
CSE 373 Summer 2020LEC 22: Topo Sort & Reductions

CSE 373

Timothy Akintilo
Brian Chan
Joyce Elauria
Eric Fan
Farrell Fileas

Melissa Hovik
Leona Kazi
Keanu Vestil

Howard Xiao

Aaron JohnstonInstructor

TAs

Siddharth Vaidyanathan

L E C 2 2

Topo Sort &
Reductions

BEFORE WE START

pollev.com/uwcse373

How many total pivots would Quick Sort need for the
divide step on this array if we choose the pivot as:

a) First element
b) Median of the first, middle, and last elements

11 2 9 3 8 5 4

CSE 373 Summer 2020LEC 22: Topo Sort & Reductions

The Final Stretch

FRI

Topo Sort,
Reductions

(Last day of content
for Exam II)

TA-Led Industry
Panel 4:30!

SAT

SUN MON

Tries
(Guest Lecture:

Eric Fan!!)

EX4 Due

TUE WED

Course Wrap-Up

P4 Due

THU

EX4 Late Cutoff

FRI

Exam II Released

Exam II OH

SAT

Exam II Due
P4 Late Cutoff

Extra Credit Due

You are here

Eternal Mastery
of Data
Structures

You’re almost there! Here’s what’s coming up in the last week of the quarter:

CSE 373 Summer 2020LEC 22: Topo Sort & Reductions

Learning Objectives

1. Implement Quick Sort, derive its runtimes, and implement the in-
place variant

2. Define a topological sort and determine whether a given problem
could be solved with a topological sort

3. Write code to produce a topological sort and identify valid and
invalid topological sorts for a given graph

4. Explain the makeup of a reduction, identify whether algorithms are
considered reductions, and solve a problem using a reduction to a
known problem

After this lecture, you should be able to...

CSE 373 Summer 2020LEC 22: Topo Sort & Reductions

Lecture Outline
• Comparison Sorts

- Review Sorting Overview
- In-Place Quick Sort

• Topological Sort

• Reductions
- Definitions
- Examples

CSE 373 Summer 2020LEC 22: Topo Sort & Reductions

Insertion Sort

STRATEGY 1:
ITERATIVE IMPROVEMENT

STRATEGY 2:
IMPOSE STRUCTURE

STRATEGY 3:
DIVIDE AND CONQUER

Selection Sort

Heap Sort

Merge Sort

Quick Sort

WORST

BEST

𝜽(𝒏 𝐥𝐨𝐠𝒏) STABLE

IN-PLACE

IN-PLACE

IN-PLACE

IN-PLACE STABLE

𝜽(𝒏)

WORST

BEST

WORST

BEST

WORST

BEST

𝜽(𝒏𝟐)
𝜽(𝒏 𝐥𝐨𝐠𝒏)

WORST

BEST

𝜽(𝒏 𝐥𝐨𝐠𝒏)
𝜽(𝒏 𝐥𝐨𝐠𝒏)

𝜽(𝒏𝟐)
𝜽(𝒏)

𝜽(𝒏𝟐)
𝜽(𝒏𝟐)

Minimizes array writes, otherwise never preferred.

Simple, stable, low-overhead, great if already sorted.

Always good runtimes, great if already sorted.

Stable, very reliable! In-place variant is slower.

Fastest in practice (constant factors), bad worst case.

𝜽(𝒏)SPACE

𝜽(𝟏)SPACE

𝜽(𝟏)SPACE

𝜽(𝟏)SPACE

𝜽(𝟏)SPACE

CSE 373 Summer 2020LEC 22: Topo Sort & ReductionsInsertion Sort

Selection Sort

Heap Sort

Merge Sort

Quick Sort

WORST

BEST

𝜽(𝒏 𝐥𝐨𝐠𝒏) STABLE

IN-PLACE

IN-PLACE

IN-PLACE

IN-PLACE STABLE

𝜽(𝒏)

WORST

BEST

WORST

BEST

WORST

BEST

𝜽(𝒏𝟐)
𝜽(𝒏 𝐥𝐨𝐠𝒏)

WORST

BEST

𝜽(𝒏 𝐥𝐨𝐠𝒏)
𝜽(𝒏 𝐥𝐨𝐠𝒏)

𝜽(𝒏𝟐)
𝜽(𝒏)

𝜽(𝒏𝟐)
𝜽(𝒏𝟐)

Minimizes array writes, otherwise never preferred.

Simple, stable, low-overhead, great if already sorted.

Always good runtimes, great if already sorted.

Stable, very reliable! In-place variant is slower.

Fastest in practice (constant factors), bad worst case.

𝜽(𝒏)SPACE

𝜽(𝟏)SPACE

𝜽(𝟏)SPACE

𝜽(𝟏)SPACE

𝜽(𝟏)SPACE

Can we do better than n log n?
• For comparison sorts, NO. A proven upper bound!

• Intuition: n elements to sort, no faster way to
find “right place” than log n

• However, niche sorts can do better in specific
situations!

Many cool niche sorts beyond the scope of 373!
Radix Sort (Wikipedia, VisuAlgo) - Go digit-by-digit in

integer data. Only 10 digits, so no need to compare!
Counting Sort (Wikipedia)
Bucket Sort (Wikipedia)
External Sorting Algorithms (Wikipedia) - For big data™

https://en.wikipedia.org/wiki/Radix_sort
https://visualgo.net/en/sorting?slide=15
https://en.wikipedia.org/wiki/Counting_sort
https://en.wikipedia.org/wiki/Bucket_sort
https://en.wikipedia.org/wiki/External_sorting

CSE 373 Summer 2020LEC 22: Topo Sort & Reductions

Review Merge Sort

mergeSort(list) {
if (list.length == 1):

return list
else:

smallerHalf = mergeSort(new [0, ..., mid])
largerHalf = mergeSort(new [mid + 1, ...])
return merge(smallerHalf, largerHalf)

}

Worst case runtime?

Best case runtime?

In Practice runtime?

Stable?

In-place?

Yes

No

=Θ(𝑛 log 𝑛)

Same

Same

0 1 2 3

55 1 7 6

0 1

55 1
0 1

7 6

0

55

0

1

0

7

0

6

0 1 2 3

1 6 7 55

0 1

1 55
0 1

6 7

n

2 log n

𝑇 𝑛 = *
1 if 𝑛 ≤ 1

2𝑇
𝑛
2 + 𝑛 otherwise

2 Constant size Input
Don’t forget your old friends,
the 3 recursive patterns!

CSE 373 Summer 2020LEC 22: Topo Sort & Reductions

Review Quick Sort (v1)
quickSort(list) {

if (list.length == 1):
return list

else:
pivot = choosePivot(list)
smallerHalf = quickSort(getSmaller(pivot, list))
largerHalf = quickSort(getBigger(pivot, list))
return smallerHalf + pivot + largerHalf

}

Worst case runtime?

Best case runtime?

In-practice runtime?

Stable?

In-place?

No

Can be done!

Just trust me: Θ(𝑛 log 𝑛)
(absurd amount of math to get here)

0 1 2 3

2 1 7 6

0 1

7 6

0

1

0

2

P I VOT

P I VOT

0

6

0

7
𝑇 𝑛 = 7 1 if 𝑛 ≤ 1

𝑇 𝑛 − 1 + 𝑛 otherwise

𝑇 𝑛 = *
1 if 𝑛 ≤ 1

2𝑇
𝑛
2 + 𝑛 otherwise

0 1 2 3

1 2 6 7

0 1

6 7

= Θ(𝑛!)

= Θ(𝑛 log 𝑛)

Worst case: Pivot only chops off one value
Best case: Pivot divides each array in half

CSE 373 Summer 2020LEC 22: Topo Sort & Reductions

Review Strategies for Choosing a Pivot
• Just take the first element

- Very fast!
- But has worst case: for example, sorted lists have Ω 𝑛! behavior

• Take the median of the first, last, and middle element
- Makes pivot slightly more content-aware, at least won’t select very smallest/largest
- Worst case is still Ω(𝑛!), but on real-world data tends to perform well!

• Take the median of the full array
- Can actually find the median in 𝑂(𝑛) time (google QuickSelect). It’s complicated.
- 𝑂(𝑛 𝑙𝑜𝑔 𝑛) even in the worst case… but the constant factors are awful. No one does

quicksort this way.
• Pick a random element

- Get 𝑂(𝑛 log 𝑛) runtime with probability at least 1 − 1/𝑛!
- No simple worst-case input (e.g. sorted, reverse sorted)

Most commonly used

CSE 373 Summer 2020LEC 22: Topo Sort & Reductions

Lecture Outline
• Comparison Sorts

- Review Sorting Overview
- In-Place Quick Sort

• Topological Sort

• Reductions
- Definitions
- Examples

CSE 373 Summer 2020LEC 22: Topo Sort & Reductions

Quick Sort (v2: In-Place)
0 1 2 3 4 5 6 7 8 9

8 1 4 9 0 3 5 2 7 6

0 1 2 3 4 5 6 7 8 9

6 1 4 9 0 3 5 2 7 8

Low
X < 6

High
X >= 6

0 1 2 3 4 5 6 7 8 9

6 1 4 2 0 3 5 9 7 8

Low
X < 6

High
X >= 60 1 2 3 4 5 6 7 8 9

5 1 4 2 0 3 6 9 7 8

P I VOT ? P I VOT ? P I VOT ?P I VOT !

Select a pivot

Move pivot out
of the way

Bring low and high
pointers together,
swapping elements
if needed

Meeting point is
where pivot
belongs; swap in.
Now recurse on
smaller portions of
same array!

Divide

CSE 373 Summer 2020LEC 22: Topo Sort & Reductions

Quick Sort (v2: In-Place)
quickSort(list) {

if (list.length == 1):
return list

else:
pivot = choosePivot(list)
smallerPart, largerPart = partition(pivot, list)
smallerPart = quickSort(smallerPart)
largerPart = quickSort(largerPart)
return smallerPart + pivot + largerPart

}

Worst case runtime?

Best case runtime?

In-practice runtime?

Stable?

In-place?

No

Yes

Just trust me: Θ(𝑛 log 𝑛)
(absurd amount of math to get here)

𝑇 𝑛 = 7 1 if 𝑛 ≤ 1
𝑇 𝑛 − 1 + 𝑛 otherwise

𝑇 𝑛 = *
1 if 𝑛 ≤ 1

2𝑇
𝑛
2 + 𝑛 otherwise

= Θ(𝑛!)

= Θ(𝑛 log 𝑛)

0 1 2 3 4 5

0 3 6 9 7 8

choosePivot:
- Use one of the pivot
selection strategies

partition:
- For in-place Quick Sort,
series of swaps to build both

partitions at once
- Tricky part: moving pivot out
of the way and moving it back!

- Similar to Merge Sort divide
step: two pointers, only move

smaller one

CSE 373 Summer 2020LEC 22: Topo Sort & Reductions

Lecture Outline
• Comparison Sorts

- Review Sorting Overview
- In-Place Quick Sort

• Topological Sort

• Reductions
- Definitions
- Examples

CSE 373 Summer 2020LEC 22: Topo Sort & Reductions

Sorting Dependencies
• Given a set of courses and their prerequisites, find an order to take

the courses in (assuming you can only take one course per quarter)

• Possible ordering:

MATH 126

CSE 142

CSE 143

CSE 373

CSE 374

CSE 417

MATH 126 CSE 142 CSE 143 CSE 373 CSE 417 CSE 374

CSE 373 Summer 2020LEC 22: Topo Sort & Reductions

Topological Sort
• A topological sort of a directed graph G is

one where for every edge, the origin
appears before the destination

• Intuition: a “dependency graph”
- An edge (u, v) means u must happen before v
- A topological sort of a dependency graph gives

an ordering that respects dependencies

• Applications:
- Graduating
- Compiling multiple Java files
- Multi-job Workflows

A

B

C

A before C

B before C

A before B

A B C

Topological Sort:

With original edges for reference:

A B C

Input:

CSE 373 Summer 2020LEC 22: Topo Sort & Reductions

Can We Always Topo Sort a Graph?
• Can you topologically sort this graph?

• What’s the difference between this graph and our first
graph?

• A graph has a topological ordering iff it is a DAG
- But a DAG can have multiple orderings

CSE 143

CSE 373

CSE 417

🤔Where do I start? Where do I end?🤔

MATH 126

CSE 142
CSE 143

CSE 373

CSE 374

CSE 417

No 😭

DIRECTED ACYCLIC
GRAPH

• A directed graph
without any cycles

• Edges may or may
not be weighted

CSE 373 Summer 2020LEC 22: Topo Sort & Reductions

Doesn’t reach all vertices L

How To Perform Topo Sort?
• Topo sort is an ordering problem. Could

we use… BFS?

1

2

3

4

5

6

7

0

Input:

BFS starting at 0:

0 1 3 4 7

IDEA 1

Use BFS, starting from a vertex
with no incoming edges

Performing Topo Sort

CSE 373 Summer 2020LEC 22: Topo Sort & Reductions

Doesn’t respect all edges L

How To Perform Topo Sort?
• Okay, there may be multiple “roots”. What

if we use BFS multiple times?

1

2

3

4

5

6

7

0

Input:

BFS starting at 0:

0 1 3 4 7

IDEA 2

Use BFS, starting from ALL vertices
with no incoming edges

Performing Topo Sort

+ BFS starting at 2:

2 5 6

CSE 373 Summer 2020LEC 22: Topo Sort & Reductions

CSE 373 Summer 2020LEC 22: Topo Sort & Reductions

Lecture Outline
• Comparison Sorts

- Review Sorting Overview
- In-Place Quick Sort

• Topological Sort

• Reductions
- Definitions
- Examples

CSE 373 Summer 2020LEC 22: Topo Sort & Reductions

Reductions
• A reduction is a problem-solving strategy

that involves using an algorithm for problem
Q to solve a different problem P

- Rather than modifying the algorithm for Q, we
modify the inputs/outputs to make them
compatible with Q!

- “P reduces to Q”

1. Convert input for P into input for Q

2. Solve using algorithm for Q

3. Convert output from Q into output from P

Q INPUT

P INPUT

Q OUTPUT

P OUTPUT

PROBLEM QPROBLEM P

CSE 373 Summer 2020LEC 22: Topo Sort & Reductions

Reductions
• Example: I want to get a note to my friend

in Chicago, but walking all the way there is a
difficult problem to solve L

- Instead, reduce the “get a note to Chicago”
problem to the “mail a letter” problem!

1. Place note inside of envelope

2. Mail using US Postal Service

3. Take note out of envelope

Q INPUT

Q OUTPUT

Mail a
letter

Get a note
to Chicago

Chicago

Chicago

Seattle

Seattle

CSE 373 Summer 2020LEC 22: Topo Sort & Reductions

0 1 3 4 72 5 6👻 0 1 3 4 72 5 6👻0 1 3 4 72 5 6

1

2

3

4

5

6

7

0

How To Perform Topo Sort?
• If we add a phantom “start” vertex

pointing to other starts, we could use BFS!

👻

BFS

Sweet sweet victory 😎

IDEA 3

Reduce topo sort to BFS by
modifying graph, running BFS,
then modifying output back

Performing Topo Sort

CSE 373 Summer 2020LEC 22: Topo Sort & Reductions

pollev.com/uwcse373

Reductions
• A reduction is a problem-solving strategy that

involves using an algorithm for problem Q to solve
a different problem P

- Rather than modifying the algorithm for Q, we modify
the inputs/outputs to make them compatible with Q!

- “P reduces to Q”

1. Convert input for P into input for Q

2. Solve using algorithm for Q

3. Convert output from Q into output from P

Are Prim’s and Dijkstra’s related
via a reduction?

a) Yes.
Prim’s reduces to Dijkstra’s.

b) Yes.
Dijkstra’s reduces to Prim’s.

c) No.
This is not a reduction.

In a reduction, we modify inputs/outputs, not the algorithm itself!

CSE 373 Summer 2020LEC 22: Topo Sort & Reductions

Lecture Outline
• Comparison Sorts

- Review Sorting Overview
- In-Place Quick Sort

• Topological Sort

• Reductions
- Definitions
- Examples

CSE 373 Summer 2020LEC 22: Topo Sort & Reductions

Checking for Duplicates
• Problem: We want to determine whether an array contains duplicate

elements.

• Initial idea: Compare every element to every other element!
- Runtime: 𝜃(𝑛9)

• Could we do better?

containsDuplicates(array) {
for (int i = 0; i < array.length; i++):

for (int j = i; j < array.length; j++):
if (array[i] == array[j]):

return true
return false

}

0 1 2 3 4

2 4 8 3 8

CSE 373 Summer 2020LEC 22: Topo Sort & Reductions

pollev.com/uwcse373

Your Turn!

0 1 2 3 4

2 4 8 3 8

Goal: Reduce the problem of “Contains Duplicates?” to another
problem we have an algorithm for.

Try to identify each of the following:
1. How will you convert the “Contains Duplicates?” input?

2. What algorithm will you apply?

3. How will you convert the algorithm’s output?

Q INPUT

P INPUT

Q OUTPUT

P OUTPUT

PROBLEM QPROBLEM P

CSE 373 Summer 2020LEC 22: Topo Sort & Reductions

pollev.com/uwcse373

Your Turn!

Q INPUT

Array

Q OUTPUT

Boolean

PROBLEM QContains
Duplicates?

CSE 373 Summer 2020LEC 22: Topo Sort & Reductions

pollev.com/uwcse373

Array

Array

Sorted Array

Boolean

SortingContains
Duplicates?

One Solution: Reduce “Contains Duplicates?” to the problem of
sorting an array
• We know several algorithms that solve this problem quickly!

• Totally okay to do work in input/output conversion! Even with
this pass, runtime is 𝜃 𝑛 log 𝑛 + 𝑛 , so just 𝜃 𝑛 log 𝑛 .
Reduction helped us avoid quadratic runtime!

1. Simply pass array input to “Sorting”

2. Use Heap Sort, Merge Sort, or Quick Sort to sort

3. Scan through sorted array: check for duplicates now
next to each other, a 𝜃 𝑛 operation!

Your Turn!

CSE 373 Summer 2020LEC 22: Topo Sort & Reductions

Content-Aware Image Resizing
Seam carving: A distortion-free technique for resizing an image by
removing “unimportant seams”

Seam carving for content-aware image resizing (Avidan, Shamir/ACM); Broadway Tower (Newton2, Yummifruitbat/Wikimedia)

Original Photo Horizontally-Scaled
(castle and person

are distorted)

Seam-Carved
(castle and person are undistorted;

“unimportant” sky removed instead)

CSE 373 Summer 2020LEC 22: Topo Sort & Reductions

31

Demo: https://www.youtube.com/watch?v=vIFCV2spKtg

https://www.youtube.com/watch?v=vIFCV2spKtg

CSE 373 Summer 2020LEC 22: Topo Sort & Reductions

Seam Carving Reduces to Dijkstra’s!
1. Transform the input so that it can be solved by the

standard algorithm
- Formulate the image as a graph

- Vertices: pixel in the image
- Edges: connects a pixel to its 3 downward neighbors
- Edge Weights: the “energy” (visual difference)

between adjacent pixels

2. Run the standard algorithm as-is on the
transformed input

- Run Dijkstra’s to find the shortest path (sum of weights)
from top row to bottom row

3. Transform the output of the algorithm to solve the
original problem

- Interpret the path as a removable “seam” of
unimportant pixels

Shortest Paths (Robert Sedgewick, Kevin Wayne/Princeton)

1.5

1.0

1.6

58.2

120.9

greater pixel difference = higher weight!

CSE 373 Summer 2020LEC 22: Topo Sort & Reductions

An Incomplete Reduction
• Complication:

- Dijkstra’s starts with a single vertex S
and ends with a single vertex T

- This problem specifies sets of vertices
for the start and end

• Question to think about: how would
you transform this graph into
something Dijkstra’s knows how to
operate on?

Shortest Paths (Robert Sedgewick, Kevin Wayne/Princeton)

S

T

CSE 373 Summer 2020LEC 22: Topo Sort & Reductions

In Conclusion
• Topo Sort is a widely applicable “sorting” algorithm

beyond the classic comparison sorts

• Reductions are an essential tool in your CS toolbox --
you’re probably already doing them without putting
a name to it

• Many more reductions than we can cover!
- Shortest Path in DAG with Negative Edges reduces to

Topological Sort! (Link)
- 2-Color Graph Coloring reduces to 2-SAT (Link)
- …
- Staying on top of week 9 in this course reduces to starting

early on P4 and EX4

Q INPUT

P INPUT

Q OUTPUT

P OUTPUT

PROBLEM QPROBLEM P

https://www.ics.uci.edu/~eppstein/161/960208.html
https://blog.asarkar.com/assets/docs/algorithms-curated/Solving%202-List%20Coloring%20-%20Gil.pdf

