
CSE 373 Summer 2020LEC 23: Tries

CSE 373

Timothy Akintilo
Brian Chan
Joyce Elauria
Eric Fan
Farrell Fileas

Melissa Hovik
Leona Kazi
Keanu Vestil

Howard Xiao

Eric Fan! 🎉Instructor

TAs

Siddharth Vaidyanathan

L E C 2 3

Tries

BEFORE WE START

pollev.com/uwcse373

Which of the following is true about Topological Sort
and Reductions?

a) Any given graph can be topologically sorted
b) The standard BFS algorithm can be used to

topologically sort a graph
c) A reduction is a problem-solving strategy of

reducing a problem into smaller chunks
d) Seam carving can be reduced to the BFS algorithm
e) None of the above

CSE 373 Summer 2020LEC 23: Tries

Announcements
• EX4 (MSTs & Sorting) due tonight 11:59 PM PDT

- Late cutoff Thursday, August 20th

• P4 (Mazes) due Wednesday 11:59 PM PDT
- Late cutoff Saturday, August 22nd (day until eternal mastery of CSE 373)

• All extra credit due Saturday, August 22nd

• EXAM 2 Logistics & Information
- Released Friday 08/21 12:01 AM PDT, due Saturday 08/22 11:59 PM PDT
- No submissions accepted after Saturday deadline
- See Exams page for more detailed logistics and relevant review materials

• Optional Exam II Office Hours during Friday’s lecture
- For clarifying or logistical questions
- We’ll also be actively monitoring Piazza for questions

CSE 373 Summer 2020LEC 23: Tries

Announcements
• Please fill out course evaluations!

- We do read your feedback and take it into consideration
- Aaron and your TAs would be so appreciative!

CSE 373 Summer 2020LEC 23: Tries

Learning Objectives

1. Identify when a Trie can and should be used, and describe the
useful properties a Trie provides

2. Describe and implement the abstract Trie and argue how they are
more efficient than using Hash Tables for storing Strings

3. Compare and contrast more advanced Trie designs and explain their
differences in runtime and space complexity

4. Implement Trie prefix algorithms and explain how autocomplete
algorithms are designed

After this lecture, you should be able to...

CSE 373 Summer 2020LEC 23: Tries

Lecture Outline
• Tries Introduction

- When does using a Trie make sense?

• Implementing a Trie using an array
- How do we find the next child?

• Advanced Implementations: dealing with sparsity
- Hash Tables, BSTs, and Ternary Search Trees

• Prefix Operations and Autocomplete
- Find the keys associated with a given prefix

CSE 373 Summer 2020LEC 23: Tries

Tries: A Specialized Data Structure

a

y

a

q

u

a

pair

part

partspar

Binary Search Tree Hash TableTrie

da

• Tries are a character-by-character set-of-Strings implementation

• Nodes store parts of keys instead of keys

t

aqua

pawa

0

1

2

3

aqua

a par

paw pair

parts

part

s

d

CSE 373 Summer 2020LEC 23: Tries

Abstract Trie
• Each level represents an index

- Children represent next possible characters at that index
• This Trie stores the following set of Strings:

a, aqua, dad,

data, day, days

• How do we deal with a and aqua?
- Mark complete Strings with a boolean (shown in blue)
- Complete string: a String that belongs in our set

a

y

a

q

u

a

da

t

s

d

Abstract Trie

Index 0

Index 1

Index 2

Index 3

0 0

0 0

1

1 1

2

2 2 3

0 1 2 3

0 1 2 3

CSE 373 Summer 2020LEC 23: Tries

Searching in Tries a, aqua, dad,

data, day, days

𝒏 = 𝟔

a

y

a

q

u

a

da

t

s

d

Search hit: the final node is a key (colored blue)
Search miss: caused in one of two ways
1. The final node is not a key (not colored blue)
2. We “fall” off the Trie

contains("data") // hit, 𝑙 = 4
contains("da") // miss, 𝑙 = 2
contains("a") // hit, 𝑙 = 1
contains("dubs") // miss, 𝑙 = 4

contains runtime given key of length 𝑙 with 𝑛 keys in Trie: Θ(𝑙)
Abstract Trie

CSE 373 Summer 2020LEC 23: Tries

Lecture Outline
• Tries Introduction

- When does using a Trie make sense?

• Implementing a Trie using an array
- How do we find the next child?

• Advanced Implementations: dealing with sparsity
- Hash Tables, BSTs, and Ternary Search Trees

• Prefix Operations
- Find keys with a given prefix

CSE 373 Summer 2020LEC 23: Tries

Trie Implementation Idea: Encoding

CSE 373 Summer 2020LEC 23: Tries

Data Structure for Trie Implementation
• Think of a Binary Tree

- Instead of two children, we have 128 possible children
- Each child represents a possible next character of our Trie

• How could we store these 128 children?

… …

2 children 128 children

CSE 373 Summer 2020LEC 23: Tries

DataIndexedCharMap Pseudocode
class TrieSet {

final int R = 128; // # of ASCII encodings
Node overallRoot;

// Private internal class
class Node {

// Field declarations
char ch;
boolean isKey;
DataIndexedCharMap<Node> next; // array encoding

// Constructor
Node(char c, boolean b, int R) {

ch = c;
isKey = b;
next = new DataIndexedCharMap<Node>(R);

}
}

}

a

y

a

q

u

a

da

t

s

d

CSE 373 Summer 2020LEC 23: Tries

Data-Indexed Array Visualization

…

…

u

p

u

…
p

𝑅 = 128 links, 127 null

// Private internal class
class Node {

// Field declarations
char ch;
boolean isKey;
DataIndexedCharMap<Node> next;

}

Node

ch u

isKey false

next items

DataIndexedCharMap

0 1 … 111 112 113 … 126 127

Node

ch p

isKey true

next items

DataIndexedCharMap

0 1 … … … … … 126 127

CSE 373 Summer 2020LEC 23: Tries

Removing Redundancy
class TrieSet {

final int R = 128;
Node overallRoot;

// Private internal class
class Node {

// Field declarations
char ch;
boolean isKey;
DataIndexedCharMap<Node> next;

// Constructor
Node(char c, boolean b, int R) {

ch = c;
isKey = b;
next = new DataIndexedCharMap<Node>(R);

}
}

}

ea b c

q

u

a

d

a

ytd

a

… …

… …

…

… … ……

… …

…… … …

q a

u

aa

s

…

t yd

s

a edcb

CSE 373 Summer 2020LEC 23: Tries

pollev.com/uwcse373

a) Yes
b) No
c) I’m not sure…

Does the structure of a Trie depend on the order of insertion?

… …

… …

…

… … ……

… …

…… … …

q a

u

aa

…

t yd

s

a edcb

CSE 373 Summer 2020LEC 23: Tries

Runtime Comparison

* In-practice runtime

• Typical runtime when treating length 𝑙 of keys as a constant:

• Takeaways:
+ When keys are Strings, Tries give us a better add and contains runtime
− DataIndexedCharMap takes up a lot of space by storing 𝑅 links per node

Data Structure Key Type contains add

Balanced BST Comparable Θ(log(𝑛)) Θ(log(𝑛))

Hash Map Hashable Θ(1)* Θ 1 *

Trie (Data-Indexed Array) String (Character) Θ(1) Θ(1)

u

p

u

…
p

𝑅 = 128 links, 127 null (unused)

CSE 373 Summer 2020LEC 23: Tries

Lecture Outline
• Tries Introduction

- When does using a Trie make sense?

• Implementing a Trie using an array
- How do we find the next child?

• Advanced Implementations: dealing with sparsity
- Hash Tables, BSTs, and Ternary Search Trees

• Prefix Operations
- Find keys with a given prefix

CSE 373 Summer 2020LEC 23: Tries

DataIndexedCharMap Implementation

Data-Indexed Array TrieAbstract Trie

u

p

a

18

key = "up"

key = "a"

… 109 110 111 112 …

… 97 … 117 118 …

isKey = false

isKey = true

isKey = true

isKey = false

CSE 373 Summer 2020LEC 23: Tries

Hash Table-based Implementation

Hash Table-based Trie

19

key = "up"

key = "a"

isKey = false

isKey = true

isKey = true

isKey = false
0

1
2

0

1
2

0

1
2

0

1
2

• Use Hash Table to find character at a given index

Abstract Trie

u

p

a

CSE 373 Summer 2020LEC 23: Tries

BST-based Implementation
• Use Binary Search Tree to find character at a given index
• Two types of children:

1) “Trie” child: advance a character (index)
2) “Internal” child: another character

option at current character (index)

• Both are essentially child references
- Could we simplify this design?

20

key = "up"

key = "a"

isKey = false

isKey = true

isKey = true

isKey = false

BST-based Trie

Each Trie node stores
its own BST

2) “Internal” children
(another character option)

1) “Trie” children
(advance a character)

Abstract Trie u

p

a

CSE 373 Summer 2020LEC 23: Tries

Ternary Search Tree (TST) Implementation
• Combines character mapping with Trie itself

“Trie” child:
advance to next
String index

“Internal” left child
(smaller character at

same index)

“Internal” right child
(greater character at

same index)

a

p

u

Abstract Trie Ternary Search Tree (TST)

Index 0

Index 1

u

a p

Index 0

Index 1

CSE 373 Summer 2020LEC 23: Tries

pollev.com/uwcse373

Which node is associated with the key "CAC"?
A

C

C

G

G

C
G

C

C

A

G

C

C

1

2

3

4

5

6

Tries in COS 226 (Sedgewick, Wayne/Princeton)

CSE 373 Summer 2020LEC 23: Tries

Searching in a TST
• Searching in a TST

- If smaller, take left link
- If greater, take right link
- If equal, take the middle link and move to next character

• Search hit: final node yields a key that belongs in our set
• Search miss: reach null link or final node is yields a key not in our set

a

p

u

Abstract Trie Ternary Search Tree (TST)

Index 0

Index 0

Index 1
Index 1

[a , u p]

0 0 1Index:

Keys:

u

a p

CSE 373 Summer 2020LEC 23: Tries

Lecture Outline
• Tries Introduction

- When does using a Trie make sense?

• Implementing a Trie using an array
- How do we find the next child?

• Advanced Implementations: dealing with sparsity
- Hash Tables, BSTs, and Ternary Search Trees

• Prefix Operations
- Find keys with a given prefix

CSE 373 Summer 2020LEC 23: Tries

Prefix Operations with Tries
• The main appeal of Tries is its efficient prefix matching!

• Prefix: find set of keys associated with given prefix
keysWithPrefix("day") returns ["day", "days"]

• Longest Prefix From Trie: given a String, retrieve
longest prefix of that String that exists in the Trie

longestPrefixOf("aquarium") returns "aqua"
longestPrefixOf("aqueous") returns "aqu"
longestPrefixOf("dawgs") returns "da"

a, aqua, dad,
data, day, days

a

y

a

q

u

a

da

t

s

d

Abstract Trie

CSE 373 Summer 2020LEC 23: Tries

collectHelper("a", keys,)

collectHelper("aq", keys,)

collectHelper("aqu", keys,)

Collecting Trie Keys

collectHelper("aqua", keys,)

d

a

td y

a

a

q

u

a s

• Collect: return set of all keys in the Trie (like keySet())
collect(trie) = ["a", "aqua", "dad", "data", "day", "days"]

List collect() {
List keys;
for (char ch : root.next.keys()) {

collectHelper(ch, keys, root.next.get(ch));
}
return keys;

}

void collectHelper(String str, List keys, Node n) {
if (n.isKey()) {

keys.add(s);
}
for (char ch : n.next.keys()) {

collectHelper(str + ch, keys, n.next.get(ch));
}

}

CSE 373 Summer 2020LEC 23: Tries

keysWithPrefix Implementation

corresponding to

• keysWithPrefix(String prefix)
- Find all the keys that corresponds to the given prefix

List keysWithPrefix(String prefix) {

Node root; // Node corresponding to given prefix
List keys; // Empty list to store keys

for (char ch : root.next.keySet()) {
collectHelper(prefix + c, keys, node.next.get(ch));

}
}

void collectHelper(String str, List keys, Node n) {
if (n.isKey()) {

keys.add(s);
}
for (char ch : n.next.keys()) {

collectHelper(str + ch, keys, n.next.get(ch));
}

}

a

y

a

q

u

a

da

t

s

d

root

CSE 373 Summer 2020LEC 23: Tries

Autocomplete with Tries
• Autocomplete should return the most relevant results

• One method: a Trie-based Map<String, Relevance>
- When a user types in a string "hello", call keysWithPrefix("hello")
- Return the 10 Strings with the highest relevance

CSE 373 Summer 2020LEC 23: Tries

s

a m

y

p

o

b

l

u

e g

yi

n

e

10

12

5 15

20

7

Autocomplete with Tries
One approach to find top 3 matches with prefix "s":

1. Call keysWithPrefix("s")
["say", "smog", "spin", "spine", "spy"]

2. Return the 3 keys with highest relevance
["spine", "spin", "say"]

Q: This algorithm is slow — why? How can
we optimize?

CSE 373 Summer 2020LEC 23: Tries

"s", will require checking

But we only need to keep

Each node stores its own

s

a m

y

p

o

b

l

u

e g

yi

n

e

None
10

value = None
best = 20

None
5

5
5

20
20

7
7

Improving Autocomplete with Tries
• A: short queries, such as "s", require checking the relevance for

dj I billions of matching Strings
- We only need to keep the top 10

• Solution: prune the search space
- Each node stores its own relevance and

maximum relevance of descendants
- Check that maximum relevance of a

subtree is greater than top 10 Strings
collected so far before exploring

None
10

None
10

10
10

None
20

None
12

12
12

None
5

None
20

None
20

15
20

CSE 373 Summer 2020LEC 23: Tries

Trie Takeaways
• Tries can be used for storing Strings (or any sequential data)
• Real-world performance often better than Hash Table or Search Tree
• Many different implementations: DataIndexedCharMap, Hash Tables,

BSTs (and more possible data structures within nodes), and TSTs
• Tries enable efficient prefix operations like keysWithPrefix

a

y

a

q

u

a

pair

part

partspar

Binary Search Tree Hash TableTrie

da

t

aqua

pawa

0

1

2

3

aqua

a par

paw pair

parts

part

s

d

