑔 𝑛) if there exist positive constants
𝑐, 𝑛! such that for all 𝑛 ≥ 𝑛!,

𝑓 𝑛 ≥ 𝑐 ⋅ 𝑔 𝑛

Big-Omega

𝑓(𝑛) is Θ(𝑔 𝑛) if
𝑓 𝑛 is 𝑂(𝑔 𝑛) and 𝑓 𝑛 is Ω(𝑔 𝑛).
(in	other	words:	there exist positive constants 𝑐1, c2, 𝑛! such
that for all 𝑛 ≥ 𝑛!)

c1 ⋅ 𝑔 𝑛 ≤ 𝑓 𝑛 ≤ c2 ⋅ 𝑔 𝑛

Big-Theta

𝑓(𝑛) is 𝑂(𝑔 𝑛) if there exist positive
constants 𝑐, 𝑛! such that for all 𝑛 ≥ 𝑛!,

𝑓 𝑛 ≤ 𝑐 ⋅ 𝑔 𝑛

Big-Oh

CSE 373 Summer 2020LEC 05: O/Ω/𝝝, Case Analysis

Oh, and Omega, and Theta, oh my
Big Theta is “equal to”

- My code takes “exactly”* this long to run
- *Except for constant factors and lower

order terms

𝑓(𝑛) is Θ(𝑔 𝑛) if
𝑓 𝑛 is 𝑂(𝑔 𝑛) and 𝑓 𝑛 is Ω(𝑔 𝑛).
(in	other	words:	there exist positive constants 𝑐1, c2, 𝑛! such
that for all 𝑛 ≥ 𝑛!)

c1 ⋅ 𝑔 𝑛 ≤ 𝑓 𝑛 ≤ c2 ⋅ 𝑔 𝑛

Big-Theta

𝑂(𝑛) Ω(n) Θ(𝑛)

f(n) = n

To define a big-Theta, you expect the
tight big-Oh and tight big-Omega
bounds to be touching on the graph
(the same complexity class)

CSE 373 Summer 2020LEC 05: O/Ω/𝝝, Case Analysis

Our Upgraded Tool: Asymptotic Analysis

TIGHT
BIG-OH

RUNTIME
FUNCTION

Asymptotic
Analysis

2 O(n2)

TIGHT
BIG-OMEGA Ω(n2)

BIG-THETA Θ(n2)

f(n) = 10n2 + 13n + 2

We’ve upgraded our Asymptotic Analysis tool to convey more useful information! Having 3 different types of bounds
means we can still characterize the function in simple terms, but describe it more thoroughly than just Big-Oh.

CSE 373 Summer 2020LEC 05: O/Ω/𝝝, Case Analysis

Our Upgraded Tool: Asymptotic Analysis

TIGHT
BIG-OH

RUNTIME
FUNCTION

Asymptotic
Analysis

2 O(n)

𝑓(𝑛)
TIGHT

BIG-OMEGA Ω(1)

BIG-THETA
Does not exist
for this function

isPrime()
Big-Theta doesn’t always exist for every function! But the information that Big-
Theta doesn’t exist can itself be a useful characterization of the function.

CSE 373 Summer 2020LEC 05: O/Ω/𝝝, Case Analysis

Algorithmic Analysis Roadmap

CODE Code Modeling
RUNTIME

FUNCTION

1

for (i = 0; i < n; i++) {
a[i] = 1;
b[i] = 2;

}

f(n) = 2n

TIGHT
BIG-OH

Asymptotic
Analysis

2

TIGHT
BIG-OMEGA

BIG-THETA

O(n)

Ω(n)

Θ(n)

We just finished building this tool to
characterize a function in terms of some
useful bounds!

Now, let’s look at this tool in more
depth. How exactly are we coming
up with that function?

CSE 373 Summer 2020LEC 05: O/Ω/𝝝, Case Analysis

Lecture Outline
• Big-O, Big-Omega, Big-Theta

• Case Study: Linear Search

• A New Tool: Case Analysis

CSE 373 Summer 2020LEC 05: O/Ω/𝝝, Case Analysis

Case Study: Linear Search
• Let’s analyze this realistic piece of code!

int linearSearch(int[] arr, int toFind) {
for (int i = 0; i < arr.length; i++) {

if (arr[i] == toFind) {
return i;

}
}
return -1;

}

2 3 9 4 5arr

toFind 2

• What’s the first step?
- We have code, so we need to convert to a

function describing its runtime
- Then we know we can use asymptotic analysis

to get bounds

2 3 9 4 5arr

toFind 8

i

i

CSE 373 Summer 2020LEC 05: O/Ω/𝝝, Case Analysis

int linearSearch(int[] arr, int toFind) {
for (int i = 0; i < arr.length; i++) {

if (arr[i] == toFind) {
return i;

}
}
return -1;

}

Let’s Model This Code!

• Suppose the loop runs n times?
- f(n) = 3n + 1

• Suppose the loop only runs once?
- f(n) = 2

+1

+1
+1

+2

*Remember, these constants
don’t really matter (we’ll start
phasing them out soon)

+3 *?

Same problem as before:
How many times does loop run?

When would that happen?

toFind not present

toFind at beginning
These are key!

CSE 373 Summer 2020LEC 05: O/Ω/𝝝, Case Analysis

Best Case Worst Case
On Lucky Earth On Unlucky Earth (where today is 6/31)

2 3 9 4 5arr

toFind 2

i
2 3 9 4 5arr

toFind 8

i

f(n) = 3n + 1f(n) = 2

O(1) Ω(1)Θ(1) O(n) Ω(n)Θ(n)
After asymptotic analysis:After asymptotic analysis:

CSE 373 Summer 2020LEC 05: O/Ω/𝝝, Case Analysis

Lecture Outline
• Big-O, Big-Omega, Big-Theta

• Case Study: Linear Search

• A New Tool: Case Analysis

CSE 373 Summer 2020LEC 05: O/Ω/𝝝, Case Analysis

Case Analysis
• Case: a description of inputs/state for an algorithm that is

specific enough to build a code model (runtime function) whose
only parameter is the input size

- Case Analysis is our tool for reasoning about all variation other than n!
- Occurs during the code à function step instead of function à O/Ω/Θ step!

• (Best Case: fastest/Worst Case: slowest) that our
code could finish on input of size n.

• Importantly, any position of toFind in arr could be
its own case!
• For this simple example, probably don’t care

(they all still have bound Θ(n))
• But intermediate cases will be important later

Worst

Best

Other Cases

CSE 373 Summer 2020LEC 05: O/Ω/𝝝, Case Analysis

When to do Case Analysis?
• Why are the different functions in isPrime not Case Analysis,

but the different functions in linearSearch are?
- In isPrime, they’re different bounds on a single function over n.
- in linearSearch, they’re entirely different functions over n, each with

its own set of bounds!

• The difference? linearSearch uses another input as well, the
contents of the array – that variation creates different functions
over n!

boolean isPrime(int n) {

int linearSearch(int[] arr, int toFind) {

CSE 373 Summer 2020LEC 05: O/Ω/𝝝, Case Analysis

When to do Case Analysis?
linearSearch:
- multiple different functions over n, because runtime can be

affected by something other than n!
- for each function, we’ll do asymptotic analysis

Case Analysis, then Asymptotic Analysis Straight to Asymptotic Analysis

𝑂(𝑛)

Ω(1)

f(n) (isPrime)

Worst Case
f(n) = 3n + 1

Best Case of linearSearch
f(n) = 2

𝑂(1)

Ω(1)
Θ(1)

𝑂(𝑛)

Ω(𝑛)
Θ(𝑛)

isPrime:
- only has one function to consider, because only
input is n!

Do Case Analysis when varying other input
properties besides n can change runtime!

CSE 373 Summer 2020LEC 05: O/Ω/𝝝, Case Analysis

When to do Case Analysis?
• Imagine a 3-dimensional plot

- Which case we’re considering is one dimension
- Choosing a case lets us take a “slice” of the other dimensions: n and f(n)
- We do asymptotic analysis on each slice in step 2

f(n) n

toFind position

At front
(Best Case)

Not present
(Worst Case)

CSE 373 Summer 2020LEC 05: O/Ω/𝝝, Case Analysis

Other Useful Cases You Might See
• Overall Case:

- Model code as a “cloud” that covers all possibilities across all cases. What’s
the O/Ω/Θ of that cloud?

• “Assume X Won’t Happen Case”:
- E.g. Assume array won’t need to resize

• “Average Case”:
- Assume random input
- Lots of complications – what distribution of random?

• “In-Practice Case”:
- Not a real term, but a useful idea
- Make reasonable assumptions about how the world will work, then do worst-

case analysis under those assumptions.

Worst

Best

Other CasesOverall

CSE 373 Summer 2020LEC 05: O/Ω/𝝝, Case Analysis

Algorithmic Analysis Roadmap

CODE

BEST CASE
FUNCTION

for (i = 0; i < n; i++) {
if (arr[i] == toFind) {

return i;
}

}
return -1;

f(n) = 2

TIGHT
BIG-OH2

TIGHT
BIG-OMEGA

BIG-THETA

O(1)

Ω(1)

Θ(1)
1 Asymptotic

Analysis

WORST CASE
FUNCTION

OTHER CASE
FUNCTION

Case
Analysis

f(n) = 3n+1

CSE 373 Summer 2020LEC 05: O/Ω/𝝝, Case Analysis

How Can You Tell if Best/Worst Cases Exist?
• Are there other possible models for this code?
• If n is given, are there still other factors that determine the runtime?

• Note: sometimes there aren’t significantly different cases! Sometimes
we just want to model the code with a single function and go straight
to asymptotic analysis!

CSE 373 Summer 2020LEC 05: O/Ω/𝝝, Case Analysis

Can We Choose n=0 as the Best Case?
• Remember that each case needs to be a “slice”: a function over n

- The input to asymptotic analysis is a function over all of n, because we’re
concerned with growth rate

- Fixing n doesn’t work with our tools because it wouldn’t let us examine the
bound asymptotically

• Think of it as “Best Case as n grows infinitely large”, not “Best Case of
all inputs, including n”

CSE 373 Summer 2020LEC 05: O/Ω/𝝝, Case Analysis

How to do Case Analysis
1. Are there significantly different cases?

- Do other variables/parameters/fields affect the runtime, other than input
size? For many algorithms, the answer is no.

2. Figure out how things could change depending on the input
(excluding n, the input size)
- Can you exit loops early?
- Can you return early?
- Are some branches much slower than others?

3. Determine what inputs could cause you to hit the best/worst parts
of the code.

CSE 373 Summer 2020LEC 05: O/Ω/𝝝, Case Analysis

Cases vs. Asymptotic

Big-O Big-Omega Big-Theta
Worst Case No matter what, as 𝑛

gets bigger, the code
takes at most this much
time

Under certain
circumstances, as 𝑛
gets bigger, the code
takes at least this
much time

On the worst input, as 𝑛
gets bigger, the code
takes precisely this
much time (up to
constants).

Best Case Under certain
circumstances, even as 𝑛
gets bigger, the code
takes at most this much
time.

No matter what, even
as 𝑛 gets bigger, the
code takes at least this
much time.

On the best input, even
as 𝑛 gets bigger, the
code takes precisely this
much time (up to
constants)

“worst input”: input that causes the code to run slowest.

CSE 373 Summer 2020LEC 05: O/Ω/𝝝, Case Analysis

Cases vs. Asymptotic

Big-O Big-Omega Big-Theta
Worst Case No matter what, as 𝑛

gets bigger, the code
takes at most this much
time

Under certain
circumstances, as 𝑛
gets bigger, the code
takes at least this
much time

On the worst input, as 𝑛
gets bigger, the code
takes precisely this
much time (up to
constants).

Best Case Under certain
circumstances, even as 𝑛
gets bigger, the code
takes at most this much
time.

No matter what, even
as 𝑛 gets bigger, the
code takes at least this
much time.

On the best input, even
as 𝑛 gets bigger, the
code takes precisely this
much time (up to
constants)

“worst input”: input that causes the code to run slowest.

CSE 373 Summer 2020LEC 05: O/Ω/𝝝, Case Analysis

Cases vs. Asymptotic

Big-O Big-Omega Big-Theta
Worst Case No matter what, as 𝑛

gets bigger, the code
takes at most this much
time

Under certain
circumstances, as 𝑛
gets bigger, the code
takes at least this
much time

On the worst input, as 𝑛
gets bigger, the code
takes precisely this
much time (up to
constants).

Best Case Under certain
circumstances, even as 𝑛
gets bigger, the code
takes at most this much
time.

No matter what, even
as 𝑛 gets bigger, the
code takes at least this
much time.

On the best input, even
as 𝑛 gets bigger, the
code takes precisely this
much time (up to
constants)

“worst input”: input that causes the code to run slowest.

