CSE 373

Course Wrap-Up

BEFORE WE START

Use the Zoom chat:

What are you looking forward to for the rest of your summer?

and, more importantly:

Now that we're done with the quarter, what's your favorite data structure?

Instructor

Aaron Johnston

Timothy Akintilo Brian Chan Joyce Elauria

Eric Fan

Farrell Fileas

Melissa Hovik

Leona Kazi Keanu Vestil

Siddharth Vaidyanathan

Howard Xiao

Announcements – Almost There!

- EX4 late cutoff tomorrow night
- P4 due tonight, late cutoff Saturday night
 - If using late days, please plan ahead with the exam due the same night!
- Extra credit also due Saturday night

WED	THU	FRI	SAT
Course Wrap-Up 1:10pm	EX4 Late Cutoff 11:59pm	Exam II Released 12:01 am	Exam II Due 11:59pm
P4 Due 11:59pm		Exam II Extra OH 1:10pm	P4 Late Cutoff, Extra Credit Due 11:59pm

Announcements – But First, an Exam

- Exam II
 - Released Friday morning (8/21) at 12:01am PDT
 - Due Saturday evening (8/22) at 11:59pm PDT
 - No late submission accepted you cannot use late days on the exam!
 - Review Materials available on the course website
 - 20su-Specific Practice Problem Set + Solutions
 - Section 9 Review Worksheet
 - 19au Final Exam
 - As always, post-lecture reviews, previous section handouts, learning objectives
 - We'll publish EX3 grades and EX4 solutions before the exam
 - Focus is on post-Exam I content, although you may be asked to use Exam I skills like algorithmic analysis or early ADTs
 - Like Exam I, mostly conceptual. Unlike Exam I, you'll be required to write some code.

Review Grading Breakdown

 Your grade will consist of the following weighted categories:

- Instead of curving the class as usual, we'll use a bucket system:
 - These are minimum GPA guarantees – may adjust upward

Category	Weight
Programming Projects	45%
Individual Exercises	25%
Exam I	15%
Exam II	15%

Percentage	GPA
95%	4.0
90%	3.5
80%	3.0
60%	2.0
50%	0.7

Course Evaluations

- *Please* fill these out! They have an *enormous* impact on the course, and a 90% response rate makes them far more useful than 60%.
 - Have to guess what sampling bias is for "missing 40%"
- As a student, you underestimate how much instructors take evals into account − trust me, I've been a student here too ☺
 - Every 20su course logistics decision was the result of weeks spent looking at last quarter's evals
- Looks like we'll be doing this remote thing for a while, and your insight is the most valuable part of this experiment
- You all have had amazing response rates so far. Thanks and keep up the great work!

Course Evaluations

- Evals for lecture and section are open until Friday
- Lecture: https://uw.iasystem.org/survey/228731
- Sections:
 - AA (12:00, Leona & Keanu): https://uw.iasystem.org/survey/228950
 - AB (1:10, Keanu & Siddharth): https://uw.iasystem.org/survey/228937
 - AC (1:10, Farrell & Melissa): https://uw.iasystem.org/survey/228940
 - AD (2:20, Joyce): https://uw.iasystem.org/survey/228943
 - AE (10:50, Leona & Eric): https://uw.iasystem.org/survey/228941
 - AF (12:00, Farrell): https://uw.iasystem.org/survey/228944
 - AG (1:10, Eric): https://uw.iasystem.org/survey/228948

We'll end lecture a little early today so you can fill out evals!

The Stars of the Show

- Let's get a huge round of ZOOM applause for your TAs!
 - They do so much behind the scenes to keep 373 running smoothly... and that's on top of office hours, section, Piazza, etc.
 - None of this would be possible without them!
- UW CSE has an award for excellent TAs!
 Please consider nominating here:
 https://www.cs.washington.edu/student
 s/ta/bandes

Eric Fan

Farrell Fileas

Joyce Elauria

Keanu Vestil

Leona Kazi

Melissa Hovik

Siddharth Vaidyanathan

Timothy Akintilo

Time For a Victory Lap

- We made it to the finish line!
- One more lap around the track by the exhausted victors (that's us ©)

- Why?
 - It's easy to lose sight of just how much you've accomplished in a quarter!
 - Review the themes of the course that you can carry forward

Z v 6 A

Why 373?

1. Build a strong foundation of data structures and algorithms that will

let you tackle the biggest problems in computing

Why 373?

2. Pick up the vocabulary, skills, and practice needed to make **design decisions**. Learn to **evaluate** the tools in your CS toolbox

- Differences between technical implementations
- Evaluation can mean many different things!

Data Structures & Algorithms

- 1. Build a strong foundation of data structures & algorithms
- 2. Learn to make design decisions and evaluate your tools

Put Another Way...

1. Build a **strong foundation** of data structures & algorithms

=

Give you a cooler full of "tried-and-true" fish (that have been around for a while)

2. Learn to make design decisions and evaluate your tools

=

Teach you to fish... for your own ideas, data structures, and algorithms going forward

Reinventing the Wheel?

Studying the Wheel, So We Can Invent the Jet Engine

- PO CSE 143 Review
- P1 Deques
- P2 Maps
- P3 Heap
- P4 Mazes

 We spent a lot of time this quarter implementing our own data structures

CSE 373 Summer 2020

- But Java has a lot of these built-in. Why?
- Software engineering skills can't just be taught, they need to be practiced
- Not just writing code, but analyzing & experimenting with it
- Set you up to invent new, more complex data structures when the need arises
- 4. Understanding the implementation (the layer below) makes you more effective as the client (the layer above)!

Metacognition

Metacognition: asking questions about your solution process.

Examples:

- While debugging: explain to yourself why you're making this change to your program.
- Before running your program: make an explicit prediction of what you expect to see.
- When coding: be aware when you're not making progress, so you can take a break or try a different strategy.
- When designing:
 - Explain the tradeoffs with using a different data structure or algorithm.
 - If one or more requirements change, how would the solution change as a result?
 - Reflect on how you ruled out alternative ideas along the way to a solution.
- When studying: what is the relationship of this topic to other ideas in the course?

Learning to Bake in a CSE Class

- Think of what you've learned this quarter as a cookbook
 - ADTs are the chapters/category: Soups, Salads, Cookies, Cakes, etc
 - High-level descriptions of a category of functionality
 - You don't serve a soup when guests expect a cookie!
 - Data structures are the recipes: chocolate chip cookies, snickerdoodles, etc
 - Step-by-step, concrete descriptions of an item with specific characteristics
 - Understand your tradeoffs before replacing carrot cake with a wedding cake
- When you go out into the world ...
 - Figure out which category is required
 - Choose the specific recipe that best fits the situation
 - Adapt or invent your own recipe when you need to!

What's Next?

142 143

Introduction to **Programming**

- Methods
- Parameters, returns, values
- Conditionals
- Loops
- File Processing
- Arrays

Object Oriented Programming

- Classes and Interfaces
- Recursion
- Linked lists and binary trees
- Sorting and Searching
- O(n) analysis
- Generics

Data Structures & Algorithms

373

- Design Decisions
- Data Structure Implementation
- Debugging & Testing
- Abstract Data Types
- Algorithmic Analysis
- Software Engineering

What's Next?

142 143 373

In CSE 142 and 143, you learn **programming**. In 373, you open up the world of **computer science**.

And there's no shortage of places you can take the concepts from this class ©

- Learn about popular tools used in industry
 - e.g. Writing shell scripts in Linux, Using version control and git in more depth
- Understand exactly how your hardware and code interact at a very low level inside a physical computer
 - Want to go more than one lecture deep to learn how memory actually works?

Consider taking...

CSE 374

Intermediate Programming Concepts and Tools

Offered 20au (Champion), 21wi (Wilcox), 21sp (Hazen)

- Learn new strategies for problem-solving through programming languages that look completely different from Java
- Learn how programming languages actually work
 - What happens starting the moment you click "run" in IntelliJ?
 - What does the Java compiler even do?

Consider taking...

CSE 413

Programming Languages

Offered 21sp (Perkins)

- Level up the scope of the applications you can work on by learning how to store, access, and query huge amounts of data
 - So many projects in industry incorporate a database
 - Heard of big data™? You'll want a bit more than an in-memory hash map
- Learn about parallelism and concurrency

Consider taking...

CSE 414 Database Systems

Offered 20au (Maas), 21wi (Maas), 21sp (Thompson)

- Use those databases full to the brim with big data™ to do machine learning on new and interesting problems
- Understand why machine learning has so much potential to overturn entire industries
 - And in the process, get practical experience working on ML projects with real datasets

Consider taking...

CSE 416 Machine Learning

Offered 21sp (Schafer)

- Learn more about the underlying theory behind data structures and algorithms covered in this class
- Learn about designing complex algorithms
- Understand the *limits* of computation and the fundamental problems that remain unsolved in computer science (P vs. NP, anyone?)

Consider taking...

CSE 417 Algorithms and Computational Complexity

Offered 20au (Anderson), 21wi (Weber)

- Build a website or web app
 - Either the frontend (what visitors see in their browser) or the backend (what runs on the server to compute data)
- Learn the fundamentals of a number of web technologies that make it easier for you to learn more on your own

Consider taking...

CSE 154, INFO 343, or INFO 344

CSE 154 offered 20au (Gibbon), 21sp (Gibbon)

Your Next Language

- Java is our lens, but these concepts generalize to any language!
 - Learning your second language is *much* easier than learning your first ©
- Mainstream languages you might be interested in:
 - Python ("pseudocode that runs")
 - C# ("Java done right")
 - HTML/CSS/JavaScript ("building blocks of the web")
 - C/C++ ("if you want full control")
- Or, consider an unconventional/up-and-coming one:
 - Haskell
 - Racket
 - Rust
 - Prolog

Learning New Things

- Nothing in Computer Science is out of your grasp!
 - This class is designed to give you the foundation to go out and
- Where to next?
 - You can find tutorials on almost any topic via google
 - Coursera: lots of good online courses
 - Google "open source CS curriculum" or "what every CS major should know" if you want a more curated list
 - Try contributing to open source
 - Try attending hackathons!
 - StackOverflow: pick interesting tags, sort by top, and read
- Advice: Take charge of your own education, prioritize practice over passive learning, be persistent, and always let your curiosity lead

These Unprecedented Times

- As much as we want to focus on making 373 an excellent experience, we can't forget what's going on in the world around us
- I know online learning hasn't been easy for anyone
 - Thank you for letting us know your experiences and feedback
 - Thank you for reaching out to ask for help when you needed it
 - Thank you for being so understanding when my Zoom cuts out on the reg
- As a course staff, we are blown away by how much you've engaged with the course despite the fact that it all happens in a rectangle on your computer screen. **Thank you.**

