CSE 373 Tries

BEFORE WE START

Which of the following is true about Topological Sort and Reductions?

- a) Any given graph can be topologically sorted
- b) The standard BFS algorithm can be used to topologically sort a graph
- c) A reduction is a problem-solving strategy of reducing a problem into smaller chunks
- d) Seam carving can be reduced to the BFS algorithm
- e) None of the above

pollev.com/uwcse373

Instructor Eric

- Eric Fan! 🎉
- TAs Timothy Akintilo Brian Chan Joyce Elauria Eric Fan Farrell Fileas
- Melissa Hovik Leona Kazi Keanu Vestil Siddharth Vaidyanathan Howard Xiao

Announcements

- EX4 (MSTs & Sorting) due tonight 11:59 PM PDT
 - Late cutoff Thursday, August 20th
- P4 (Mazes) due Wednesday 11:59 PM PDT
 - Late cutoff Saturday, August 22nd (day until eternal mastery of CSE 373)
- All extra credit due Saturday, August 22nd
- EXAM 2 Logistics & Information
 - Released Friday 08/21 12:01 AM PDT, due Saturday 08/22 11:59 PM PDT
 - No submissions accepted after Saturday deadline
 - See Exams page for more detailed logistics and relevant review materials
- Optional Exam II Office Hours during Friday's lecture
 - For clarifying or logistical questions
 - We'll also be actively monitoring Piazza for questions

Announcements

- Please fill out course evaluations!
 - We do read your feedback and take it into consideration
 - Aaron and your TAs would be so appreciative!

Learning Objectives

After this lecture, you should be able to...

- 1. Identify when a Trie can and should be used, and describe the useful properties a Trie provides
- 2. Describe and implement the abstract Trie and argue how they are more efficient than using Hash Tables for storing Strings
- 3. Compare and contrast more advanced Trie designs and explain their differences in runtime and space complexity
- 4. Implement Trie prefix algorithms and explain how autocomplete algorithms are designed

Lecture Outline

- Tries Introduction
 - When does using a Trie make sense?
- Implementing a Trie using an array
 - How do we find the next child?
- Advanced Implementations: dealing with sparsity
 - Hash Tables, BSTs, and Ternary Search Trees
- Prefix Operations and Autocomplete
 - Find the keys associated with a given prefix

Tries: A Specialized Data Structure

- Tries are a character-by-character set-of-Strings implementation
- Nodes store *parts of keys* instead of *keys*

Abstract Trie

• Each level represents an index

a, aqua, dad, 0 0 1 2 3 0 1 2

- Children represent next possible characters at that index
- This Trie stores the following set of Strings:

data, day, days 0123 012 0123

- How do we deal with a and aqua?
 - Mark complete Strings with a boolean (shown in blue)
 - Complete string: a String that belongs in our set

a, aqua, dad,

Searching in Tries

Search hit: the final node is a key (colored blue) Search miss: caused in one of two ways

- 1. The final node is not a key (not colored blue)
- 2. We "fall" off the Trie

```
contains("data") // hit, l = 4
contains("da") // miss, l = 2
contains("a") // hit, l = 1
contains("dubs") // miss, l = 4
```

data, day, days n=6d а q а t u d V а S а

Abstract Trie

contains runtime given key of length l with n keys in Trie: $\Theta(l)$

Lecture Outline

- Tries Introduction
 - When does using a Trie make sense?
- Implementing a Trie using an array
 - How do we find the next child?
- Advanced Implementations: dealing with sparsity
 - Hash Tables, BSTs, and Ternary Search Trees
- Prefix Operations
 - Find keys with a given prefix

Trie Implementation Idea: Encoding

ASCII Table

Dec	Hex	0ct	Char	Dec	Hex	0ct	Char	Dec	Hex	0ct	Char	Dec	Hex	0ct	Char
0	0	0		32	20	40	[space]	64	40	100	@	96	60	140	`
1	1	1		33	21	41	!	65	41	101	Ā	97	61	141	а
2	2	2		34	22	42		66	42	102	В	98	62	142	b
3	3	3		35	23	43	#	67	43	103	С	99	63	143	с
4	4	4		36	24	44	\$	68	44	104	D	100	64	144	d
5	5	5		37	25	45	%	69	45	105	E	101	65	145	e
6	6	6		38	26	46	&	70	46	106	F	102	66	146	f
7	7	7		39	27	47		71	47	107	G	103	67	147	g
8	8	10		40	28	50	(72	48	110	н	104	68	150	h
9	9	11		41	29	51)	73	49	111	I	105	69	151	i
10	А	12		42	2A	52	*	74	4A	112	J	106	6A	152	j
11	В	13		43	2B	53	+	75	4B	113	к	107	6B	153	k
12	С	14		44	2C	54	,	76	4C	114	L	108	6C	154	I.
13	D	15		45	2D	55	-	77	4D	115	м	109	6D	155	m
14	E	16		46	2E	56		78	4E	116	N	110	6E	156	n
15	F	17		47	2F	57	/	79	4F	117	0	111	6F	157	0
16	10	20		48	30	60	0	80	50	120	Р	112	70	160	р
17	11	21		49	31	61	1	81	51	121	Q	113	71	161	q
18	12	22		50	32	62	2	82	52	122	R	114	72	162	r
19	13	23		51	33	63	3	83	53	123	S	115	73	163	S
20	14	24		52	34	64	4	84	54	124	т	116	74	164	t
21	15	25		53	35	65	5	85	55	125	U	117	75	165	u
22	16	26		54	36	66	6	86	56	126	V	118	76	166	v
23	17	27		55	37	67	7	87	57	127	W	119	77	167	w
24	18	30		56	38	70	8	88	58	130	х	120	78	170	x
25	19	31		57	39	71	9	89	59	131	Y	121	79	171	У
26	1A	32		58	ЗA	72	:	90	5A	132	Z	122	7A	172	Z
27	1B	33		59	3B	73	;	91	5B	133	[123	7B	173	{
28	1C	34		60	3C	74	<	92	5C	134	١	124	7C	174	
29	1D	35		61	3D	75	=	93	5D	135]	125	7D	175	}
30	1E	36		62	3E	76	>	94	5E	136	^	126	7E	176	~
31	1F	37		63	ЗF	77	?	95	5F	137	_	127	7F	177	

Data Structure for Trie Implementation

- Think of a Binary Tree
 - Instead of two children, we have 128 possible children
 - Each child represents a possible next character of our Trie
- How could we store these 128 children?

DataIndexedCharMap Pseudocode

```
class TrieSet {
    final int R = 128; // # of ASCII encodings
    Node overallRoot;
    // Private internal class
    class Node {
        // Field declarations
        char ch;
        boolean isKey;
        DataIndexedCharMap<Node> next; // array encoding
        // Constructor
        Node(char c, boolean b, int R) {
            ch = c;
            isKey = b;
            next = new DataIndexedCharMap<Node>(R);
```


Removing Redundancy

class TrieSet {
 final int R = 128;
 Node overallRoot;

// Private internal class
class Node {
 // Field declarations
 char ch;
 boolean isKey;
 DataIndexedCharMap<Node> next;

```
// Constructor
Node(char c, boolean b, int R) {
    ch = c;
    isKey = b;
    next = new DataIndexedCharMap<Node>(R);
```


pollev.com/uwcse373

Does the structure of a Trie depend on the order of insertion?

- a) Yes b) No
 - c) I'm not sure...

Runtime Comparison

• Typical runtime when treating length *l* of keys as a constant:

- Takeaways:
 - + When keys are Strings, Tries give us a better add and contains runtime
 - DataIndexedCharMap takes up a lot of space by storing R links per node

Lecture Outline

- Tries Introduction
 - When does using a Trie make sense?
- Implementing a Trie using an array
 - How do we find the next child?
- Advanced Implementations: dealing with sparsity
 - Hash Tables, BSTs, and Ternary Search Trees
- Prefix Operations
 - Find keys with a given prefix

DataIndexedCharMap Implementation

Abstract Trie

Data-Indexed Array Trie

Hash Table-based Implementation

• Use Hash Table to find character at a given index

BST-based Implementation

- Use Binary Search Tree to find character at a given index
- Two types of children:
 - 1) "Trie" child: advance a character (index)
 - 2) "Internal" child: another character option at current character (index)

Both are essentially child references

- Could we simplify this design?

BST-based Trie

Ternary Search Tree (TST) Implementation

• Combines character mapping with Trie itself

pollev.com/uwcse373

Which node is associated with the key "CAC"?

Tries in COS 226 (Sedgewick, Wayne/Princeton)

Searching in a TST

- Searching in a TST
 - If smaller, take left link
 - If greater, take right link
 - If equal, take the middle link and move to next character
- Search hit: final node yields a key that belongs in our set
- Search miss: reach null link or final node is yields a key not in our set

Lecture Outline

- Tries Introduction
 - When does using a Trie make sense?
- Implementing a Trie using an array
 - How do we find the next child?
- Advanced Implementations: dealing with sparsity
 - Hash Tables, BSTs, and Ternary Search Trees
- Prefix Operations
 - Find keys with a given prefix

Prefix Operations with Tries

a, aqua, dad, data, day, days

- The main appeal of Tries is its efficient prefix matching!
- Prefix: find set of keys associated with given prefix keysWithPrefix("day") returns ["day", "days"]
- Longest Prefix From Trie: given a String, retrieve longest prefix of that String that exists in the Trie longestPrefixOf("aquarium") returns "aqua"

longestPrefixOf("aqueous") returns "aqu"

longestPrefixOf("dawgs") returns "da"

Abstract Trie

Collecting Trie Keys

• Collect: return set of all keys in the Trie (like keySet())

```
collect(trie) = ["a", "aqua", "dad", "data", "day", "days"]
```


keysWithPrefix Implementation

- keysWithPrefix(String prefix)
 - Find all the keys that corresponds to the given prefix

```
List keysWithPrefix(String prefix) {
   Node root; // Node corresponding to given prefix
    List keys; // Empty list to store keys
    for (char ch : root.next.keySet()) {
        collectHelper(prefix + c, keys, node.next.get(ch));
void collectHelper(String str, List keys, Node n) {
    if (n.isKey()) {
        keys.add(s);
    for (char ch : n.next.keys()) {
        collectHelper(str + ch, keys, n.next.get(ch));
```


Autocomplete with Tries

- Autocomplete should return the **most relevant results**
- One method: a Trie-based Map<String, Relevance>
 - When a user types in a string "hello", call keysWithPrefix("hello")

LEC 23: Tries

- Return the 10 Strings with the highest relevance

× 🤳 Q data structures Q data structures data structures and algorithms 0 data structures and algorithms in python Q data structures in python Q, data structures in java Q data structures interview questions Q data structures cheat sheet Q data structures and algorithms pdf Q data structures and algorithms in java Q data structures and algorithms in python pdf Google Search I'm Feeling Lucky

Google

Autocomplete with Tries

One approach to find top 3 matches with prefix "s":

- 1. Call keysWithPrefix("s")
 ["say", "smog", "spin", "spine", "spy"]
- 2. Return the 3 keys with highest relevance
 ["spine", "spin", "say"]

Q: This algorithm is slow — why? How can we optimize?

Improving Autocomplete with Tries

- A: short queries, such as "s", require checking the relevance for billions of matching Strings
 - We only need to keep the top 10
- Solution: prune the search space
 - Each node stores its own relevance and maximum relevance of descendants
 - Check that maximum relevance of a subtree is greater than top 10 Strings collected so far before exploring

Trie Takeaways

- Tries can be used for storing Strings (or any sequential data)
- Real-world performance often better than Hash Table or Search Tree
- Many different implementations: DataIndexedCharMap, Hash Tables, BSTs (and more possible data structures within nodes), and TSTs
- Tries enable efficient prefix operations like keysWithPrefix

